We investigate an enrichment of the propositional modal language L with a "universal" modality ■ having semantics x ⊧ ■φ iff ∀y(y ⊧ φ), and a countable set of "names" - a special kind of propositional variables ranging over singleton sets of worlds. The obtained language ℒ $_{c}$ proves to have a great expressive power. It is equivalent with respect to modal definability to another enrichment ℒ(⍯) of ℒ, where ⍯ is an additional modality with the semantics x (...) ⊧ ⍯φ iff Vy(y ≠ x → y ⊧ φ). Model-theoretic characterizations of modal definability in these languages are obtained. Further we consider deductive systems in ℒ $_{c}$ . Strong completeness of the normal ℒ $_{c}$ logics is proved with respect to models in which all worlds are named. Every ℒ $_{c}$ -logic axiomatized by formulae containing only names (but not propositional variables) is proved to be strongly frame-complete. Problems concerning transfer of properties ([in]completeness, filtration, finite model property etc.) from ℒ to ℒ $_{c}$ are discussed. Finally, further perspectives for names in multimodal environment are briefly sketched. (shrink)
Modallogic is one of philosophy’s many children. As a mature adult it has moved out of the parental home and is nowadays straying far from its parent. But the ties are still there: philosophy is important to modallogic, modallogic is important for philosophy. Or, at least, this is a thesis we try to defend in this chapter. Limitations of space have ruled out any attempt at writing a survey of all the (...) work going on in our field—a book would be needed for that. Instead, we have tried to select material that is of interest in its own right or exemplifies noteworthy features in interesting ways. Here are some themes that have guided us throughout the writing: • The back-and-forth between philosophy and modallogic. There has been a good deal of give-and-take in the past. Carnap tried to use his modallogic to throw light on old philosophical questions, thereby inspiring others to continue his work and still others to criticise it. He certainly provoked Quine, who in his turn provided—and continues to provide—a healthy challenge to modal logicians. And Kripke’s and David Lewis’s philosophies are connected, in interesting ways, with their modallogic. Analytic philosophy would have been a lot different without modallogic! • The interpretation problem. The problem of providing a certain modallogic with an intuitive interpretation should not be conflated with the problem of providing a formal system with a model-theoretic semantics. An intuitively appealing model-theoretic semantics may be an important step towards solving the interpretation problem, but only a step. One may compare this situation with that in probability theory, where definitions of concepts like ‘outcome space’ and ‘random variable’ are orthogonal to questions about “interpretations” of the concept of probability. • The value of formalisation. Modallogic sets standards of precision, which are a challenge to—and sometimes a model for—philosophy. Classical philosophical questions can be sharpened and seen from a new perspective when formulated in a framework of modallogic. On the other hand, representing old questions in a formal garb has its dangers, such as simplification and distortion. • Why modallogic rather than classical (first or higher order) logic? The idioms of modallogic—today there are many!—seem better to correspond to human ways of thinking than ordinary extensional logic. (Cf. Chomsky’s conjecture that the NP + VP pattern is wired into the human brain.) In his An Essay in ModalLogic (1951) von Wright distinguished between four kinds of modalities: alethic (modes of truth: necessity, possibility and impossibility), epistemic (modes of being known: known to be true, known to be false, undecided), deontic (modes of obligation: obligatory, permitted, forbidden) and existential (modes of existence: universality, existence, emptiness). The existential modalities are not usually counted as modalities, but the other three categories are exemplified in three sections into which this chapter is divided. Section 1 is devoted to alethic modallogic and reviews some main themes at the heart of philosophical modallogic. Sections 2 and 3 deal with topics in epistemic logic and deontic logic, respectively, and are meant to illustrate two different uses that modallogic or indeed any logic can have: it may be applied to already existing (non-logical) theory, or it can be used to develop new theory. (shrink)
I consider the first-order modallogic which counts as valid those sentences which are true on every interpretation of the non-logical constants. Based on the assumptions that it is necessary what individuals there are and that it is necessary which propositions are necessary, Timothy Williamson has tentatively suggested an argument for the claim that this logic is determined by a possible world structure consisting of an infinite set of individuals and an infinite set of worlds. He notes (...) that only the cardinalities of these sets matters, and that not all pairs of infinite sets determine the same logic. I use so-called two-cardinal theorems from model theory to investigate the space of logics and consequence relations determined by pairs of infinite sets, and show how to eliminate the assumption that worlds are individuals from Williamson’s argument. (shrink)
We introduce and study a variety of modal logics of parallelism, orthogonality, and affine geometries, for which we establish several completeness, decidability and complexity results and state a number of related open, and apparently difficult problems. We also demonstrate that lack of the finite model property of modal logics for sufficiently rich affine or projective geometries (incl. the real affine and projective planes) is a rather common phenomenon.
ABSTRACTHegel's Phenomenology of Spirit provides a fascinating picture of individual minds caught up in “recognitive” relations so as to constitute a realm—“spirit”—which, while necessarily embedded in nature, is not reducible to it. In this essay I suggest a contemporary path for developing Hegel's suggestive ideas in a way that broadly conforms to the demands of his own system, such that one moves from logic to a philosophy of mind. Hence I draw on Hegel's “subjective logic”, understood in the (...) light of modern modallogic, in an attempt to model the way minds might be thought as connected by way of shared intentional contents. Here, we should not be surprised at some of the parallels that emerge between the approaches of Hegel and the modal logician Arthur Prior, as Prior had testified to the influence of his teacher, John N. Findlay, who himself had strong Hegelian leanings. In the final section, Robert Stalnaker's version of possible-world semantics is suggested as a framework within which Hegel's recognitive account of the mind might be understood. (shrink)
ABSTRACT: The modal systems of the Stoic logician Chrysippus and the two Hellenistic logicians Philo and Diodorus Cronus have survived in a fragmentary state in several sources. From these it is clear that Chrysippus was acquainted with Philo’s and Diodorus’ modal notions, and also that he developed his own in contrast of Diodorus’ and in some way incorporated Philo’s. The goal of this paper is to reconstruct the three modal systems, including their modal definitions and (...) class='Hi'>modal theorems, and to make clear the exact relations between them; moreover, to elucidate the philosophical reasons that may have led Chrysippus to modify his predessors’ modal concept in the way he did. It becomes apparent that Chrysippus skillfully combined Philo’s and Diodorus’ modal notions, with making only a minimal change to Diodorus’ concept of possibility; and that he thus obtained a modal system of modalities (logical and physical) which fit perfectly fit into Stoic philosophy. (shrink)
In this thesis we present two logical systems, $\bf MP$ and $\MP$, for the purpose of reasoning about knowledge and effort. These logical systems will be interpreted in a spatial context and therefore, the abstract concepts of knowledge and effort will be defined by concrete mathematical concepts.
In this paper the propositional logic LTop is introduced, as an extension of classical propositional logic by adding a paraconsistent negation. This logic has a very natural interpretation in terms of topological models. The logic LTop is nothing more than an alternative presentation of modallogic S4, but in the language of a paraconsistent logic. Moreover, LTop is a logic of formal inconsistency in which the consistency and inconsistency operators have a nice (...) topological interpretation. This constitutes a new proof of S4 as being "the logic of topological spaces", but now under the perspective of paraconsistency. (shrink)
This essay aims to provide a modallogic for rational intuition. Similarly to treatments of the property of knowledge in epistemic logic, I argue that rational intuition can be codified by a modal operator governed by the axioms of a dynamic provability logic, which embeds GL within the modal $\mu$-calculus. Via correspondence results between modallogic and the bisimulation-invariant fragment of second-order logic, a precise translation can then be provided between the (...) notion of 'intuition-of', i.e., the cognitive phenomenal properties of thoughts, and the modal operators regimenting the notion of 'intuition-that'. I argue that intuition-that can further be shown to entrain conceptual elucidation, by way of figuring as a dynamic-interpretational modality which induces the reinterpretation of both domains of quantification and the intensions of mathematical concepts that are formalizable in monadic first- and second-order formal languages. (shrink)
Complete deductive systems are constructed for the non-valid (refutable) formulae and sequents of some propositional modal logics. Thus, complete syntactic characterizations in the sense of Lukasiewicz are established for these logics and, in particular, purely syntactic decision procedures for them are obtained. The paper also contains some historical remarks and a general discussion on refutation systems.
The textbook-like history of analytic philosophy is a history of myths, re-ceived views and dogmas. Though mainly the last few years have witnessed a huge amount of historical work that aimed to reconsider our narratives of the history of ana-lytic philosophy there is still a lot to do. The present study is meant to present such a micro story which is still quite untouched by historians. According to the received view Kripke has defeated all the arguments of Quine against quantified (...)modallogic and thus it became a respectful tool for philosophers. If we accept the historical interpreta-tion of the network between Quine, Kripke and modallogic, which is to be presented here, we have to conclude that Quine’s real philosophical animadversions against the modalities are still on the table: though Kripke has provided some important (formal-logical) answers, Quine’s animadversions are still viable and worthy of further consideration. (shrink)
A logic is called higher order if it allows for quantiﬁcation over higher order objects, such as functions of individuals, relations between individuals, functions of functions, relations between functions, etc. Higher order logic began with Frege, was formalized in Russell [46] and Whitehead and Russell [52] early in the previous century, and received its canonical formulation in Church [14].1 While classical type theory has since long been overshadowed by set theory as a foundation of mathematics, recent decades have (...) shown remarkable comebacks in the ﬁelds of mechanized reasoning (see, e.g., Benzm¨. (shrink)
We study the general problem of axiomatizing structures in the framework of modallogic and present a uniform method for complete axiomatization of the modal logics determined by a large family of classes of structures of any signature.
In this work we propose an encoding of Reiter’s Situation Calculus solution to the frame problem into the framework of a simple multimodal logic of actions. In particular we present the modal counterpart of the regression technique. This gives us a theorem proving method for a relevant fragment of our modallogic.
We study the modallogic M L r of the countable random frame, which is contained in and `approximates' the modallogic of almost sure frame validity, i.e. the logic of those modal principles which are valid with asymptotic probability 1 in a randomly chosen finite frame. We give a sound and complete axiomatization of M L r and show that it is not finitely axiomatizable. Then we describe the finite frames of that (...) class='Hi'>logic and show that it has the finite frame property and its satisfiability problem is in EXPTIME. All these results easily extend to temporal and other multi-modal logics. Finally, we show that there are modal formulas which are almost surely valid in the finite, yet fail in the countable random frame, and hence do not follow from the extension axioms. Therefore the analog of Fagin's transfer theorem for almost sure validity in first-order logic fails for modallogic. (shrink)
We employ a recently developed methodology -- called "structural refinement" -- to extract nested sequent systems for a sizable class of intuitionistic modal logics from their respective labelled sequent systems. This method can be seen as a means by which labelled sequent systems can be transformed into nested sequent systems through the introduction of propagation rules and the elimination of structural rules, followed by a notational translation. The nested systems we obtain incorporate propagation rules that are parameterized with formal (...) grammars, and which encode certain frame conditions expressible as first-order Horn formulae that correspond to a subclass of the Scott-Lemmon axioms. We show that our nested systems are sound, cut-free complete, and admit hp-admissibility of typical structural rules. (shrink)
We study the general problem of axiomatizing structures in the framework of modallogic and present a uniform method for complete axiomatization of the modal logics determined by a large family of classes of structures of any signature.
Intuitionistic logic provides an elegant solution to the Sorites Paradox. Its acceptance has been hampered by two factors. First, the lack of an accepted semantics for languages containing vague terms has led even philosophers sympathetic to intuitionism to complain that no explanation has been given of why intuitionistic logic is the correct logic for such languages. Second, switching from classical to intuitionistic logic, while it may help with the Sorites, does not appear to offer any advantages (...) when dealing with the so-called paradoxes of higher-order vagueness. We offer a proposal that makes strides on both issues. We argue that the intuitionist’s characteristic rejection of any third alethic value alongside true and false is best elaborated by taking the normal modal system S4M to be the sentential logic of the operator ‘it is clearly the case that’. S4M opens the way to an account of higher-order vagueness which avoids the paradoxes that have been thought to infect the notion. S4M is one of the modal counterparts of the intuitionistic sentential calculus and we use this fact to explain why IPC is the correct sentential logic to use when reasoning with vague statements. We also show that our key results go through in an intuitionistic version of S4M. Finally, we deploy our analysis to reply to Timothy Williamson’s objections to intuitionistic treatments of vagueness. (shrink)
Weakly Aggregative ModalLogic (WAML) is a collection of disguised polyadic modal logics with n-ary modalities whose arguments are all the same. WAML has some interesting applications on epistemic logic and logic of games, so we study some basic model theoretical aspects of WAML in this paper. Specifically, we give a van Benthem-Rosen characterization theorem of WAML based on an intuitive notion of bisimulation and show that each basic WAML system Kn lacks Craig Interpolation.
In this paper I introduce a sequent system for the propositional modallogic S5. Derivations of valid sequents in the system are shown to correspond to proofs in a novel natural deduction system of circuit proofs (reminiscient of proofnets in linear logic, or multiple-conclusion calculi for classical logic). -/- The sequent derivations and proofnets are both simple extensions of sequents and proofnets for classical propositional logic, in which the new machinery—to take account of the (...) class='Hi'>modal vocabulary—is directly motivated in terms of the simple, universal Kripke semantics for S5. The sequent system is cut-free and the circuit proofs are normalising. (shrink)
This essay examines the philosophical significance of $\Omega$-logic in Zermelo-Fraenkel set theory with choice (ZFC). The duality between coalgebra and algebra permits Boolean-valued algebraic models of ZFC to be interpreted as coalgebras. The modal profile of $\Omega$-logical validity can then be countenanced within a coalgebraic logic, and $\Omega$-logical validity can be defined via deterministic automata. I argue that the philosophical significance of the foregoing is two-fold. First, because the epistemic and modal profiles of $\Omega$-logical validity correspond (...) to those of second-order logical consequence, $\Omega$-logical validity is genuinely logical, and thus vindicates a neo-logicist conception of mathematical truth in the set-theoretic multiverse. Second, the foregoing provides a modal-computational account of the interpretation of mathematical vocabulary, adducing in favor of a realist conception of the cumulative hierarchy of sets. (shrink)
Harold Hodes in [1] introduces an extension of first-order modallogic featuring a backtracking operator, and provides a possible worlds semantics, according to which the operator is a kind of device for ‘world travel’; he does not provide a proof theory. In this paper, I provide a natural deduction system for modallogic featuring this operator, and argue that the system can be motivated in terms of a reading of the backtracking operator whereby it serves to (...) indicate modal scope. I prove soundness and completeness theorems with respect to Hodes’ semantics, as well as semantics with fewer restrictions on the accessibility relation. (shrink)
Dugundji proved in 1940 that most parts of standard modal systems cannot be characterized by a single finite deterministic matrix. In the eighties, Ivlev proposed a semantics of four-valued non-deterministic matrices (which he called quasi-matrices), in order to characterize a hierarchy of weak modal logics without the necessitation rule. In a previous paper, we extended some systems of Ivlev’s hierarchy, also proposing weaker six-valued systems in which the (T) axiom was replaced by the deontic (D) axiom. In this (...) paper, we propose even weaker systems, by eliminating both axioms, which are characterized by eight-valued non-deterministic matrices. In addition, we prove completeness for those new systems. It is natural to ask if a characterization by finite ordinary (deterministic) logical matrices would be possible for all those Ivlev-like systems. We will show that finite deterministic matrices do not characterize any of them. (shrink)
Well-known results due to David Makinson show that there are exactly two Post complete normal modal logics, that in both of them, the modal operator is truth-functional, and that every consistent normal modallogic can be extended to at least one of them. Lloyd Humberstone has recently shown that a natural analog of this result in congruential modal logics fails, by showing that not every congruential modallogic can be extended to one in (...) which the modal operator is truth-functional. As Humberstone notes, the issue of Post completeness in congruential modal logics is not well understood. The present article shows that in contrast to normal modal logics, the extent of the property of Post completeness among congruential modal logics depends on the background set of logics. Some basic results on the corresponding properties of Post completeness are established, in particular that although a congruential modallogic is Post complete among all modal logics if and only if its modality is truth-functional, there are continuum many modal logics Post complete among congruential modal logics. (shrink)
A brief overview of the system S5 in modallogic as defined by Brian F. Chellas, author of "ModalLogic: An Introduction." The history and usage of modallogic are given mention, along with some applications. Very much a draft. Written for PhileInSophia on July 5, 2021.
Hyperboolean algebras are Boolean algebras with operators, constructed as algebras of complexes (or, power structures) of Boolean algebras. They provide an algebraic semantics for a modallogic (called here a {\em hyperboolean modallogic}) with a Kripke semantics accordingly based on frames in which the worlds are elements of Boolean algebras and the relations correspond to the Boolean operations. We introduce the hyperboolean modallogic, give a complete axiomatization of it, and show that it (...) lacks the finite model property. The method of axiomatization hinges upon the fact that a "difference" operator is definable in hyperboolean algebras, and makes use of additional non-Hilbert-style rules. Finally, we discuss a number of open questions and directions for further research. (shrink)
This paper outlines a formal account of tensed sentences that is consistent with Ockhamism, a view according to which future contingents are either true or false. The account outlined substantively differs from the attempts that have been made so far to provide a formal apparatus for such a view in terms of some expressly modified version of branching time semantics. The system on which it is based is the simplest quantified modallogic.
Many authors have noted that there are types of English modal sentences cannot be formalized in the language of basic first-order modallogic. Some widely discussed examples include “There could have been things other than there actually are” and “Everyone who is actually rich could have been poor.” In response to this lack of expressive power, many authors have discussed extensions of first-order modallogic with two-dimensional operators. But claims about the relative expressive power of (...) these extensions are often justified only by example rather than by rigorous proof. In this paper, we provide proofs of many of these claims and present a more complete picture of the expressive landscape for such languages. (shrink)
In this dissertation we present proof systems for several modal logics. These proof systems are based on analytic (or semantic) tableaux. -/- Modal logics are logics for reasoning about possibility, knowledge, beliefs, preferences, and other modalities. Their semantics are almost always based on Saul Kripke’s possible world semantics. In Kripke semantics, models are represented by relational structures or, equivalently, labeled graphs. Syntactic formulas that express statements about knowledge and other modalities are evaluated in terms of such models. -/- (...) This dissertation focuses on modal logics with dynamic operators for public announcements, belief revision, preference upgrades, and so on. These operators are defined in terms of mathematical operations on Kripke models. Thus, for example, a belief revision operator in the syntax would correspond to a belief revision operation on models. -/- The ‘dynamic’ semantics of dynamic modal logics are a clever way of extending languages without compromising on intuitiveness. We present ‘dynamic’ tableau proof systems for these dynamic semantics, with the express aim to make them conceptually simple, easy to use, modular, and extensible. This we do by reflecting the semantics as closely as possible in the components of our tableau system. For instance, dynamic operations on Kripke models have counterpart dynamic relations between tableaux. -/- Soundness, completeness, and decidability are three of the most important properties that a proof system may have. A proof system is sound if and only if any formula for which a proof exists, is true in every model. A proof system is complete if and only if for any formula that is true in all models, a proof exists. A proof system is decidable if and only if any formula can be proved to be a theorem or not a theorem in a finite number of steps. All proof systems in this dissertation are sound, complete, and decidable. -/- Part of our strategy to create modular tableau systems is to delay concerns over decidability until after soundness and completeness have been established. Decidability is attained through the operations of folding and through operations on ‘tableau cascades’, which are graphs of tableaux. -/- Finally, we provide a proof-of-concept implementation of our dynamic tableau system for public announcement logic in the Clojure programming language. (shrink)
A modallogic for representing analogical proportions is presented. This logic is a modal interpretation of H. Prade and G. Richard's homogeneous analogy. A tableaux system is given with some examples an intuitions.
In 1988, J. Ivlev proposed some (non-normal) modal systems which are semantically characterized by four-valued non-deterministic matrices in the sense of A. Avron and I. Lev. Swap structures are multialgebras (a.k.a. hyperalgebras) of a special kind, which were introduced in 2016 by W. Carnielli and M. Coniglio in order to give a non-deterministic semantical account for several paraconsistent logics known as logics of formal inconsistency, which are not algebraizable by means of the standard techniques. Each swap structure induces naturally (...) a non-deterministic matrix. The aim of this paper is to obtain a swap structures semantics for some Ivlev-like modal systems proposed in 2015 by M. Coniglio, L. Fariñas del Cerro and N. Peron. Completeness results will be stated by means of the notion of Lindenbaum–Tarski swap structures, which constitute a natural generalization to multialgebras of the concept of Lindenbaum–Tarski algebras. (shrink)
A certain type of inference rules in modal logics, generalizing Gabbay's Irreflexivity rule, is introduced and some general completeness results about modal logics axiomatized with such rules are proved.
The contemporary versions of the ontological argument that originated from Charles Hartshorne are formalized proofs based on unique modal theories. The simplest well-known theory of this kind arises from the b system of modallogic by adding two extra-logical axioms: “If the perfect being exists, then it necessarily exists‘ and “It is possible that the perfect being exists‘. In the paper a similar argument is presented, however none of the systems of modallogic is relevant (...) to it. Its only premises are the axiom and, instead of, the new axiom : “If the perfect being doesn’t exist, it necessarily doesn’t‘. The main goal of the work is to prove that is no more controversial than and -- in consequence -- the whole strength of the modal ontological argument lies in the set of its extra-logical premises. In order to do that, three arguments are formulated: ontological, “cosmological‘ and metalogical. (shrink)
A new proof style adequate for modal logics is defined from the polynomial ring calculus. The new semantics not only expresses truth conditions of modal formulas by means of polynomials, but also permits to perform deductions through polynomial handling. This paper also investigates relationships among the PRC here defined, the algebraic semantics for modal logics, equational logics, the Dijkstra???Scholten equational-proof style, and rewriting systems. The method proposed is throughly exemplified for S 5, and can be easily extended (...) to other modal logics. (shrink)
In this paper I propose a formalization, using modallogic, of the notion of possibility that phoneticians use when they judge speech sounds to be possible or impossible. I argue that the most natural candidate for a modallogic of phonetic possibility is the modal system T.
This paper presents a recent formalization of a Henkin-style completeness proof for the propositional modallogic S5 using the Lean theorem prover. The proof formalized is close to that of Hughes and Cresswell, but the system, based on a diﬀerent choice of axioms, is better described as a Mendelson system augmented with axiom schemes for K, T, S4, and B, and the necessitation rule as a rule of inference. The language has the false and implication as the only (...) primitive logical connectives and necessity as the only primitive modal operator. The full source code is available online and has been typechecked with Lean 3.4.2. (shrink)
Pace Necessitism – roughly, the view that existence is not contingent – essential properties provide necessary conditions for the existence of objects. Sufficiency properties, by contrast, provide sufficient conditions, and individual essences provide necessary and sufficient conditions. This paper explains how these kinds of properties can be used to illuminate the ontological status of merely possible objects and to construct a respectable possibilist ontology. The paper also reviews two points of interaction between essentialism and modallogic. First, we (...) will briefly see the challenge that arises against S4 from flexible essential properties; as well as the moves available to block it. After this, the emphasis is put on the Barcan Formula (BF), and on why it is problematic for essentialists. As we will see, Necessitism can accommodate both (BF) and essential properties. What necessitists cannot do at the same time is to continue to understanding essential properties as providing necessary conditions for the existence of individuals; against what might be for some a truism. (shrink)
This note considers deductive systems for the operator a of unprovability in some particular propositional normal modal logics. We give thus complete syntactic characterization of these logics in the sense of Lukasiewicz: for every formula either ` or a (but not both) is derivable. In particular, purely syntactic decision procedure is provided for the logics under considerations.
This paper will present two contributions to teaching introductory logic. The first contribution is an alternative tree proof method that differs from the traditional one-sided tree method. The second contribution combines this tree system with an index system to produce a user-friendly tree method for sentential modallogic.
The previously introduced algorithm \sqema\ computes first-order frame equivalents for modal formulae and also proves their canonicity. Here we extend \sqema\ with an additional rule based on a recursive version of Ackermann's lemma, which enables the algorithm to compute local frame equivalents of modal formulae in the extension of first-order logic with monadic least fixed-points \mffo. This computation operates by transforming input formulae into locally frame equivalent ones in the pure fragment of the hybrid mu-calculus. In particular, (...) we prove that the recursive extension of \sqema\ succeeds on the class of `recursive formulae'. We also show that a certain version of this algorithm guarantees the canonicity of the formulae on which it succeeds. (shrink)
ABSTRACT: This 1974 paper builds on our 1969 paper (Corcoran-Weaver [2]). Here we present three (modal, sentential) logics which may be thought of as partial systematizations of the semantic and deductive properties of a sentence operator which expresses certain kinds of necessity. The logical truths [sc. tautologies] of these three logics coincide with one another and with those of standard formalizations of Lewis's S5. These logics, when regarded as logistic systems (cf. Corcoran [1], p. 154), are seen to be (...) equivalent; but, when regarded as consequence systems (ibid., p. 157), one diverges from the others in a fashion which suggests that two standard measures of semantic complexity may not be as closely linked as previously thought. -/- This 1974 paper uses the linear notation for natural deduction presented in [2]: each two-dimensional deduction is represented by a unique one-dimensional string of characters. Thus obviating need for two-dimensional trees, tableaux, lists, and the like—thereby facilitating electronic communication of natural deductions. The 1969 paper presents a (modal, sentential) logic which may be thought of as a partial systematization of the semantic and deductive properties of a sentence operator which expresses certain kinds of necessity. The logical truths [sc. tautologies] of this logic coincides those of standard formalizations of Lewis’s S4. Among the paper's innovations is its treatment of modallogic in the setting of natural deduction systems--as opposed to axiomatic systems. The author’s apologize for the now obsolete terminology. For example, these papers speak of “a proof of a sentence from a set of premises” where today “a deduction of a sentence from a set of premises” would be preferable. 1. Corcoran, John. 1969. Three Logical Theories, Philosophy of Science 36, 153–77. J P R -/- 2. Corcoran, John and George Weaver. 1969. Logical Consequence in ModalLogic: Natural Deduction in S5 Notre Dame Journal of Formal Logic 10, 370–84. MR0249278 (40 #2524). 3. Weaver, George and John Corcoran. 1974. Logical Consequence in ModalLogic: Some Semantic Systems for S4, Notre Dame Journal of Formal Logic 15, 370–78. MR0351765 (50 #4253). (shrink)
In a previous work we introduced the algorithm \SQEMA\ for computing first-order equivalents and proving canonicity of modal formulae, and thus established a very general correspondence and canonical completeness result. \SQEMA\ is based on transformation rules, the most important of which employs a modal version of a result by Ackermann that enables elimination of an existentially quantified predicate variable in a formula, provided a certain negative polarity condition on that variable is satisfied. In this paper we develop several (...) extensions of \SQEMA\ where that syntactic condition is replaced by a semantic one, viz. downward monotonicity. For the first, and most general, extension \SSQEMA\ we prove correctness for a large class of modal formulae containing an extension of the Sahlqvist formulae, defined by replacing polarity with monotonicity. By employing a special modal version of Lyndon's monotonicity theorem and imposing additional requirements on the Ackermann rule we obtain restricted versions of \SSQEMA\ which guarantee canonicity, too. (shrink)
Michael Dummett argues, against Saul Kripke, that there could have been unicorns. He then claims that this possibility shows that the logic of metaphysical modality is not S5, and, in particular, that the B axiom is false. Dummett’s argument against B, however, is invalid. I show that although there are number of ways to repair Dummett’s argument against B, each requires a controversial metaphysical or semantic commitment, and that, regardless of this, the case against B is undermotivated. Dummett’s case (...) is still of interest, however, as if his assumptions are correct, S5 has to go, with the natural culprit being S4. (shrink)
A textbook for modal and other intensional logics based on the Open Logic Project. It covers normal modal logics, relational semantics, axiomatic and tableaux proof systems, intuitionistic logic, and counterfactual conditionals.
We reconstruct as much as we can the part of al-Fārābī's treatment of modallogic that is missing from the surviving pages of his Long Commentary on the Prior Analytics. We use as a basis the quotations from this work in Ibn Sīnā, Ibn Rushd and Maimonides, together with relevant material from al-Fārābī's other writings. We present a case that al-Fārābī's treatment of the dictum de omni had a decisive effect on the development and presentation of Ibn Sīnā's (...)modallogic. We give further evidence that the Harmonisation of the Opinions of Plato and Aristotle was not written by al-Fārābī. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.