Results for 'Necessity in mathematics'

Order:
  1. The Necessity of Mathematics.Juhani Yli‐Vakkuri & John Hawthorne - 2018 - Noûs 52.
    Some have argued for a division of epistemic labor in which mathematicians supply truths and philosophers supply their necessity. We argue that this is wrong: mathematics is committed to its own necessity. Counterfactuals play a starring role.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  2. Mathematical Necessity and Reality.James Franklin - 1989 - Australasian Journal of Philosophy 67 (3):286 – 294.
    Einstein, like most philosophers, thought that there cannot be mathematical truths which are both necessary and about reality. The article argues against this, starting with prima facie examples such as "It is impossible to tile my bathroom floor with regular pentagonal tiles." Replies are given to objections based on the supposedly purely logical or hypothetical nature of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  3.  99
    Counterfactual Logic and the Necessity of Mathematics.Samuel Elgin - manuscript
    This paper is concerned with counterfactual logic and its implications for the modal status of mathematical claims. It is most directly a response to an ambitious program by Yli-Vakkuri and Hawthorne (2018), who seek to establish that mathematics is committed to its own necessity. I claim that their argument fails to establish this result for two reasons. First, their assumptions force our hand on a controversial debate within counterfactual logic. In particular, they license counterfactual strengthening— the inference from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Perceiving Necessity.Catherine Legg & James Franklin - 2017 - Pacific Philosophical Quarterly 98 (3).
    In many diagrams one seems to perceive necessity – one sees not only that something is so, but that it must be so. That conflicts with a certain empiricism largely taken for granted in contemporary philosophy, which believes perception is not capable of such feats. The reason for this belief is often thought well-summarized in Hume's maxim: ‘there are no necessary connections between distinct existences’. It is also thought that even if there were such necessities, perception is too passive (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  5.  95
    The Epistemology of Mathematical Necessity.Cathy Legg - 2018 - In Peter Chapman, Gem Stapleton, Amirouche Moktefi, Sarah Perez-Kriz & Francesco Bellucci (eds.), Diagrammatic Representation and Inference10th International Conference, Diagrams 2018, Edinburgh, UK, June 18-22, 2018, Proceedings. Berlin: Springer-Verlag. pp. 810-813.
    It seems possible to know that a mathematical claim is necessarily true by inspecting a diagrammatic proof. Yet how does this work, given that human perception seems to just (as Hume assumed) ‘show us particular objects in front of us’? I draw on Peirce’s account of perception to answer this question. Peirce considered mathematics as experimental a science as physics. Drawing on an example, I highlight the existence of a primitive constraint or blocking function in our thinking which we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. The Directionality of Distinctively Mathematical Explanations.Carl F. Craver & Mark Povich - 2017 - Studies in History and Philosophy of Science Part A 63:31-38.
    In “What Makes a Scientific Explanation Distinctively Mathematical?” (2013b), Lange uses several compelling examples to argue that certain explanations for natural phenomena appeal primarily to mathematical, rather than natural, facts. In such explanations, the core explanatory facts are modally stronger than facts about causation, regularity, and other natural relations. We show that Lange's account of distinctively mathematical explanation is flawed in that it fails to account for the implicit directionality in each of his examples. This inadequacy is remediable in each (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  7. Plato on Why Mathematics is Good for the Soul.Myles Burnyeat - 2000 - In T. Smiley (ed.), Mathematics and Necessity: Essays in the History of Philosophy. pp. 1-81.
    Anyone who has read Plato’s Republic knows it has a lot to say about mathematics. But why? I shall not be satisfied with the answer that the future rulers of the ideal city are to be educated in mathematics, so Plato is bound to give some space to the subject. I want to know why the rulers are to be educated in mathematics. More pointedly, why are they required to study so much mathematics, for so long?
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  8. Contingentism in Metaphysics.Kristie Miller - 2010 - Philosophy Compass 5 (11):965-977.
    In a lot of domains in metaphysics the tacit assumption has been that whichever metaphysical principles turn out to be true, these will be necessarily true. Let us call necessitarianism about some domain the thesis that the right metaphysics of that domain is necessary. Necessitarianism has flourished. In the philosophy of maths we find it held that if mathematical objects exist, then they do of necessity. Mathematical Platonists affirm the necessary existence of mathematical objects (see for instance Hale and (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  9. How Mathematics Isn’T Logic.Roger Wertheimer - 1999 - Ratio 12 (3):279–295.
    If logical truth is necessitated by sheer syntax, mathematics is categorially unlike logic even if all mathematics derives from definitions and logical principles. This contrast gets obscured by the plausibility of the Synonym Substitution Principle implicit in conceptions of analyticity: synonym substitution cannot alter sentence sense. The Principle obviously fails with intercepting: nonuniform term substitution in logical sentences. 'Televisions are televisions' and 'TVs are televisions' neither sound alike nor are used interchangeably. Interception synonymy gets assumed because logical sentences (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Mathematical Nature of Reality, Plus Gravitation-Electromagnetism Unification, Derived From Revised Gravitational Tidal Forces and Mass-From-Gravity Concept.Rodney Bartlett - manuscript
    This article had its beginning with Einstein's 1919 paper "Do gravitational fields play an essential role in the structure of elementary particles?" Together with General Relativity's statement that gravity is not a pull but is a push caused by the curvature of space-time, a hypothesis for Earth's ocean tides was developed that does not solely depend on the Sun and Moon as Kepler and Newton believed. It also borrows from Galileo. The breakup of planets and asteroids by white dwarfs, neutron (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11.  76
    ‘Let No-One Ignorant of Geometry…’: Mathematical Parallels for Understanding the Objectivity of Ethics.James Franklin - 2021 - Journal of Value Inquiry 55:1-20.
    It may be a myth that Plato wrote over the entrance to the Academy “Let no-one ignorant of geometry enter here.” But it is a well-chosen motto for his view in the Republic that mathematical training is especially productive of understanding in abstract realms, notably ethics. That view is sound and we should return to it. Ethical theory has been bedevilled by the idea that ethics is fundamentally about actions (right and wrong, rights, duties, virtues, dilemmas and so on). That (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Hilary Putnam on Meaning and Necessity.Anders Öberg - 2011 - Dissertation, Uppsala University
    In this dissertation on Hilary Putnam's philosophy, I investigate his development regarding meaning and necessity, in particular mathematical necessity. Putnam has been a leading American philosopher since the end of the 1950s, becoming famous in the 1960s within the school of analytic philosophy, associated in particular with the philosophy of science and the philosophy of language. Under the influence of W.V. Quine, Putnam challenged the logical positivism/empiricism that had become strong in America after World War II, with influential (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  13.  51
    Not So Distinctively Mathematical Explanations.Aditya Jha, Clemency Montelle, Douglas I. Campbell & Phillip Wilson - manuscript
    (Longer version - work in progress) Various accounts of distinctively mathematical explanations (DMEs) of complex systems have been proposed recently which bypass the contingent causal laws and appeal primarily to mathematical necessities constraining the system. These necessities are considered to be modally exalted in that they obtain with a greater necessity than the ordinary laws of nature (Lange 2016). This paper focuses on DMEs of the number of equilibrium positions of n-tuple pendulum systems and considers several different DMEs of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Invariance and Necessity.Gila Sher - 2019 - In Bernhard Ritter, Paul Weingartner & Gabriele M. Mras (eds.), Philosophy of logic and Mathematics. Berlin, Boston: De Gruyter. pp. 55-70.
    Properties and relations in general have a certain degree of invariance, and some types of properties/relations have a stronger degree of invariance than others. In this paper I will show how the degrees of invariance of different types of properties are associated with, and explain, the modal force of the laws governing them. This explains differences in the modal force of laws/principles of different disciplines, starting with logic and mathematics and proceeding to physics and biology.
    Download  
     
    Export citation  
     
    Bookmark  
  15. Necessity in Self-Defense and War.Seth Lazar - 2012 - Philosophy and Public Affairs 40 (1):3-44.
    It is generally agreed that using lethal or otherwise serious force in self-defense is justified only when three conditions are satisfied: first, there are some grounds for the defender to give priority to his own interests over those of the attacker (whether because the attacker has lost the protection of his right to life, for example, or because of the defender’s prerogative to prefer himself to others); second, the harm used is proportionate to the threat thereby averted; third, the harm (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  16. Flexible Intuitions of Euclidean Geometry in an Amazonian Indigene Group.Pierre Pica, Véronique Izard, Elizabeth Spelke & Stanislas Dehaene - 2011 - Pnas 23.
    Kant argued that Euclidean geometry is synthesized on the basis of an a priori intuition of space. This proposal inspired much behavioral research probing whether spatial navigation in humans and animals conforms to the predictions of Euclidean geometry. However, Euclidean geometry also includes concepts that transcend the perceptible, such as objects that are infinitely small or infinitely large, or statements of necessity and impossibility. We tested the hypothesis that certain aspects of nonperceptible Euclidian geometry map onto intuitions of space (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   7 citations  
  17. Stepping Beyond the Newtonian Paradigm in Biology. Towards an Integrable Model of Life: Accelerating Discovery in the Biological Foundations of Science.Plamen L. Simeonov, Edwin Brezina, Ron Cottam, Andreé C. Ehresmann, Arran Gare, Ted Goranson, Jaime Gomez‐Ramirez, Brian D. Josephson, Bruno Marchal, Koichiro Matsuno, Robert S. Root-­Bernstein, Otto E. Rössler, Stanley N. Salthe, Marcin Schroeder, Bill Seaman & Pridi Siregar - 2012 - In Plamen L. Simeonov, Leslie S. Smith & Andreé C. Ehresmann (eds.), Integral Biomathics: Tracing the Road to Reality. Springer. pp. 328-427.
    The INBIOSA project brings together a group of experts across many disciplines who believe that science requires a revolutionary transformative step in order to address many of the vexing challenges presented by the world. It is INBIOSA’s purpose to enable the focused collaboration of an interdisciplinary community of original thinkers. This paper sets out the case for support for this effort. The focus of the transformative research program proposal is biology-centric. We admit that biology to date has been more fact-oriented (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  18. A Likely Account of Necessity: Plato's Receptacle as a Physical and Metaphysical Foundation for Space.Barbara Sattler - 2012 - Journal of the History of Philosophy 50 (2):159-195.
    This paper aims to show that—and how—Plato’s notion of the receptacle in the Timaeus provides the conditions for developing a mathematical as well as a physical space without itself being space. In response to the debate whether Plato’s receptacle is a conception of space or of matter, I suggest employing criteria from topology and the theory of metric spaces as the most basic ones available. I show that the receptacle fulfils its main task–allowing the elements qua images of the Forms (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Explanation in Mathematics: Proofs and Practice.William D'Alessandro - 2019 - Philosophy Compass 14 (11).
    Mathematicians distinguish between proofs that explain their results and those that merely prove. This paper explores the nature of explanatory proofs, their role in mathematical practice, and some of the reasons why philosophers should care about them. Among the questions addressed are the following: what kinds of proofs are generally explanatory (or not)? What makes a proof explanatory? Do all mathematical explanations involve proof in an essential way? Are there really such things as explanatory proofs, and if so, how do (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. Imagination in Mathematics.Andrew Arana - 2016 - In Amy Kind (ed.), Routledge Handbook on the Philosophy of Imagination. Routledge. pp. 463-477.
    This article will consider imagination in mathematics from a historical point of view, noting the key moments in its conception during the ancient, modern and contemporary eras.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  21. Justification and Explanation in Mathematics and Morality.Justin Clarke-Doane - 2015 - Oxford Studies in Metaethics 10.
    In his influential book, The Nature of Morality, Gilbert Harman writes: “In explaining the observations that support a physical theory, scientists typically appeal to mathematical principles. On the other hand, one never seems to need to appeal in this way to moral principles.” What is the epistemological relevance of this contrast, if genuine? This chapter argues that ethicists and philosophers of mathematics have misunderstood it. They have confused what the chapter calls the justificatory challenge for realism about an area, (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  22. Intuition in Mathematics.Elijah Chudnoff - 2014 - In Barbara Held & Lisa Osbeck (eds.), Rational Intuition. Cambridge University Press.
    The literature on mathematics suggests that intuition plays a role in it as a ground of belief. This article explores the nature of intuition as it occurs in mathematical thinking. Section 1 suggests that intuitions should be understood by analogy with perceptions. Section 2 explains what fleshing out such an analogy requires. Section 3 discusses Kantian ways of fleshing it out. Section 4 discusses Platonist ways of fleshing it out. Section 5 sketches a proposal for resolving the main problem (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  23. Platitudes in Mathematics.Thomas Donaldson - 2015 - Synthese 192 (6):1799-1820.
    The term ‘continuous’ in real analysis wasn’t given an adequate formal definition until 1817. However, important theorems about continuity were proven long before that. How was this possible? In this paper, I introduce and refine a proposed answer to this question, derived from the work of Frank Jackson, David Lewis and other proponents of the ‘Canberra plan’. In brief, the proposal is that before 1817 the meaning of the term ‘continuous’ was determined by a number of ‘platitudes’ which had some (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  24. Eros and Necessity in the Ascent From the Cave.Rachel Barney - 2008 - Ancient Philosophy 28 (2):357-72.
    A generally ignored feature of Plato’s celebrated image of the cave in Republic VII is that the ascent from the cave is, in its initial stages, said to be brought about by force. What kind of ‘force’ is this, and why is it necessary? This paper considers three possible interpretations, and argues that each may have a role to play.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  25. Causal and Logical Necessity in Malebranche’s Occasionalism.A. R. J. Fisher - 2011 - Canadian Journal of Philosophy 41 (4):523-548.
    The famous Cartesian Nicolas Malebranche (1638-1715) espoused the occasionalist doctrine that ‘there is only one true cause because there is only one true God; that the nature or power of each thing is nothing but the will of God; that all natural causes are not true causes but only occasional causes’ (LO, 448, original italics). One of Malebranche’s well-known arguments for occasionalism, known as, the ‘no necessary connection’ argument (or, NNC ) stems from the principle that ‘a true cause… is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  26. Proof in Mathematics: An Introduction.James Franklin - 1996 - Sydney, Australia: Quakers Hill Press.
    A textbook on proof in mathematics, inspired by an Aristotelian point of view on mathematics and proof. The book expounds the traditional view of proof as deduction of theorems from evident premises via obviously valid steps. It deals with the proof of "all" statements, "some" statements, multiple quantifiers and mathematical induction.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  27. Necessity in Singular Causation.M. J. García-Encinas - 2002 - Philosophia 29 (1-4):149-172.
    I want to make sense of the view that singular causation involves a metaphysical necessary connection. By this I understand, where A and B are particulars, that ifA causes B then in every possible world in which A (or an A-indiscernible) or B (or a B-indiscernible) occurs, A (or an Aindiscernible) and B (or a B-indiscernible) occur. In the singularist approach that I will favour causal facts do not supervene on laws, causal relata are best understood as tropes, causation is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. The Hardness of the Iconic Must: Can Peirce’s Existential Graphs Assist Modal Epistemology.C. Legg - 2012 - Philosophia Mathematica 20 (1):1-24.
    Charles Peirce's diagrammatic logic — the Existential Graphs — is presented as a tool for illuminating how we know necessity, in answer to Benacerraf's famous challenge that most ‘semantics for mathematics’ do not ‘fit an acceptable epistemology’. It is suggested that necessary reasoning is in essence a recognition that a certain structure has the particular structure that it has. This means that, contra Hume and his contemporary heirs, necessity is observable. One just needs to pay attention, not (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  29. Play, Idleness and the Problem of Necessity in Schiller and Marcuse.Brian O'Connor - 2014 - British Journal for the History of Philosophy 22 (6):1095-1117.
    The central concern of this paper is to explore the efforts of Schiller's post-Kantian idealism and Marcuse's critical theory to develop a new conception of free human experience. That conception is built on the notion of play. Play is said to combine the human capacities for physical pleasure and reason, capacities which the modern world has dualized. Analysis of their respective accounts of play reveals its ambivalent form in the work of both philosophers. Play supports the ideal of ‘freedom from (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  30. Fitting Feelings and Elegant Proofs: On the Psychology of Aesthetic Evaluation in Mathematics.Cain Todd - 2017 - Philosophia Mathematica:nkx007.
    ABSTRACT This paper explores the role of aesthetic judgements in mathematics by focussing on the relationship between the epistemic and aesthetic criteria employed in such judgements, and on the nature of the psychological experiences underpinning them. I claim that aesthetic judgements in mathematics are plausibly understood as expressions of what I will call ‘aesthetic-epistemic feelings’ that serve a genuine cognitive and epistemic function. I will then propose a naturalistic account of these feelings in terms of sub-personal processes of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics.Vladimir Kanovei, Mikhail G. Katz & Thomas Mormann - 2013 - Foundations of Science 18 (2):259-296.
    We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in functional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S , all definable sets of reals are (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  32. Discrete and Continuous: A Fundamental Dichotomy in Mathematics.James Franklin - 2017 - Journal of Humanistic Mathematics 7 (2):355-378.
    The distinction between the discrete and the continuous lies at the heart of mathematics. Discrete mathematics (arithmetic, algebra, combinatorics, graph theory, cryptography, logic) has a set of concepts, techniques, and application areas largely distinct from continuous mathematics (traditional geometry, calculus, most of functional analysis, differential equations, topology). The interaction between the two – for example in computer models of continuous systems such as fluid flow – is a central issue in the applicable mathematics of the last (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  33. Nature as a Good Housekeeper. Secondary Teleology and Material Necessity in Aristotle’s Biology.Mariska Leunissen - 2010 - Apeiron 43 (4):117-142.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  34. Argument and Explanation in Mathematics.Michel Dufour - 2013 - In Dima Mohammed and Marcin Lewiński (ed.), Virtues of Argumentation. Proceedings of the 10th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 22-26 May 2013. pp. pp. 1-14..
    Are there arguments in mathematics? Are there explanations in mathematics? Are there any connections between argument, proof and explanation? Highly controversial answers and arguments are reviewed. The main point is that in the case of a mathematical proof, the pragmatic criterion used to make a distinction between argument and explanation is likely to be insufficient for you may grant the conclusion of a proof but keep on thinking that the proof is not explanatory.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  35.  71
    A “Professional Issues and Ethics in Mathematics” Course.James Franklin - 2005 - Australian Mathematical Society Gazette 32:98-100.
    Some courses achieve existence, some have to create Professional Issues and Ethics in existence thrust upon them. It is normally Mathematics; but if you don’t do it, we will a struggle to create a course on the ethical be.” I accepted. or social aspects of science or mathematics. The gift of a greenfield site and a bull- This is the story of one that was forced to dozer is a happy occasion, undoubtedly. But exist by an unusual confluence (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  36. Contingency and Necessity in the Genealogy of Morality.Paul di Georgio - 2013 - Télos 2013 (162):97-111.
    Excerpt: In this essay I explore the nature of the necessity of historical development in Nietzsche’s genealogy of Judeo-Christian moral values. I argue that the progression of moral stages in Nietzsche’s study is ordered in such a way that the failure of each stage is logically and structurally necessary, that each failure structures the resultant system or paradigm, but that the historical manifestation of moral paradigms coinciding with predicted or projected theoretical structures is contingent upon a multitude of other (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Stairway to Heaven: The Abstract Method and Levels of Abstraction in Mathematics.Jean Pierre Marquis & Jean-Pierre Marquis - 2016 - The Mathematical Intelligencer 38 (3):41-51.
    In this paper, following the claims made by various mathematicians, I try to construct a theory of levels of abstraction. I first try to clarify the basic components of the abstract method as it developed in the first quarter of the 20th century. I then submit an explication of the notion of levels of abstraction. In the final section, I briefly explore some of main philosophical consequences of the theory.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. Truth, Proof and Gödelian Arguments: A Defence of Tarskian Truth in Mathematics.Markus Pantsar - 2009 - Dissertation, University of Helsinki
    One of the most fundamental questions in the philosophy of mathematics concerns the relation between truth and formal proof. The position according to which the two concepts are the same is called deflationism, and the opposing viewpoint substantialism. In an important result of mathematical logic, Kurt Gödel proved in his first incompleteness theorem that all consistent formal systems containing arithmetic include sentences that can neither be proved nor disproved within that system. However, such undecidable Gödel sentences can be established (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  39.  84
    Material Cause and Syllogistic Necessity in Posterior Analytics II 11.Paolo Fait - 2019 - Manuscrito 42 (4):282-322.
    The paper examines Posterior Analytics II 11, 94a20-36 and makes three points. (1) The confusing formula ‘given what things, is it necessary for this to be’ [τίνων ὄντων ἀνάγκη τοῦτ᾿ εἶναι] at a21-22 introduces material cause, not syllogistic necessity. (2) When biological material necessitation is the only causal factor, Aristotle is reluctant to formalize it in syllogistic terms, and this helps to explain why, in II 11, he turns to geometry in order to illustrate a kind of material cause (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Constructed and Wild Conceptual Necessities in Contemporary Jurisprudence.Stefan Sciaraffa - 2015 - Jurisprudence 6 (2):391-406.
    Download  
     
    Export citation  
     
    Bookmark  
  41. 1983 Review in Mathematical Reviews 83e:03005 Of: Cocchiarella, Nino “The Development of the Theory of Logical Types and the Notion of a Logical Subject in Russell's Early Philosophy: Bertrand Russell's Early Philosophy, Part I”. Synthese 45 (1980), No. 1, 71-115.John Corcoran - 1983 - MATHEMATICAL REVIEWS 83:03005.
    CORCORAN RECOMMENDS COCCHIARELLA ON TYPE THEORY. The 1983 review in Mathematical Reviews 83e:03005 of: Cocchiarella, Nino “The development of the theory of logical types and the notion of a logical subject in Russell's early philosophy: Bertrand Russell's early philosophy, Part I”. Synthese 45 (1980), no. 1, 71-115 .
    Download  
     
    Export citation  
     
    Bookmark  
  42. The Cultural Challenge in Mathematical Cognition.Andrea Bender, Dirk Schlimm, Stephen Crisomalis, Fiona M. Jordan, Karenleigh A. Overmann & Geoffrey B. Saxe - 2018 - Journal of Numerical Cognition 2 (4):448–463.
    In their recent paper on “Challenges in mathematical cognition”, Alcock and colleagues (Alcock et al. [2016]. Challenges in mathematical cognition: A collaboratively-derived research agenda. Journal of Numerical Cognition, 2, 20-41) defined a research agenda through 26 specific research questions. An important dimension of mathematical cognition almost completely absent from their discussion is the cultural constitution of mathematical cognition. Spanning work from a broad range of disciplines – including anthropology, archaeology, cognitive science, history of science, linguistics, philosophy, and psychology – we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Proof, Explanation, and Justification in Mathematical Practice.Moti Mizrahi - 2020 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 51 (4):551-568.
    In this paper, I propose that applying the methods of data science to “the problem of whether mathematical explanations occur within mathematics itself” (Mancosu 2018) might be a fruitful way to shed new light on the problem. By carefully selecting indicator words for explanation and justification, and then systematically searching for these indicators in databases of scholarly works in mathematics, we can get an idea of how mathematicians use these terms in mathematical practice and with what frequency. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. The Varieties of Necessity in Aristotle’s Physics II.9.Jacob Rosen - manuscript
    Download  
     
    Export citation  
     
    Bookmark  
  45.  74
    Non-Deductive Logic in Mathematics: The Probability of Conjectures.James Franklin - 2013 - In Andrew Aberdein & Ian J. Dove (eds.), The Argument of Mathematics. Springer. pp. 11--29.
    Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46.  39
    Word Choice in Mathematical Practice: A Case Study in Polyhedra.Lowell Abrams & Landon D. C. Elkind - 2019 - Synthese (4):1-29.
    We examine the influence of word choices on mathematical practice, i.e. in developing definitions, theorems, and proofs. As a case study, we consider Euclid’s and Euler’s word choices in their influential developments of geometry and, in particular, their use of the term ‘polyhedron’. Then, jumping to the twentieth century, we look at word choices surrounding the use of the term ‘polyhedron’ in the work of Coxeter and of Grünbaum. We also consider a recent and explicit conflict of approach between Grünbaum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47.  35
    Logic, Logicism, and Intuitions in Mathematics.Besim Karakadılar - 2001 - Dissertation, Middle East Technical University
    In this work I study the main tenets of the logicist philosophy of mathematics. I deal, basically, with two problems: (1) To what extent can one dispense with intuition in mathematics? (2) What is the appropriate logic for the purposes of logicism? By means of my considerations I try to determine the pros and cons of logicism. My standpoint favors the logicist line of thought. -/- .
    Download  
     
    Export citation  
     
    Bookmark  
  48. A Failed Encounter in Mathematics and Chemistry: The Folded Models of van ‘T Hoff and Sachse.Michael Friedman - 2016 - Teorie Vědy / Theory of Science 38 (3):359-386.
    Three-dimensional material models of molecules were used throughout the 19th century, either functioning as a mere representation or opening new epistemic horizons. In this paper, two case studies are examined: the 1875 models of van ‘t Hoff and the 1890 models of Sachse. What is unique in these two case studies is that both models were not only folded, but were also conceptualized mathematically. When viewed in light of the chemical research of that period not only were both of these (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Certainty, Necessity, and Knowledge in Hume's Treatise.Miren Boehm - 2013 - In Stanley Tweyman (ed.), David Hume, A Tercentenary Tribute [the version in PhilPapers is the accurate, final version of the paper].
    Hume appeals to different kinds of certainties and necessities in the Treatise. He contrasts the certainty that arises from intuition and demonstrative reasoning with the certainty that arises from causal reasoning. He denies that the causal maxim is absolutely or metaphysically necessary, but he nonetheless takes the causal maxim and ‘proofs’ to be necessary. The focus of this paper is the certainty and necessity involved in Hume’s concept of knowledge. I defend the view that intuitive certainty, in particular, is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  50. Art and Imagination in Mathematics.Christian Helmut Wenzel - 2013 - In Michael L. Thompson (ed.), Imagination in Kant's Critical Philosophy. Walter de Gruyter. pp. 49-68.
    Download  
     
    Export citation  
     
    Bookmark  
  51. Nothing found.