Results for 'Peano'

75 found
Order:
  1. Peano, Frege and Russell’s Logical Influences.Kevin C. Klement - forthcoming - Forthcoming.
    This chapter clarifies that it was the works Giuseppe Peano and his school that first led Russell to embrace symbolic logic as a tool for understanding the foundations of mathematics, not those of Frege, who undertook a similar project starting earlier on. It also discusses Russell’s reaction to Peano’s logic and its influence on his own. However, the chapter also seeks to clarify how and in what ways Frege was influential on Russell’s views regarding such topics as classes, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Peano e la filosofia della matematica.Enrico Pasini - 2004 - In Elisa Gallo - Livia Giacardi - Clara Silvia Roero (ed.), Conferenze E Seminari 2003-2004. Associazione Subalpina Mathesis. pp. 203-220.
    It is well known that Peano had a reluctant attitude towards philosophy, including philosophy of mathematics. Some scholars have suggested the existence of an 'implicit' philosophy, without being able to describe it. In this paper a first attempt is done to reconstruct, if not a general philosophy of mathematics, at least Peano' epistemology of mathematics and its relation to contemporary positions.
    Download  
     
    Export citation  
     
    Bookmark  
  3. Frege and Peano on definitions.Edoardo Rivello - 2015 - In Dieter Schott (ed.), Frege: Freund(e) und Feind(e): Proceedings of the International Conference 2013. Berlin: Logos.
    Frege and Peano started in 1896 a debate where they contrasted the respective conceptions on the theory and practice of mathematical definitions. Which was (if any) the influence of the Frege-Peano debate on the conceptions by the two authors on the theme of defining in mathematics and which was the role played by this debate in the broader context of their scientific interaction?
    Download  
     
    Export citation  
     
    Bookmark  
  4. Il carteggio fra Peano e Camillo Berneri.Enrico Pasini - 2001 - In Clara Silvia Roero (ed.), Giuseppe Peano. Matematica, Cultura E Società. L’Artistica. pp. 49-59.
    Between Giuseppe Peano and Camillo Berneri, a foremost protagonist of the Italian anarchist movement, an interesting correspondence was exchanged in the years 1925-1929. Along with a presentation of the correspondence, Peano's political attitude and the role of his international language projects in early 20th century Italian left are discussed.
    Download  
     
    Export citation  
     
    Bookmark  
  5. The Relationship of Arithmetic As Two Twin Peano Arithmetic(s) and Set Theory: A New Glance From the Theory of Information.Vasil Penchev - 2020 - Metaphilosophy eJournal (Elseviers: SSRN) 12 (10):1-33.
    The paper introduces and utilizes a few new concepts: “nonstandard Peano arithmetic”, “complementary Peano arithmetic”, “Hilbert arithmetic”. They identify the foundations of both mathematics and physics demonstrating the equivalence of the newly introduced Hilbert arithmetic and the separable complex Hilbert space of quantum mechanics in turn underlying physics and all the world. That new both mathematical and physical ground can be recognized as information complemented and generalized by quantum information. A few fundamental mathematical problems of the present such (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. Categoricity, Open-Ended Schemas and Peano Arithmetic.Adrian Ludușan - 2015 - Logos and Episteme 6 (3):313-332.
    One of the philosophical uses of Dedekind’s categoricity theorem for Peano Arithmetic is to provide support for semantic realism. To this end, the logical framework in which the proof of the theorem is conducted becomes highly significant. I examine different proposals regarding these logical frameworks and focus on the philosophical benefits of adopting open-ended schemas in contrast to second order logic as the logical medium of the proof. I investigate Pederson and Rossberg’s critique of the ontological advantages of open-ended (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. A new reading and comparative interpretation of Gödel’s completeness (1930) and incompleteness (1931) theorems.Vasil Penchev - 2016 - Логико-Философские Штудии 13 (2):187-188.
    Peano arithmetic cannot serve as the ground of mathematics for it is inconsistent to infinity, and infinity is necessary for its foundation. Though Peano arithmetic cannot be complemented by any axiom of infinity, there exists at least one (logical) axiomatics consistent to infinity. That is nothing else than a new reading at issue and comparative interpretation of Gödel’s papers (1930; 1931) meant here. Peano arithmetic admits anyway generalizations consistent to infinity and thus to some addable axiom(s) of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. The epistemic significance of numerals.Jan Heylen - 2014 - Synthese 198 (Suppl 5):1019-1045.
    The central topic of this article is (the possibility of) de re knowledge about natural numbers and its relation with names for numbers. It is held by several prominent philosophers that (Peano) numerals are eligible for existential quantification in epistemic contexts (‘canonical’), whereas other names for natural numbers are not. In other words, (Peano) numerals are intimately linked with de re knowledge about natural numbers, whereas the other names for natural numbers are not. In this article I am (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  9. A Mathematical Model of Quantum Computer by Both Arithmetic and Set Theory.Vasil Penchev - 2020 - Information Theory and Research eJournal 1 (15):1-13.
    A practical viewpoint links reality, representation, and language to calculation by the concept of Turing (1936) machine being the mathematical model of our computers. After the Gödel incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness to be suggested for two ones. That is consistent with the provability of completeness by means of two independent Peano arithmetics discussed in Section (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. The Genealogy of ‘∨’.Landon D. C. Elkind & Richard Zach - 2022 - Review of Symbolic Logic 16 (3):862-899.
    The use of the symbol ∨for disjunction in formal logic is ubiquitous. Where did it come from? The paper details the evolution of the symbol ∨ in its historical and logical context. Some sources say that disjunction in its use as connecting propositions or formulas was introduced by Peano; others suggest that it originated as an abbreviation of the Latin word for “or,” vel. We show that the origin of the symbol ∨ for disjunction can be traced to Whitehead (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  11. (1 other version)Objects are (not) ...Friedrich Wilhelm Grafe - 2024 - Archive.Org.
    My goal in this paper is, to tentatively sketch and try defend some observations regarding the ontological dignity of object references, as they may be used from within in a formalized language. -/- Hence I try to explore, what properties objects are presupposed to have, in order to enter the universe of discourse of an interpreted formalized language. -/- First I review Frege′s analysis of the logical structure of truth value definite sentences of scientific colloquial language, to draw suggestions from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. A defense of Isaacson’s thesis, or how to make sense of the boundaries of finite mathematics.Pablo Dopico - 2024 - Synthese 203 (2):1-22.
    Daniel Isaacson has advanced an epistemic notion of arithmetical truth according to which the latter is the set of truths that we grasp on the basis of our understanding of the structure of natural numbers alone. Isaacson’s thesis is then the claim that Peano Arithmetic (PA) is the theory of finite mathematics, in the sense that it proves all and only arithmetical truths thus understood. In this paper, we raise a challenge for the thesis and show how it can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Gödel mathematics versus Hilbert mathematics. I. The Gödel incompleteness (1931) statement: axiom or theorem?Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (9):1-56.
    The present first part about the eventual completeness of mathematics (called “Hilbert mathematics”) is concentrated on the Gödel incompleteness (1931) statement: if it is an axiom rather than a theorem inferable from the axioms of (Peano) arithmetic, (ZFC) set theory, and propositional logic, this would pioneer the pathway to Hilbert mathematics. One of the main arguments that it is an axiom consists in the direct contradiction of the axiom of induction in arithmetic and the axiom of infinity in set (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Fermat’s last theorem proved in Hilbert arithmetic. I. From the proof by induction to the viewpoint of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (7):1-57.
    In a previous paper, an elementary and thoroughly arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to Fermat himself though without being absolutely and precisely correct. The present paper elucidates the contemporary mathematical background, from which an inductive proof of FLT can be inferred since its proof for the case for “n (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Fermat’s last theorem proved in Hilbert arithmetic. III. The quantum-information unification of Fermat’s last theorem and Gleason’s theorem.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (12):1-30.
    The previous two parts of the paper demonstrate that the interpretation of Fermat’s last theorem (FLT) in Hilbert arithmetic meant both in a narrow sense and in a wide sense can suggest a proof by induction in Part I and by means of the Kochen - Specker theorem in Part II. The same interpretation can serve also for a proof FLT based on Gleason’s theorem and partly similar to that in Part II. The concept of (probabilistic) measure of a subspace (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. (1 other version)God and the Numbers.Paul Studtmann - 2023 - Journal of Philosophy 120 (12):641-655.
    According to Augustine, abstract objects are ideas in the mind of God. Because numbers are a type of abstract object, it would follow that numbers are ideas in the mind of God. Call such a view the “Augustinian View of Numbers” (AVN). In this paper, I present a formal theory for AVN. The theory stems from the symmetry conception of God as it appears in Studtmann (2021). I show that the theory in Studtmann’s paper can interpret the axioms of (...) Arithmetic minus the induction schema. This fact allows for the development of arithmetic in a natural way. The development eventuates in a theory that can interpret second-order arithmetic. The conception of God that emerges by the end of the discussion is a conception of an infinite, ineffable, self-cause that contains objects that not only serve as numbers but also encode information about each other. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Hilbert arithmetic as a Pythagorean arithmetic: arithmetic as transcendental.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (54):1-24.
    The paper considers a generalization of Peano arithmetic, Hilbert arithmetic as the basis of the world in a Pythagorean manner. Hilbert arithmetic unifies the foundations of mathematics (Peano arithmetic and set theory), foundations of physics (quantum mechanics and information), and philosophical transcendentalism (Husserl’s phenomenology) into a formal theory and mathematical structure literally following Husserl’s tracе of “philosophy as a rigorous science”. In the pathway to that objective, Hilbert arithmetic identifies by itself information related to finite sets and series (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Inconcistency of ℕ from a not-finitist point of view.Enrico Pier Giorgio Cadeddu - 2023 - International Journal of Modern Research in Engineering and Technology 8 (10):2.
    Considering the set of natural numbers ℕ, then in the context of Peano axioms, starting from inequalities between finite sets, we find a fundamental contradiction, about the existence of ℕ, from a not-finitist point of view.
    Download  
     
    Export citation  
     
    Bookmark  
  19. (1 other version)Life and Works of Giovanni Vailati.Paola Cantù & De Zan Mauro - 2009 - In Cantù Paola & De Zan Mauro (eds.), Life and Works of Giovanni Vailati. Stanford: CSLI Publications.
    The paper introduces Vailati’s life and works, investigating Vailati’s education, the relation to Peano and his school, and the interest for pragmatism and modernism. A detailed analysis of Vailati’s scientific and didactic activities, shows that he held, like Peano, a a strong interest for the history of science and a pluralist, anti-dogmatic and anti-foundationalist conception of definitions in mathematics, logic and philosophy of language. Vailati’s understanding of mathematical logic as a form of pragmatism is not a faithful interpretation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. On Certain Axiomatizations of Arithmetic of Natural and Integer Numbers.Urszula Wybraniec-Skardowska - 2019 - Axioms 2019 (Deductive Systems).
    The systems of arithmetic discussed in this work are non-elementary theories. In this paper, natural numbers are characterized axiomatically in two di erent ways. We begin by recalling the classical set P of axioms of Peano’s arithmetic of natural numbers proposed in 1889 (including such primitive notions as: set of natural numbers, zero, successor of natural number) and compare it with the set W of axioms of this arithmetic (including the primitive notions like: set of natural numbers and relation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. The ontology of number.Jeremy Horne - manuscript
    What is a number? Answering this will answer questions about its philosophical foundations - rational numbers, the complex numbers, imaginary numbers. If we are to write or talk about something, it is helpful to know whether it exists, how it exists, and why it exists, just from a common-sense point of view [Quine, 1948, p. 6]. Generally, there does not seem to be any disagreement among mathematicians, scientists, and logicians about numbers existing in some way, but currently, in the mainstream (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. The Quantum Strategy of Completeness: On the Self-Foundation of Mathematics.Vasil Penchev - 2020 - Cultural Anthropology eJournal (Elsevier: SSRN) 5 (136):1-12.
    Gentzen’s approach by transfinite induction and that of intuitionist Heyting arithmetic to completeness and the self-foundation of mathematics are compared and opposed to the Gödel incompleteness results as to Peano arithmetic. Quantum mechanics involves infinity by Hilbert space, but it is finitist as any experimental science. The absence of hidden variables in it interpretable as its completeness should resurrect Hilbert’s finitism at the cost of relevant modification of the latter already hinted by intuitionism and Gentzen’s approaches for completeness. This (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. What Is Quantum Information? Information Symmetry and Mechanical Motion.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (20):1-7.
    The concept of quantum information is introduced as both normed superposition of two orthogonal sub-spaces of the separable complex Hilbert space and in-variance of Hamilton and Lagrange representation of any mechanical system. The base is the isomorphism of the standard introduction and the representation of a qubit to a 3D unit ball, in which two points are chosen. The separable complex Hilbert space is considered as the free variable of quantum information and any point in it (a wave function describing (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Inconsistency of ℕ with the set union operation.Enrico Pier Giorgio Cadeddu - manuscript
    A contradiction is obtained, considering the axiom of infinity, then ℕ and Peano axioms, together a list of ℕ subsets and with inclusion relation and union operation. Natural numbers constitute an infinite set, ℕ, but we show the union of its proper subsets, with a specific form, isn’t an infinite set. Also we get a simpler explanation and a symbolic representation. Lastly, inconsistency of Peano successor axiom is a consequence of rejecting infinity.
    Download  
     
    Export citation  
     
    Bookmark  
  25. Неразрешимост на първата теорема за непълнотата. Гьоделова и Хилбертова математика.Vasil Penchev - 2010 - Philosophical Alternatives 19 (5):104-119.
    Can the so-ca\led first incompleteness theorem refer to itself? Many or maybe even all the paradoxes in mathematics are connected with some kind of self-reference. Gбdel built his proof on the ground of self-reference: а statement which claims its unprovabllity. So, he demonstrated that undecidaЬle propositions exist in any enough rich axiomatics (i.e. such one which contains Peano arithmetic in some sense). What about the decidabllity of the very first incompleteness theorem? We can display that it fulfills its conditions. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Why there can be no mathematical or meta-mathematical proof of consistency for ZF.Bhupinder Singh Anand - manuscript
    In the first part of this investigation we highlight two, seemingly irreconcilable, beliefs that suggest an impending crisis in the teaching, research, and practice of—primarily state-supported—mathematics: (a) the belief, with increasing, essentially faith-based, conviction and authority amongst academics that first-order Set Theory can be treated as the lingua franca of mathematics, since its theorems—even if unfalsifiable—can be treated as ‘knowledge’ because they are finite proof sequences which are entailed finitarily by self-evidently Justified True Beliefs; and (b) the slowly emerging, but (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. The Truth Assignments That Differentiate Human Reasoning From Mechanistic Reasoning: The Evidence-Based Argument for Lucas' Goedelian Thesis.Bhupinder Singh Anand - 2016 - Cognitive Systems Research 40:35-45.
    We consider the argument that Tarski's classic definitions permit an intelligence---whether human or mechanistic---to admit finitary evidence-based definitions of the satisfaction and truth of the atomic formulas of the first-order Peano Arithmetic PA over the domain N of the natural numbers in two, hitherto unsuspected and essentially different, ways: (1) in terms of classical algorithmic verifiabilty; and (2) in terms of finitary algorithmic computability. We then show that the two definitions correspond to two distinctly different assignments of satisfaction and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  28. Do Goedel's incompleteness theorems set absolute limits on the ability of the brain to express and communicate mental concepts verifiably?Bhupinder Singh Anand - 2004 - Neuroquantology 2:60-100.
    Classical interpretations of Goedels formal reasoning, and of his conclusions, implicitly imply that mathematical languages are essentially incomplete, in the sense that the truth of some arithmetical propositions of any formal mathematical language, under any interpretation, is, both, non-algorithmic, and essentially unverifiable. However, a language of general, scientific, discourse, which intends to mathematically express, and unambiguously communicate, intuitive concepts that correspond to scientific investigations, cannot allow its mathematical propositions to be interpreted ambiguously. Such a language must, therefore, define mathematical truth (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  29. (1 other version)The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences.Bhupinder Singh Anand - forthcoming
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  30. Three Dogmas of First-Order Logic and some Evidence-based Consequences for Constructive Mathematics of differentiating between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism.Bhupinder Singh Anand - manuscript
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then adopt what may (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. String theory.John Corcoran, William Frank & Michael Maloney - 1974 - Journal of Symbolic Logic 39 (4):625-637.
    For each positive n , two alternative axiomatizations of the theory of strings over n alphabetic characters are presented. One class of axiomatizations derives from Tarski's system of the Wahrheitsbegriff and uses the n characters and concatenation as primitives. The other class involves using n character-prefixing operators as primitives and derives from Hermes' Semiotik. All underlying logics are second order. It is shown that, for each n, the two theories are definitionally equivalent [or synonymous in the sense of deBouvere]. It (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  32. The inexpressibility of validity.Julien Murzi - 2014 - Analysis 74 (1):65-81.
    Tarski's Undefinability of Truth Theorem comes in two versions: that no consistent theory which interprets Robinson's Arithmetic (Q) can prove all instances of the T-Scheme and hence define truth; and that no such theory, if sound, can even express truth. In this note, I prove corresponding limitative results for validity. While Peano Arithmetic already has the resources to define a predicate expressing logical validity, as Jeff Ketland has recently pointed out (2012, Validity as a primitive. Analysis 72: 421-30), no (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  33. Categorical Quantification.Constantin C. Brîncuş - 2024 - Bulletin of Symbolic Logic 30 (2):pp. 227-252.
    Due to Gӧdel’s incompleteness results, the categoricity of a sufficiently rich mathematical theory and the semantic completeness of its underlying logic are two mutually exclusive ideals. For first- and second-order logics we obtain one of them with the cost of losing the other. In addition, in both these logics the rules of deduction for their quantifiers are non-categorical. In this paper I examine two recent arguments –Warren (2020), Murzi and Topey (2021)– for the idea that the natural deduction rules for (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  34. Schemata: The concept of schema in the history of logic.John Corcoran - 2006 - Bulletin of Symbolic Logic 12 (2):219-240.
    The syllogistic figures and moods can be taken to be argument schemata as can the rules of the Stoic propositional logic. Sentence schemata have been used in axiomatizations of logic only since the landmark 1927 von Neumann paper [31]. Modern philosophers know the role of schemata in explications of the semantic conception of truth through Tarski’s 1933 Convention T [42]. Mathematical logicians recognize the role of schemata in first-order number theory where Peano’s second-order Induction Axiom is approximated by Herbrand’s (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  35. Arithmetic without the successor axiom.Andrew Boucher -
    Second-order Peano Arithmetic minus the Successor Axiom is developed from first principles through Quadratic Reciprocity and a proof of self-consistency. This paper combines 4 other papers of the author in a self-contained exposition.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  36. Deflationary Truth and Pathologies.Cezary Cieśliński - 2010 - Journal of Philosophical Logic 39 (3):325-337.
    By a classical result of Kotlarski, Krajewski and Lachlan, pathological satisfaction classes can be constructed for countable, recursively saturated models of Peano arithmetic. In this paper we consider the question of whether the pathology can be eliminated; we ask in effect what generalities involving the notion of truth can be obtained in a deflationary truth theory (a theory of truth which is conservative over its base). It is shown that the answer depends on the notion of pathology we adopt. (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  37. Logic in mathematics and computer science.Richard Zach - forthcoming - In Filippo Ferrari, Elke Brendel, Massimiliano Carrara, Ole Hjortland, Gil Sagi, Gila Sher & Florian Steinberger (eds.), Oxford Handbook of Philosophy of Logic. Oxford, UK: Oxford University Press.
    Logic has pride of place in mathematics and its 20th century offshoot, computer science. Modern symbolic logic was developed, in part, as a way to provide a formal framework for mathematics: Frege, Peano, Whitehead and Russell, as well as Hilbert developed systems of logic to formalize mathematics. These systems were meant to serve either as themselves foundational, or at least as formal analogs of mathematical reasoning amenable to mathematical study, e.g., in Hilbert’s consistency program. Similar efforts continue, but have (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Quantum phenomenology as a “rigorous science”: the triad of epoché and the symmetries of information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (48):1-18.
    Husserl (a mathematician by education) remained a few famous and notable philosophical “slogans” along with his innovative doctrine of phenomenology directed to transcend “reality” in a more general essence underlying both “body” and “mind” (after Descartes) and called sometimes “ontology” (terminologically following his notorious assistant Heidegger). Then, Husserl’s tradition can be tracked as an idea for philosophy to be reinterpreted in a way to be both generalized and mathenatizable in the final analysis. The paper offers a pattern borrowed from the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  39. Self-reference and the languages of arithmetic.Richard Heck - 2007 - Philosophia Mathematica 15 (1):1-29.
    I here investigate the sense in which diagonalization allows one to construct sentences that are self-referential. Truly self-referential sentences cannot be constructed in the standard language of arithmetic: There is a simple theory of truth that is intuitively inconsistent but is consistent with Peano arithmetic, as standardly formulated. True self-reference is possible only if we expand the language to include function-symbols for all primitive recursive functions. This language is therefore the natural setting for investigations of self-reference.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  40. Hilbert mathematics versus (or rather “without”) Gödel mathematics: V. Ontomathematics!Vasil Penchev - 2024 - Metaphysics eJournal (Elsevier: SSRN) 17 (10):1-57.
    The paper is the final, fifth part of a series of studies introducing the new conceptions of “Hilbert mathematics” and “ontomathematics”. The specific subject of the present investigation is the proper philosophical sense of both, including philosophy of mathematics and philosophy of physics not less than the traditional “first philosophy” (as far as ontomathematics is a conservative generalization of ontology as well as of Heidegger’s “fundamental ontology” though in a sense) and history of philosophy (deepening Heidegger’s destruction of it from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Frege meets Belnap: Basic Law V in a Relevant Logic.Shay Logan & Francesca Boccuni - 2024 - In Andrew Tedder, Shawn Standefer & Igor Sedlar (eds.), New Directions in Relevant Logic. Springer. pp. 381-404.
    Abstractionism in the philosophy of mathematics aims at deriving large fragments of mathematics by combining abstraction principles (i.e. the abstract objects $\S e_1, \S e_2$, are identical if, and only if, an equivalence relation $Eq_\S$ holds between the entities $e_1, e_2$) with logic. Still, as highlighted in work on the semantics for relevant logics, there are different ways theories might be combined. In exactly what ways must logic and abstraction be combined in order to get interesting mathematics? In this paper, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Typed and Untyped Disquotational Truth.Cezary Cieśliński - 2015 - In T. Achourioti, H. Galinon, J. Martínez Fernández & K. Fujimoto (eds.), Unifying the Philosophy of Truth. Dordrecht: Imprint: Springer.
    We present an overview of typed and untyped disquotational truth theories with the emphasis on their (non)conservativity over the base theory of syntax. Two types of conservativity are discussed: syntactic and semantic. We observe in particular that TB—one of the most basic disquotational theories—is not semantically conservative over its base; we show also that an untyped disquotational theory PTB is a syntactically conservative extension of Peano Arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  43. The 1900 Turn in Bertrand Russell’s Logic, the Emergence of his Paradox, and the Way Out.Nikolay Milkov - 2016 - Siegener Beiträge Zur Geschichte Und Philosophie der Mathematik 7:29-50.
    Russell’s initial project in philosophy (1898) was to make mathematics rigorous reducing it to logic. Before August 1900, however, Russell’s logic was nothing but mereology. First, his acquaintance with Peano’s ideas in August 1900 led him to discard the part-whole logic and accept a kind of intensional predicate logic instead. Among other things, the predicate logic helped Russell embrace a technique of treating the paradox of infinite numbers with the help of a singular concept, which he called ‘denoting phrase’. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  44. Hale’s argument from transitive counting.Eric Snyder, Richard Samuels & Stewart Shapiro - 2019 - Synthese 198 (3):1905-1933.
    A core commitment of Bob Hale and Crispin Wright’s neologicism is their invocation of Frege’s Constraint—roughly, the requirement that the core empirical applications for a class of numbers be “built directly into” their formal characterization. According to these neologicists, if legitimate, Frege’s Constraint adjudicates in favor of their preferred foundation—Hume’s Principle—and against alternatives, such as the Dedekind–Peano axioms. In this paper, we consider a recent argument for legitimating Frege’s Constraint due to Hale, according to which the primary empirical application (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  45. Gentzen’s “cut rule” and quantum measurement in terms of Hilbert arithmetic. Metaphor and understanding modeled formally.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal 14 (14):1-37.
    Hilbert arithmetic in a wide sense, including Hilbert arithmetic in a narrow sense consisting by two dual and anti-isometric Peano arithmetics, on the one hand, and the qubit Hilbert space (originating for the standard separable complex Hilbert space of quantum mechanics), on the other hand, allows for an arithmetic version of Gentzen’s cut elimination and quantum measurement to be described uniformy as two processes occurring accordingly in those two branches. A philosophical reflection also justifying that unity by quantum neo-Pythagoreanism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. The 'Noncausal Causality' of Quantum Information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (45):1-7.
    The paper is concentrated on the special changes of the conception of causality from quantum mechanics to quantum information meaning as a background the revolution implemented by the former to classical physics and science after Max Born’s probabilistic reinterpretation of wave function. Those changes can be enumerated so: (1) quantum information describes the general case of the relation of two wave functions, and particularly, the causal amendment of a single one; (2) it keeps the physical description to be causal by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. “Two bits less” after quantum-information conservation and their interpretation as “distinguishability / indistinguishability” and “classical / quantum”.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (46):1-7.
    The paper investigates the understanding of quantum indistinguishability after quantum information in comparison with the “classical” quantum mechanics based on the separable complex Hilbert space. The two oppositions, correspondingly “distinguishability / indistinguishability” and “classical / quantum”, available implicitly in the concept of quantum indistinguishability can be interpreted as two “missing” bits of classical information, which are to be added after teleportation of quantum information to be restored the initial state unambiguously. That new understanding of quantum indistinguishability is linked to the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Theories with the Independence Property, Studia Logica 2010 95:379-405.Mlj van de Vel - 2010 - Studia Logica 95 (3):379-405.
    A first-order theory T has the Independence Property provided deduction of a statement of type (quantifiers) (P -> (P1 or P2 or .. or Pn)) in T implies that (quantifiers) (P -> Pi) can be deduced in T for some i, 1 <= i <= n). Variants of this property have been noticed for some time in logic programming and in linear programming. We show that a first-order theory has the Independence Property for the class of basic formulas provided it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Quantum information as the information of infinite collections or series.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (14):1-8.
    The quantum information introduced by quantum mechanics is equivalent to a certain generalization of classical information: from finite to infinite series or collections. The quantity of information is the quantity of choices measured in the units of elementary choice. The “qubit”, can be interpreted as that generalization of “bit”, which is a choice among a continuum of alternatives. The axiom of choice is necessary for quantum information. The coherent state is transformed into a well-ordered series of results in time after (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Frege, Dedekind, and the Modern Epistemology of Arithmetic.Markus Pantsar - 2016 - Acta Analytica 31 (3):297-318.
    In early analytic philosophy, one of the most central questions concerned the status of arithmetical objects. Frege argued against the popular conception that we arrive at natural numbers with a psychological process of abstraction. Instead, he wanted to show that arithmetical truths can be derived from the truths of logic, thus eliminating all psychological components. Meanwhile, Dedekind and Peano developed axiomatic systems of arithmetic. The differences between the logicist and axiomatic approaches turned out to be philosophical as well as (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 75