This paper investigates a generalization of Booleanalgebras which I call agglomerative algebras. It also outlines two conceptions of propositions according to which they form an agglomerative algebra but not a Boolean algebra with respect to conjunction and negation.
Hyperboolean algebras are Booleanalgebras with operators, constructed as algebras of complexes (or, power structures) of Booleanalgebras. They provide an algebraic semantics for a modal logic (called here a {\em hyperboolean modal logic}) with a Kripke semantics accordingly based on frames in which the worlds are elements of Booleanalgebras and the relations correspond to the Boolean operations. We introduce the hyperboolean modal logic, give a complete axiomatization of it, and (...) show that it lacks the finite model property. The method of axiomatization hinges upon the fact that a "difference" operator is definable in hyperboolean algebras, and makes use of additional non-Hilbert-style rules. Finally, we discuss a number of open questions and directions for further research. (shrink)
Deontic logic is devoted to the study of logical properties of normative predicates such as permission, obligation and prohibition. Since it is usual to apply these predicates to actions, many deontic logicians have proposed formalisms where actions and action combinators are present. Some standard action combinators are action conjunction, choice between actions and not doing a given action. These combinators resemble boolean operators, and therefore the theory of boolean algebra offers a well-known athematical framework to study the properties (...) of the classic deontic operators when applied to actions. In his seminal work, Segerberg uses constructions coming from booleanalgebras to formalize the usual deontic notions. Segerberg’s work provided the initial step to understand logical properties of deontic operators when they are applied to actions. In the last years, other authors have proposed related logics. In this chapter we introduce Segerberg’s work, study related formalisms and investigate further challenges in this area. (shrink)
The aim of this paper is to show that every topological space gives rise to a wealth of topological models of the modal logic S4.1. The construction of these models is based on the fact that every space defines a Boolean closure algebra (to be called a McKinsey algebra) that neatly reflects the structure of the modal system S4.1. It is shown that the class of topological models based on McKinsey algebras contains a canonical model that can be (...) used to prove a completeness theorem for S4.1. Further, it is shown that the McKinsey algebra MKX of a space X endoewed with an alpha-topologiy satisfies Esakia's GRZ axiom. (shrink)
Multialgebras have been much studied in mathematics and in computer science. In 2016 Carnielli and Coniglio introduced a class of multialgebras called swap structures, as a semantic framework for dealing with several Logics of Formal Inconsistency that cannot be semantically characterized by a single finite matrix. In particular, these LFIs are not algebraizable by the standard tools of abstract algebraic logic. In this paper, the first steps towards a theory of non-deterministic algebraization of logics by swap structures are given. Specifically, (...) a formal study of swap structures for LFIs is developed, by adapting concepts of universal algebra to multialgebras in a suitable way. A decomposition theorem similar to Birkhoff’s representation theorem is obtained for each class of swap structures. Moreover, when applied to the 3-valued algebraizable logics J3 and Ciore, their classes of algebraic models are retrieved, and the swap structures semantics become twist structures semantics. This fact, together with the existence of a functor from the category of Booleanalgebras to the category of swap structures for each LFI, suggests that swap structures can be seen as non-deterministic twist structures. This opens new avenues for dealing with non-algebraizable logics by the more general methodology of multialgebraic semantics. (shrink)
One of the most expected properties of a logical system is that it can be algebraizable, in the sense that an algebraic counterpart of the deductive machinery could be found. Since the inception of da Costa's paraconsistent calculi, an algebraic equivalent for such systems have been searched. It is known that these systems are non self-extensional (i.e., they do not satisfy the replacement property). More than this, they are not algebraizable in the sense of Blok-Pigozzi. The same negative results hold (...) for several systems of the hierarchy of paraconsistent logics known as Logics of Formal Inconsistency (LFIs). Because of this, these logics are uniquely characterized by semantics of non-deterministic kind. This paper offers a solution for two open problems in the domain of paraconsistency, in particular connected to algebraization of LFIs, by obtaining several LFIs weaker than C1, each of one is algebraizable in the standard Lindenbaum-Tarski's sense by a suitable variety of Booleanalgebras extended with operators. This means that such LFIs satisfy the replacement property. The weakest LFI satisfying replacement presented here is called RmbC, which is obtained from the basic LFI called mbC. Some axiomatic extensions of RmbC are also studied, and in addition a neighborhood semantics is defined for such systems. It is shown that RmbC can be defined within the minimal bimodal non-normal logic E+E defined by the fusion of the non-normal modal logic E with itself. Finally, the framework is extended to first-order languages. RQmbC, the quantified extension of RmbC, is shown to be sound and complete w.r.t. BALFI semantics. (shrink)
Boolean-valued models of set theory were independently introduced by Scott, Solovay and Vopěnka in 1965, offering a natural and rich alternative for describing forcing. The original method was adapted by Takeuti, Titani, Kozawa and Ozawa to lattice-valued models of set theory. After this, Löwe and Tarafder proposed a class of algebras based on a certain kind of implication which satisfy several axioms of ZF. From this class, they found a specific 3-valued model called PS3 which satisfies all the (...) axioms of ZF, and can be expanded with a paraconsistent negation *, thus obtaining a paraconsistent model of ZF. The logic (PS3 ,*) coincides (up to language) with da Costa and D'Ottaviano logic J3, a 3-valued paraconsistent logic that have been proposed independently in the literature by several authors and with different motivations such as CluNs, LFI1 and MPT. We propose in this paper a family of algebraic models of ZFC based on LPT0, another linguistic variant of J3 introduced by us in 2016. The semantics of LPT0, as well as of its first-order version QLPT0, is given by twist structures defined over Boolean agebras. From this, it is possible to adapt the standard Boolean-valued models of (classical) ZFC to twist-valued models of an expansion of ZFC by adding a paraconsistent negation. We argue that the implication operator of LPT0 is more suitable for a paraconsistent set theory than the implication of PS3, since it allows for genuinely inconsistent sets w such that [(w = w)] = 1/2 . This implication is not a 'reasonable implication' as defined by Löwe and Tarafder. This suggests that 'reasonable implication algebras' are just one way to define a paraconsistent set theory. Our twist-valued models are adapted to provide a class of twist-valued models for (PS3,*), thus generalizing Löwe and Tarafder result. It is shown that they are in fact models of ZFC (not only of ZF). (shrink)
Hybrid languages are introduced in order to evaluate the strength of “minimal” mereologies with relatively strong frame definability properties. Appealing to a robust form of nominalism, I claim that one investigated language \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}_{\textsf {m}}$\end{document} is maximally acceptable for nominalistic mereology. In an extension \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}_{\textsf {gem}}$\end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}_{\textsf {m}}$\end{document}, a modal analog (...) for the classical systems of Leonard and Goodman and Leśniewski is introduced and shown to be complete with respect to 0-deleted Booleanalgebras. We characterize the formulas of first-order logic invariant for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}_{\textsf {gem}}$\end{document}-bisimulations. (shrink)
In this paper the class of Fidel-structures for the paraconsistent logic mbC is studied from the point of view of Model Theory and Category Theory. The basic point is that Fidel-structures for mbC (or mbC-structures) can be seen as first-order structures over the signature of Booleanalgebras expanded by two binary predicate symbols N (for negation) and O (for the consistency connective) satisfying certain Horn sentences. This perspective allows us to consider notions and results from Model Theory in (...) order to analyze the class of mbC-structures. Thus, substructures, union of chains, direct products, direct limits, congruences and quotient structures can be analyzed under this perspective. In particular, a Birkhoff-like representation theorem for mbC-structures as subdirect poducts in terms of subdirectly irreducible mbC-structures is obtained by adapting a general result for first-order structures due to Caicedo. Moreover, a characterization of all the subdirectly irreducible mbC-structures is also given. An alternative decomposition theorem is obtained by using the notions of weak substructure and weak isomorphism considered by Fidel for Cn-structures. (shrink)
The indefinability of concepts is explored through the idea of a conceptual scheme. Using the Stone duality of Booleanalgebras indefinable concepts are categorized as specific types of subspaces. Additionally, indefinability is formulated as a type of algebraic independence and conceptual atomism is investigated from a mathematical perspective.
Abstract. The aim of this paper is to present a topological method for constructing discretizations (tessellations) of conceptual spaces. The method works for a class of topological spaces that the Russian mathematician Pavel Alexandroff defined more than 80 years ago. Alexandroff spaces, as they are called today, have many interesting properties that distinguish them from other topological spaces. In particular, they exhibit a 1-1 correspondence between their specialization orders and their topological structures. Recently, a special type of Alexandroff spaces was (...) used by Ian Rumfitt to elucidate the logic of vague concepts in a new way. According to his approach, conceptual spaces such as the color spectrum give rise to classical systems of concepts that have the structure of atomic Booleanalgebras. More precisely, concepts are represented as regular open regions of an underlying conceptual space endowed with a topological structure. Something is subsumed under a concept iff it is represented by an element of the conceptual space that is maximally close to the prototypical element p that defines that concept. This topological representation of concepts comes along with a representation of the familiar logical connectives of Aristotelian syllogistics in terms of natural settheoretical operations that characterize regular open interpretations of classical Boolean propositional logic. In the last 20 years, conceptual spaces have become a popular tool of dealing with a variety of problems in the fields of cognitive psychology, artificial intelligence, linguistics and philosophy, mainly due to the work of Peter Gärdenfors and his collaborators. By using prototypes and metrics of similarity spaces, one obtains geometrical discretizations of conceptual spaces by so-called Voronoi tessellations. These tessellations are extensionally equivalent to topological tessellations that can be constructed for Alexandroff spaces. Thereby, Rumfitt’s and Gärdenfors’s constructions turn out to be special cases of an approach that works for a more general class of spaces, namely, for weakly scattered Alexandroff spaces. This class of spaces provides a convenient framework for conceptual spaces as used in epistemology and related disciplines in general. Alexandroff spaces are useful for elucidating problems related to the logic of vague concepts, in particular they offer a solution of the Sorites paradox (Rumfitt). Further, they provide a semantics for the logic of clearness (Bobzien) that overcomes certain problems of the concept of higher2 order vagueness. Moreover, these spaces help find a natural place for classical syllogistics in the framework of conceptual spaces. The crucial role of order theory for Alexandroff spaces can be used to refine the all-or-nothing distinction between prototypical and nonprototypical stimuli in favor of a more fine-grained gradual distinction between more-orless prototypical elements of conceptual spaces. The greater conceptual flexibility of the topological approach helps avoid some inherent inadequacies of the geometrical approach, for instance, the so-called “thickness problem” (Douven et al.) and problems of selecting a unique metric for similarity spaces. Finally, it is shown that only the Alexandroff account can deal with an issue that is gaining more and more importance for the theory of conceptual spaces, namely, the role that digital conceptual spaces play in the area of artificial intelligence, computer science and related disciplines. Keywords: Conceptual Spaces, Polar Spaces, Alexandroff Spaces, Prototypes, Topological Tessellations, Voronoi Tessellations, Digital Topology. (shrink)
Abstract. Let REL(O*E) be the relation algebra of binary relations defined on the Boolean algebra O*E of regular open regions of the Euclidean plane E. The aim of this paper is to prove that the canonical contact relation C of O*E generates a subalgebra REL(O*E, C) of REL(O*E) that has infinitely many elements. More precisely, REL(O*,C) contains an infinite family {SPPn, n ≥ 1} of relations generated by the relation SPP (Separable Proper Part). This relation can be used to (...) define point-free concept of connectedness that for the regular open regions of E coincides with the standard topological notion of connectedness, i.e., a region of the plane E is connected in the sense of topology if and only if it has no separable proper part. Moreover, it is shown that the contact relation algebra REL(O*E, C) and the relation algebra REL(O*E, NTPP) generated by the non-tangential proper parthood relation NTPP, coincide. This entails that the allegedly purely topological notion of connectedness can be defined in mereological terms. (shrink)
An endomorphism on an algebra \ is said to be strong if it is compatible with every congruence on \; and \ is said to have the strong endomorphism kernel property if every congruence on \, other than the universal congruence, is the kernel of a strong endomorphism on \. Here we characterise the structure of those double MS-algebras that have this property by the way of Priestley duality.
The lattice operations of join and meet were defined for set partitions in the nineteenth century, but no new logical operations on partitions were defined and studied during the twentieth century. Yet there is a simple and natural graph-theoretic method presented here to define any n-ary Boolean operation on partitions. An equivalent closure-theoretic method is also defined. In closing, the question is addressed of why it took so long for all Boolean operations to be defined for partitions.
In his classic book “the Foundations of Statistics” Savage developed a formal system of rational decision making. The system is based on (i) a set of possible states of the world, (ii) a set of consequences, (iii) a set of acts, which are functions from states to consequences, and (iv) a preference relation over the acts, which represents the preferences of an idealized rational agent. The goal and the culmination of the enterprise is a representation theorem: Any preference relation that (...) satisfies certain arguably acceptable postulates determines a (finitely additive) probability distribution over the states and a utility assignment to the consequences, such that the preferences among acts are determined by their expected utilities. Additional problematic assumptions are however required in Savage's proofs. First, there is a Boolean algebra of events (sets of states) which determines the richness of the set of acts. The probabilities are assigned to members of this algebra. Savage's proof requires that this be a σ-algebra (i.e., closed under infinite countable unions and intersections), which makes for an extremely rich preference relation. On Savage's view we should not require subjective probabilities to be σ-additive. He therefore finds the insistence on a σ-algebra peculiar and is unhappy with it. But he sees no way of avoiding it. Second, the assignment of utilities requires the constant act assumption: for every consequence there is a constant act, which produces that consequence in every state. This assumption is known to be highly counterintuitive. The present work contains two mathematical results. The first, and the more difficult one, shows that the σ-algebra assumption can be dropped. The second states that, as long as utilities are assigned to finite gambles only, the constant act assumption can be replaced by the more plausible and much weaker assumption that there are at least two non-equivalent constant acts. The second result also employs a novel way of deriving utilities in Savage-style systems -- without appealing to von Neumann-Morgenstern lotteries. The paper discusses the notion of “idealized agent" that underlies Savage's approach, and argues that the simplified system, which is adequate for all the actual purposes for which the system is designed, involves a more realistic notion of an idealized agent. (shrink)
Formal semantic analyses often take words to be minimal building blocks for the purposes of compositionality. But various recent theories of morphology and syntax have converged on the view that there is no demarcation line corresponding to the word level. The same conclusion has emerged from the compositional semantics of superlatives. In the spirit of extending compositionality below the word level, this paper explores how a small set of particles (Japanese KA and MO, Chinese DOU, and Hungarian VALA/VAGY, MIND, and (...) IS) form quantifier words and serve as connectives, additive and scalar particles, question markers, and existential verbs. The main question is whether the meanings of these particles across the varied environments are highly regular, or they are lexicalized with a variety of different meanings that bear a family resemblance. This paper does not reach definitive conclusions, but it raises analytical possibilities using Boolean semantics and the semantics of alternatives. It also draws attention to systematic similarities and some differences between MO and DOU that have not been studied in the literature. (shrink)
In contemporary mathematics, a Colombeau algebra of Colombeau generalized functions is an algebra of a certain kind containing the space of Schwartz distributions. While in classical distribution theory a general multiplication of distributions is not possible, Colombeau algebras provide a rigorous framework for this. Remark 1.1.1.Such a multiplication of distributions has been a long time mistakenly believed to be impossible because of Schwartz’ impossibility result, which basically states that there cannot be a differential algebra containing the space of distributions (...) and preserving the product of continuous functions. However, if one only wants to preserve the product of smooth functions instead such a construction becomes possible, as demonstrated first by J.F.Colombeau [1],[2]. As a mathematical tool, Colombeau algebras can be said to combine a treatment of singularities, differentiation and nonlinear operations in one framework, lifting the limitations of distribution theory. These algebras have found numerous applications in the fields of partial differential equations, geophysics, microlocal analysis and general relativity so far. (shrink)
The discussions which follow rest on a distinction, first expounded by Husserl, between formal logic and formal ontology. The former concerns itself with (formal) meaning-structures; the latter with formal structures amongst objects and their parts. The paper attempts to show how, when formal ontological considerations are brought into play, contemporary extensionalist theories of part and whole, and above all the mereology of Leniewski, can be generalised to embrace not only relations between concrete objects and object-pieces, but also relations between what (...) we shall call dependent parts or moments. A two-dimensional formal language is canvassed for the resultant ontological theory, a language which owes more to the tradition of Euler, Boole and Venn than to the quantifier-centred languages which have predominated amongst analytic philosophers since the time of Frege and Russell. Analytic philosophical arguments against moments, and against the entire project of a formal ontology, are considered and rejected. The paper concludes with a brief account of some applications of the theory presented. (shrink)
Biochemical networks are often called upon to illustrate emergent properties of living systems. In this contribution, I question such emergentist claims by means of theoretical work on genetic regulatory models and random Boolean networks. If the existence of a critical connectivity Kc of such networks has often been coined “emergent” or “irreducible”, I propose on the contrary that the existence of a critical connectivity Kc is indeed mathematically explainable in network theory. This conclusion also applies to many other types (...) of formal networks and weakens the emergentist claim attached to bio-molecular networks, and by extension to living systems. (shrink)
The recent literature on Nāgārjuna’s catuṣkoṭi centres around Jay Garfield’s (2009) and Graham Priest’s (2010) interpretation. It is an open discussion to what extent their interpretation is an adequate model of the logic for the catuskoti, and the Mūla-madhyamaka-kārikā. Priest and Garfield try to make sense of the contradictions within the catuskoti by appeal to a series of lattices – orderings of truth-values, supposed to model the path to enlightenment. They use Anderson & Belnaps's (1975) framework of First Degree Entailment. (...) Cotnoir (2015) has argued that the lattices of Priest and Garfield cannot ground the logic of the catuskoti. The concern is simple: on the one hand, FDE brings with it the failure of classical principles such as modus ponens. On the other hand, we frequently encounter Nāgārjuna using classical principles in other arguments in the MMK. There is a problem of validity. If FDE is Nāgārjuna’s logic of choice, he is facing what is commonly called the classical recapture problem: how to make sense of cases where classical principles like modus pones are valid? One cannot just add principles like modus ponens as assumptions, because in the background paraconsistent logic this does not rule out their negations. In this essay, I shall explore and critically evaluate Cotnoir’s proposal. In detail, I shall reveal that his framework suffers collapse of the kotis. Furthermore, I shall argue that the Collapse Argument has been misguided from the outset. The last chapter suggests a formulation of the catuskoti in classical Boolean Algebra, extended by the notion of an external negation as an illocutionary act. I will focus on purely formal considerations, leaving doctrinal matters to the scholarly discourse – as far as this is possible. (shrink)
Modern categorical logic as well as the Kripke and topological models of intuitionistic logic suggest that the interpretation of ordinary “propositional” logic should in general be the logic of subsets of a given universe set. Partitions on a set are dual to subsets of a set in the sense of the category-theoretic duality of epimorphisms and monomorphisms—which is reflected in the duality between quotient objects and subobjects throughout algebra. If “propositional” logic is thus seen as the logic of subsets of (...) a universe set, then the question naturally arises of a dual logic of partitions on a universe set. This paper is an introduction to that logic of partitions dual to classical subset logic. The paper goes from basic concepts up through the correctness and completeness theorems for a tableau system of partition logic. (shrink)
This book surveys research in quantification starting with the foundational work in the 1970s. It paints a vivid picture of generalized quantifiers and Boolean semantics. It explains how the discovery of diverse scope behavior in the 1990s transformed the view of quantification, and how the study of the internal composition of quantifiers has become central in recent years. It presents different approaches to the same problems, and links modern logic and formal semantics to advances in generative syntax. A unique (...) feature of the book is that it systematically brings cross-linguistic data to bear on the theoretical issues, discussing French, German, Dutch, Hungarian, Russian, Japanese, Telugu (Dravidian), and Shupamem (Grassfield Bantu), and pointing to formal semantic literature involving quantification in around thirty languages. -- -/- 1. What this book is about and how to use it; 2. Generalized quantifiers and their elements: operators and their scopes; 3. Generalized quantifiers in non-nominal domains; 4. Some empirically significant properties of quantifiers and determiners; 5. Potential challenges for generalized quantifiers; 6. Scope is not uniform and not a primitive; 7. Existential scope versus distributive scope; 8. Distributivity and scope; 9. Bare numeral indefinites; 10. Modified numerals; 11. Clause-internal scopal diversity; 12. Towards a compositional semantics of quantifier words. (shrink)
In the paper we present a formal system motivated by a specific methodology of creating norms. According to the methodology, a norm-giver before establishing a set of norms should create a picture of the agent by creating his repertoire of actions. Then, knowing what the agent can do in particular situations, the norm-giver regulates these actions by assigning deontic qualifications to each of them. The set of norms created for each situation should respect (1) generally valid deontic principles being the (...) theses of our logic and (2) facts from the ontology of action whose relevance for the systems of norms we postulate. (shrink)
I propose a comprehensive account of negation as a modal operator, vindicating a moderate logical pluralism. Negation is taken as a quantifier on worlds, restricted by an accessibility relation encoding the basic concept of compatibility. This latter captures the core meaning of the operator. While some candidate negations are then ruled out as violating plausible constraints on compatibility, different specifications of the notion of world support different logical conducts for negations. The approach unifies in a philosophically motivated picture the following (...) results: nothing can be called a negation properly if it does not satisfy Contraposition and Double Negation Introduction; the pair consisting of two split or Galois negations encodes a distinction without a difference; some paraconsistent negations also fail to count as real negations, but others may; intuitionistic negation qualifies as real negation, and classical Boolean negation does as well, to the extent that constructivist and paraconsistent doubts on it do not turn on the basic concept of compatibility but rather on the interpretation of worlds. (shrink)
I propose a unified solution to two puzzles: Ross's puzzle and free choice permission. I begin with a pair of cases from the decision theory literature illustrating the phenomenon of act dependence, where what an agent ought to do depends on what she does. The notion of permissibility distilled from these cases forms the basis for my analysis of 'may' and 'ought'. This framework is then combined with a generalization of the classical semantics for disjunction — equivalent to Boolean (...) disjunction on the diagonal, but with a different two-dimensional character — that explains the puzzling facts in terms of semantic consequence. (shrink)
Bradley offers a quick and convincing argument that no Boolean semantic theory for conditionals can validate a very natural principle concerning the relationship between credences and conditionals. We argue that Bradley’s principle, Preservation, is, in fact, invalid; its appeal arises from the validity of a nearby, but distinct, principle, which we call Local Preservation, and which Boolean semantic theories can non-trivially validate.
How can different individuals' probability assignments to some events be aggregated into a collective probability assignment? Classic results on this problem assume that the set of relevant events -- the agenda -- is a sigma-algebra and is thus closed under disjunction (union) and conjunction (intersection). We drop this demanding assumption and explore probabilistic opinion pooling on general agendas. One might be interested in the probability of rain and that of an interest-rate increase, but not in the probability of rain or (...) an interest-rate increase. We characterize linear pooling and neutral pooling for general agendas, with classic results as special cases for agendas that are sigma-algebras. As an illustrative application, we also consider probabilistic preference aggregation. Finally, we compare our results with existing results on binary judgment aggregation and Arrovian preference aggregation. This paper is the first of two self-contained, but technically related companion papers inspired by binary judgment-aggregation theory. (shrink)
Modifying the descriptive and theoretical generalizations of Relativized Minimality, we argue that a significant subset of weak island violations arise when an extracted phrase should scope over some intervener but is unable to. Harmless interveners seem harmless because they can support an alternative reading. This paper focuses on why certain wh-phrases are poor wide scope takers, and offers an algebraic perspective on scope interaction. Each scopal element SE is associated with certain operations (e.g., not with complements). When a wh-phrase scopes (...) over some SE, the operations associated with that SE are performed in its denotation domain. The requisite operations may or may not be available in a domain, however. We present an empirical analysis of a variety of wh-phrases. It is argued that the wh-phrases that escape all weak islands (i.e., can scope over any intervener) are those that range over individuals, the reason being that all Boolean operations are defined for their domain. Collectives, manners, amounts, numbers, etc. all denote in domains with fewer operations and are thus selectively sensitive to scopal interveners—a “semantic relativized minimality effect”. (shrink)
This book treats ancient logic: the logic that originated in Greece by Aristotle and the Stoics, mainly in the hundred year period beginning about 350 BCE. Ancient logic was never completely ignored by modern logic from its Boolean origin in the middle 1800s: it was prominent in Boole’s writings and it was mentioned by Frege and by Hilbert. Nevertheless, the first century of mathematical logic did not take it seriously enough to study the ancient logic texts. A renaissance in (...) ancient logic studies occurred in the early 1950s with the publication of the landmark Aristotle’s Syllogistic by Jan Łukasiewicz, Oxford UP 1951, 2nd ed. 1957. Despite its title, it treats the logic of the Stoics as well as that of Aristotle. Łukasiewicz was a distinguished mathematical logician. He had created many-valued logic and the parenthesis-free prefix notation known as Polish notation. He co-authored with Alfred Tarski’s an important paper on metatheory of propositional logic and he was one of Tarski’s the three main teachers at the University of Warsaw. Łukasiewicz’s stature was just short of that of the giants: Aristotle, Boole, Frege, Tarski and Gödel. No mathematical logician of his caliber had ever before quoted the actual teachings of ancient logicians. -/- Not only did Łukasiewicz inject fresh hypotheses, new concepts, and imaginative modern perspectives into the field, his enormous prestige and that of the Warsaw School of Logic reflected on the whole field of ancient logic studies. Suddenly, this previously somewhat dormant and obscure field became active and gained in respectability and importance in the eyes of logicians, mathematicians, linguists, analytic philosophers, and historians. Next to Aristotle himself and perhaps the Stoic logician Chrysippus, Łukasiewicz is the most prominent figure in ancient logic studies. A huge literature traces its origins to Łukasiewicz. -/- This Ancient Logic and Its Modern Interpretations, is based on the 1973 Buffalo Symposium on Modernist Interpretations of Ancient Logic, the first conference devoted entirely to critical assessment of the state of ancient logic studies. (shrink)
As the ongoing literature on the paradoxes of the Lottery and the Preface reminds us, the nature of the relation between probability and rational acceptability remains far from settled. This article provides a novel perspective on the matter by exploiting a recently noted structural parallel with the problem of judgment aggregation. After offering a number of general desiderata on the relation between finite probability models and sets of accepted sentences in a Boolean sentential language, it is noted that a (...) number of these constraints will be satisfied if and only if acceptable sentences are true under all valuations in a distinguished non-empty set W. Drawing inspiration from distance-based aggregation procedures, various scoring rule based membership conditions for W are discussed and a possible point of contact with ranking theory is considered. The paper closes with various suggestions for further research. (shrink)
An arithmetic theory of oppositions is devised by comparing expressions, Boolean bitstrings, and integers. This leads to a set of correspondences between three domains of investigation, namely: logic, geometry, and arithmetic. The structural properties of each area are investigated in turn, before justifying the procedure as a whole. Io finish, I show how this helps to improve the logical calculus of oppositions, through the consideration of corresponding operations between integers.
The logical basis for information theory is the newly developed logic of partitions that is dual to the usual Boolean logic of subsets. The key concept is a "distinction" of a partition, an ordered pair of elements in distinct blocks of the partition. The logical concept of entropy based on partition logic is the normalized counting measure of the set of distinctions of a partition on a finite set--just as the usual logical notion of probability based on the (...) class='Hi'>Boolean logic of subsets is the normalized counting measure of the subsets (events). Thus logical entropy is a measure on the set of ordered pairs, and all the compound notions of entropy (join entropy, conditional entropy, and mutual information) arise in the usual way from the measure (e.g., the inclusion-exclusion principle)--just like the corresponding notions of probability. The usual Shannon entropy of a partition is developed by replacing the normalized count of distinctions (dits) by the average number of binary partitions (bits) necessary to make all the distinctions of the partition. (shrink)
Logical information theory is the quantitative version of the logic of partitions just as logical probability theory is the quantitative version of the dual Boolean logic of subsets. The resulting notion of information is about distinctions, differences and distinguishability and is formalized using the distinctions of a partition. All the definitions of simple, joint, conditional and mutual entropy of Shannon information theory are derived by a uniform transformation from the corresponding definitions at the logical level. The purpose of this (...) paper is to give the direct generalization to quantum logical information theory that similarly focuses on the pairs of eigenstates distinguished by an observable, i.e., qudits of an observable. The fundamental theorem for quantum logical entropy and measurement establishes a direct quantitative connection between the increase in quantum logical entropy due to a projective measurement and the eigenstates that are distinguished by the measurement. Both the classical and quantum versions of logical entropy have simple interpretations as “two-draw” probabilities for distinctions. The conclusion is that quantum logical entropy is the simple and natural notion of information for quantum information theory focusing on the distinguishing of quantum states. (shrink)
In this paper it is shown that Heyting and Co-Heyting mereological systems provide a convenient conceptual framework for spatial reasoning, in which spatial concepts such as connectedness, interior parts, (exterior) contact, and boundary can be defined in a natural and intuitively appealing way. This fact refutes the wide-spread contention that mereology cannot deal with the more advanced aspects of spatial reasoning and therefore has to be enhanced by further non-mereological concepts to overcome its congenital limitations. The allegedly unmereological concept of (...) boundary is treated in detail and shown to be essentially affected by mereological considerations. More precisely, the concept of boundary turns out to be realizable in a variety of different mereologically grounded versions. In particular, every part K of a Heyting algebra H gives rise to a well-behaved K-relative boundary operator. (shrink)
The de Morgan laws characterize how negation, conjunction, and disjunction interact with each other. They are fundamental in any semantics that bases itself on the propositional calculus/Boolean algebra. This paper is primarily concerned with the second law. In English, its validity is easy to demonstrate using linguistic examples. Consider the following: (3) Why is it so cold in here? We didn’t close the door or the window. The second sentence is ambiguous. It may mean that I suppose we did (...) not close the door or did not close the window, but I am not sure which. This `I am not sure which’ reading is irrelevant to us because it has disjunction scoping over negation. But the sentence may equally well mean (and indeed this is the preferred reading) that we didn’t close the door and did not close the window. This `neither’ reading bears out de Morgan law (2). (shrink)
Classical logic is usually interpreted as the logic of propositions. But from Boole's original development up to modern categorical logic, there has always been the alternative interpretation of classical logic as the logic of subsets of any given (nonempty) universe set. Partitions on a universe set are dual to subsets of a universe set in the sense of the reverse-the-arrows category-theoretic duality--which is reflected in the duality between quotient objects and subobjects throughout algebra. Hence the idea arises of a dual (...) logic of partitions. That dual logic is described here. Partition logic is at the same mathematical level as subset logic since models for both are constructed from (partitions on or subsets of) arbitrary unstructured sets with no ordering relations, compatibility or accessibility relations, or topologies on the sets. Just as Boole developed logical finite probability theory as a quantitative treatment of subset logic, applying the analogous mathematical steps to partition logic yields a logical notion of entropy so that information theory can be refounded on partition logic. But the biggest application is that when partition logic and the accompanying logical information theory are "lifted" to complex vector spaces, then the mathematical framework of quantum mechanics is obtained. Partition logic models indefiniteness (i.e., numerical attributes on a set become more definite as the inverse-image partition becomes more refined) while subset logic models the definiteness of classical physics (an entity either definitely has a property or definitely does not). Hence partition logic provides the backstory so the old idea of "objective indefiniteness" in QM can be fleshed out to a full interpretation of quantum mechanics. (shrink)
In this paper a solution of Whitehead’s problem is presented: Starting with a purely mereological system of regions a topological space is constructed such that the class of regions is isomorphic to the Boolean lattice of regular open sets of that space. This construction may be considered as a generalized completion in analogy to the well-known Dedekind completion of the rational numbers yielding the real numbers . The argument of the paper relies on the theories of continuous lattices and (...) “pointless” topology.
Prior Analytics by the Greek philosopher Aristotle (384 – 322 BCE) and Laws of Thought by the English mathematician George Boole (1815 – 1864) are the two most important surviving original logical works from before the advent of modern logic. This article has a single goal: to compare Aristotle’s system with the system that Boole constructed over twenty-two centuries later intending to extend and perfect what Aristotle had started. This comparison merits an article itself. Accordingly, this article does not discuss (...) many other historically and philosophically important aspects of Boole’s book, e.g. his confused attempt to apply differential calculus to logic, his misguided effort to make his system of ‘class logic’ serve as a kind of ‘truth-functional logic’, his now almost forgotten foray into probability theory, or his blindness to the fact that a truth-functional combination of equations that follows from a given truth-functional combination of equations need not follow truth-functionally. One of the main conclusions is that Boole’s contribution widened logic and changed its nature to such an extent that he fully deserves to share with Aristotle the status of being a founding figure in logic. By setting forth in clear and systematic fashion the basic methods for establishing validity and for establishing invalidity, Aristotle became the founder of logic as formal epistemology. By making the first unmistakable steps toward opening logic to the study of ‘laws of thought’—tautologies and laws such as excluded middle and non-contradiction—Boole became the founder of logic as formal ontology. (shrink)
The word 'and' can be used both intersectively, as in 'John lies and cheats', and collectively, as in 'John and Mary met'. Research has tried to determine which one of these two meanings is basic. Focusing on coordination of nouns ('liar and cheat'), this article argues that the basic meaning of 'and' is intersective. This theory has been successfully applied to coordination of other kinds of constituents (Partee & Rooth 1983; Winter 2001). Certain cases of noun coordination ('men and women') (...) challenge this view, and have therefore been argued to favor the collective theory (Heycock & Zamparelli 2005). The main result of this article is that the intersective theory actually predicts the collective behavior of 'and' in 'men and women'. 'And' leads to collectivity by interacting with silent operators involving set minimization and choice functions, which have been postulated to account for phenomena involving indefinites, collective predicates and coordinations of noun phrases (Winter 2001). This article also shows that the collective theory does not generalize to coordinations of noun phrases in the way it has been previously suggested. (shrink)
Since the pioneering work of Birkhoff and von Neumann, quantum logic has been interpreted as the logic of (closed) subspaces of a Hilbert space. There is a progression from the usual Boolean logic of subsets to the "quantum logic" of subspaces of a general vector space--which is then specialized to the closed subspaces of a Hilbert space. But there is a "dual" progression. The notion of a partition (or quotient set or equivalence relation) is dual (in a category-theoretic sense) (...) to the notion of a subset. Hence the Boolean logic of subsets has a dual logic of partitions. Then the dual progression is from that logic of partitions to the quantum logic of direct-sum decompositions (i.e., the vector space version of a set partition) of a general vector space--which can then be specialized to the direct-sum decompositions of a Hilbert space. This allows the logic to express measurement by any self-adjoint operators rather than just the projection operators associated with subspaces. In this introductory paper, the focus is on the quantum logic of direct-sum decompositions of a finite-dimensional vector space (including such a Hilbert space). The primary special case examined is finite vector spaces over ℤ₂ where the pedagogical model of quantum mechanics over sets (QM/Sets) is formulated. In the Appendix, the combinatorics of direct-sum decompositions of finite vector spaces over GF(q) is analyzed with computations for the case of QM/Sets where q=2. (shrink)
In 1988, J. Ivlev proposed some (non-normal) modal systems which are semantically characterized by four-valued non-deterministic matrices in the sense of A. Avron and I. Lev. Swap structures are multialgebras (a.k.a. hyperalgebras) of a special kind, which were introduced in 2016 by W. Carnielli and M. Coniglio in order to give a non-deterministic semantical account for several paraconsistent logics known as logics of formal inconsistency, which are not algebraizable by means of the standard techniques. Each swap structure induces naturally a (...) non-deterministic matrix. The aim of this paper is to obtain a swap structures semantics for some Ivlev-like modal systems proposed in 2015 by M. Coniglio, L. Fariñas del Cerro and N. Peron. Completeness results will be stated by means of the notion of Lindenbaum–Tarski swap structures, which constitute a natural generalization to multialgebras of the concept of Lindenbaum–Tarski algebras. (shrink)
This essay examines the philosophical significance of Ω-logic in Zermelo-Fraenkel set theory with choice (ZFC). The dual isomorphism between algebra and coalgebra permits Boolean-valued algebraic models of ZFC to be interpreted as coalgebras. The modal profile of Ω-logical validity can then be countenanced within a coalgebraic logic, and Ω-logical validity can be defined via deterministic automata. I argue that the philosophical significance of the foregoing is two-fold. First, because the epistemic and modal profiles of Ω-logical validity correspond to those (...) of second-order logical consequence, Ω-logical validity is genuinely logical, and thus vindicates a neo-logicist conception of mathematical truth in the set-theoretic multiverse. Second, the foregoing provides a modal-computational account of the interpretation of mathematical vocabulary, adducing in favor of a realist conception of the cumulative hierarchy of sets. (shrink)
In this paper, we axiomatize the deontic logic in Fusco 2015, which uses a Stalnaker-inspired account of diagonal acceptance and a two-dimensional account of disjunction to treat Ross’s Paradox and the Puzzle of Free Choice Permission. On this account, disjunction-involving validities are a priori rather than necessary. We show how to axiomatize two-dimensional disjunction so that the introduction/elimination rules for boolean disjunction can be viewed as one-dimensional projections of more general two-dimensional rules. These completeness results help make explicit the (...) restrictions Fusco’s account must place on free-choice inferences. They are also of independent interest, as they raise difficult questions about how to ‘lift’ a Kripke frame for a one- dimensional modal logic into two dimensions. (shrink)
The standard rule of single privative modification replaces privative modifiers by Boolean negation. This rule is valid, for sure, but also simplistic. If an individual a instantiates the privatively modified property (MF) then it is true that a instantiates the property of not being an F, but the rule fails to express the fact that the properties (MF) and F have something in common. We replace Boolean negation by property negation, enabling us to operate on contrary rather than (...) contradictory properties. To this end, we apply our theory of intensional essentialism, which operates on properties (intensions) rather than their extensions. We argue that each property F is necessarily associated with an essence, which is the set of the so-called requisites of F that jointly define F. Privation deprives F of some but not all of its requisites, replacing them by their contradictories. We show that properties formed from iterated privatives, such as being an imaginary fake banknote, give rise to a trifurcation of cases between returning to the original root property or to a property contrary to it or being semantically undecidable for want of further information. In order to determine which of the three forks the bearers of particular instances of multiply modified properties land upon we must examine the requisites, both of unmodified and modified properties. Requisites underpin our presuppositional theory of positive predication. Whereas privation is about being deprived of certain properties, the assignment of requisites to properties makes positive predication possible, which is the predication of properties the bearers must have because they have a certain property formed by means of privation. (shrink)
This book concerns the foundations of epistemic modality. I examine the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality relates to the computational theory of mind; metaphysical modality; the types of mathematical modality; to the epistemic status of undecidable propositions and abstraction principles in the philosophy of mathematics; to the modal profile of rational propositional intuition; and to the (...) types of intention, when the latter is interpreted as a modal mental state. Each essay is informed by either epistemic logic, modal and cylindric algebra or coalgebra, intensional semantics or hyperintensional semantics. The book's original contributions include theories of: (i) epistemic modal algebras and coalgebras; (ii) cognitivism about epistemic modality; (iii) two-dimensional truthmaker semantics, and interpretations thereof; (iv) the ground-theoretic ontology of consciousness; (v) fixed-points in vagueness; (vi) the modal foundations of mathematical platonism; (vii) a solution to the Julius Caesar problem based on metaphysical definitions availing of notions of ground and essence; (viii) the application of epistemic two-dimensional semantics to the epistemology of mathematics; and (ix) a modal logic for rational intuition. I develop, further, (x) a novel approach to conditions of self-knowledge in the setting of the modal $\mu$-calculus, as well as (xi) novel epistemicist solutions to Curry's and the liar paradoxes. (shrink)
This paper aims to provide a mathematically tractable background against which to model both modal cognitivism and modal expressivism. I argue that epistemic modal algebras comprise a materially adequate fragment of the language of thought. I demonstrate, then, how modal expressivism can be regimented by modal coalgebraic automata, to which the above epistemic modal algebras are dual. I examine, in particular, the virtues unique to the modal expressivist approach here proffered in the setting of the foundations of mathematics, (...) by contrast to competing approaches based upon both the inferentialist approach to concept-individuation and the codification of speech acts via intensional semantics. (shrink)
Trivalence is quite natural for deontic action logic, where actions are treated as good, neutral or bad.We present the ideas of trivalent deontic logic after J. Kalinowski and its realisation in a 3-valued logic of M. Fisher and two systems designed by the authors of the paper: a 4-valued logic inspired by N. Belnap’s logic of truth and information and a 3-valued logic based on nondeterministic matrices. Moreover, we combine Kalinowski’s idea of trivalence with deontic action logic based on (...) class='Hi'>boolean algebra. (shrink)
It is one thing for a given proposition to follow or to not follow from a given set of propositions and it is quite another thing for it to be shown either that the given proposition follows or that it does not follow.* Using a formal deduction to show that a conclusion follows and using a countermodel to show that a conclusion does not follow are both traditional practices recognized by Aristotle and used down through the history of logic. These (...) practices presuppose, respectively, a criterion of validity and a criterion of invalidity each of which has been extended and refined by modern logicians: deductions are studied in formal syntax (proof theory) and coun¬termodels are studied in formal semantics (model theory). The purpose of this paper is to compare these two criteria to the corresponding criteria employed in Boole’s first logical work, The Mathematical Analysis of Logic (1847). In particular, this paper presents a detailed study of the relevant metalogical passages and an analysis of Boole’s symbolic derivations. It is well known, of course, that Boole’s logical analysis of compound terms (involving ‘not’, ‘and’, ‘or’, ‘except’, etc.) contributed to the enlargement of the class of propositions and arguments formally treatable in logic. The present study shows, in addition, that Boole made significant contributions to the study of deduc¬tive reasoning. He identified the role of logical axioms (as opposed to inference rules) in formal deductions, he conceived of the idea of an axiomatic deductive sys¬tem (which yields logical truths by itself and which yields consequences when ap¬plied to arbitrary premises). Nevertheless, surprisingly, Boole’s attempt to imple¬ment his idea of an axiomatic deductive system involved striking omissions: Boole does not use his own formal deductions to establish validity. Boole does give symbolic derivations, several of which are vitiated by “Boole’s Solutions Fallacy”: the fallacy of supposing that a solution to an equation is necessarily a logical consequence of the equation. This fallacy seems to have led Boole to confuse equational calculi (i.e., methods for gen-erating solutions) with deduction procedures (i.e., methods for generating consequences). The methodological confusion is closely related to the fact, shown in detail below, that Boole had adopted an unsound criterion of validity. It is also shown that Boole totally ignored the countermodel criterion of invalid¬ity. Careful examination of the text does not reveal with certainty a test for invalidity which was adopted by Boole. However, we have isolated a test that he seems to use in this way and we show that this test is ineffectual in the sense that it does not serve to identify invalid arguments. We go beyond the simple goal stated above. Besides comparing Boole’s earliest criteria of validity and invalidity with those traditionally (and still generally) employed, this paper also investigates the framework and details of THE MATHEMATICAL ANALYSIS OF LOGIC. (shrink)
We study the general problem of axiomatizing structures in the framework of modal logic and present a uniform method for complete axiomatization of the modal logics determined by a large family of classes of structures of any signature.
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.