Results for 'boolean algebras'

410 found
Order:
  1. Deontic Logics based on Boolean Algebra.Pablo F. Castro & Piotr Kulicki - 2013 - In Robert Trypuz (ed.), Krister Segerberg on Logic of Actions. Dordrecht, Netherland: Springer Verlag.
    Deontic logic is devoted to the study of logical properties of normative predicates such as permission, obligation and prohibition. Since it is usual to apply these predicates to actions, many deontic logicians have proposed formalisms where actions and action combinators are present. Some standard action combinators are action conjunction, choice between actions and not doing a given action. These combinators resemble boolean operators, and therefore the theory of boolean algebra offers a well-known athematical framework to study the properties (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  2. Level Theory, Part 3: A Boolean Algebra of Sets Arranged in Well-Ordered Levels.Tim Button - 2022 - Bulletin of Symbolic Logic 28 (1):1-26.
    On a very natural conception of sets, every set has an absolute complement. The ordinary cumulative hierarchy dismisses this idea outright. But we can rectify this, whilst retaining classical logic. Indeed, we can develop a boolean algebra of sets arranged in well-ordered levels. I show this by presenting Boolean Level Theory, which fuses ordinary Level Theory (from Part 1) with ideas due to Thomas Forster, Alonzo Church, and Urs Oswald. BLT neatly implement Conway’s games and surreal numbers; and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. Agglomerative Algebras.Jeremy Goodman - 2018 - Journal of Philosophical Logic 48 (4):631-648.
    This paper investigates a generalization of Boolean algebras which I call agglomerative algebras. It also outlines two conceptions of propositions according to which they form an agglomerative algebra but not a Boolean algebra with respect to conjunction and negation.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  4. Hyperboolean Algebras and Hyperboolean Modal Logic.Valentin Goranko & Dimiter Vakarelov - 1999 - Journal of Applied Non-Classical Logics 9 (2):345-368.
    Hyperboolean algebras are Boolean algebras with operators, constructed as algebras of complexes (or, power structures) of Boolean algebras. They provide an algebraic semantics for a modal logic (called here a {\em hyperboolean modal logic}) with a Kripke semantics accordingly based on frames in which the worlds are elements of Boolean algebras and the relations correspond to the Boolean operations. We introduce the hyperboolean modal logic, give a complete axiomatization of it, and (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  5. Logics of Formal Inconsistency Enriched with Replacement: An Algebraic and Modal Account.Walter Carnielli, Marcelo E. Coniglio & David Fuenmayor - 2022 - Review of Symbolic Logic 15 (3):771-806.
    One of the most expected properties of a logical system is that it can be algebraizable, in the sense that an algebraic counterpart of the deductive machinery could be found. Since the inception of da Costa's paraconsistent calculi, an algebraic equivalent for such systems have been searched. It is known that these systems are non self-extensional (i.e., they do not satisfy the replacement property). More than this, they are not algebraizable in the sense of Blok-Pigozzi. The same negative results hold (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  6. The Contact Algebra of the Euclidean Plane has Infinitely Many Elements.Thomas Mormann - manuscript
    Abstract. Let REL(O*E) be the relation algebra of binary relations defined on the Boolean algebra O*E of regular open regions of the Euclidean plane E. The aim of this paper is to prove that the canonical contact relation C of O*E generates a subalgebra REL(O*E, C) of REL(O*E) that has infinitely many elements. More precisely, REL(O*,C) contains an infinite family {SPPn, n ≥ 1} of relations generated by the relation SPP (Separable Proper Part). This relation can be used to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7.  85
    The Algebras of Lewis Counterfactuals.Giuliano Rosella & Sara Ugolini - manuscript
    The logico-algebraic study of Lewis's hierarchy of variably strict conditional logics has been essentially unexplored, hindering our understanding of their mathematical foundations, and the connections with other logical systems. This work aims to fill this gap by providing a comprehensive logico-algebraic analysis of Lewis's logics. We begin by introducing novel finite axiomatizations for varying strengths of Lewis's logics, distinguishing between global and local consequence relations on Lewisian sphere models. We then demonstrate that the global consequence relation is strongly algebraizable in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Non-deterministic algebraization of logics by swap structures1.Marcelo E. Coniglio, Aldo Figallo-Orellano & Ana Claudia Golzio - 2020 - Logic Journal of the IGPL 28 (5):1021-1059.
    Multialgebras have been much studied in mathematics and in computer science. In 2016 Carnielli and Coniglio introduced a class of multialgebras called swap structures, as a semantic framework for dealing with several Logics of Formal Inconsistency that cannot be semantically characterized by a single finite matrix. In particular, these LFIs are not algebraizable by the standard tools of abstract algebraic logic. In this paper, the first steps towards a theory of non-deterministic algebraization of logics by swap structures are given. Specifically, (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  9. Álgebras booleanas, órdenes parciales y axioma de elección.Franklin Galindo - 2017 - Divulgaciones Matematicas 18 ( 1):34-54.
    El objetivo de este artículo es presentar una demostración de un teorema clásico sobre álgebras booleanas y ordenes parciales de relevancia actual en teoría de conjuntos, como por ejemplo, para aplicaciones del método de construcción de modelos llamado “forcing” (con álgebras booleanas completas o con órdenes parciales). El teorema que se prueba es el siguiente: “Todo orden parcial se puede extender a una única álgebra booleana completa (salvo isomorfismo)”. Donde extender significa “sumergir densamente”. Tal demostración se realiza utilizando cortaduras de (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. McKinsey Algebras and Topological Models of S4.1.Thomas Mormann - manuscript
    The aim of this paper is to show that every topological space gives rise to a wealth of topological models of the modal logic S4.1. The construction of these models is based on the fact that every space defines a Boolean closure algebra (to be called a McKinsey algebra) that neatly reflects the structure of the modal system S4.1. It is shown that the class of topological models based on McKinsey algebras contains a canonical model that can be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Weak islands and an algebraic semantics for scope taking.Anna Szabolcsi & Frans Zwarts - 1997 - In Ways of Scope Taking. Kluwer Academic Publishers.
    Modifying the descriptive and theoretical generalizations of Relativized Minimality, we argue that a significant subset of weak island violations arise when an extracted phrase should scope over some intervener but is unable to. Harmless interveners seem harmless because they can support an alternative reading. This paper focuses on why certain wh-phrases are poor wide scope takers, and offers an algebraic perspective on scope interaction. Each scopal element SE is associated with certain operations (e.g., not with complements). When a wh-phrase scopes (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  12. Hilbert mathematics versus (or rather “without”) Gödel mathematics: V. Ontomathematics!Vasil Penchev - 2024 - Metaphysics eJournal (Elsevier: SSRN) 17 (10):1-57.
    The paper is the final, fifth part of a series of studies introducing the new conceptions of “Hilbert mathematics” and “ontomathematics”. The specific subject of the present investigation is the proper philosophical sense of both, including philosophy of mathematics and philosophy of physics not less than the traditional “first philosophy” (as far as ontomathematics is a conservative generalization of ontology as well as of Heidegger’s “fundamental ontology” though in a sense) and history of philosophy (deepening Heidegger’s destruction of it from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. On the Origin of Venn Diagrams.Amirouche Moktefi & Jens Lemanski - 2022 - Axiomathes 32 (3):887-900.
    In this paper we argue that there were several currents, ideas and problems in 19th-century logic that motivated John Venn to develop his famous logic diagrams. To this end, we first examine the problem of uncertainty or over-specification in syllogistic that became obvious in Euler diagrams. In the 19th century, numerous logicians tried to solve this problem. The most famous was the attempt to introduce dashed circles into Euler diagrams. The solution that John Venn developed for this problem, however, came (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  14. A Simpler and More Realistic Subjective Decision Theory.Haim Gaifman & Yang Liu - 2018 - Synthese 195 (10):4205--4241.
    In his classic book “the Foundations of Statistics” Savage developed a formal system of rational decision making. The system is based on (i) a set of possible states of the world, (ii) a set of consequences, (iii) a set of acts, which are functions from states to consequences, and (iv) a preference relation over the acts, which represents the preferences of an idealized rational agent. The goal and the culmination of the enterprise is a representation theorem: Any preference relation that (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  15. Structured and Unstructured Programming (11th edition).Rosanna Festa - 2023 - International Journal of Science, Engeneering and Technology 11 (5):2.
    Abstract-In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variables are the truth values true and false, usually denoted 1 and 0, whereas in elementary algebra the values of the variables are numbers. From Poincaré to Turing mathematics is developed at the basis of the fundamental processes.
    Download  
     
    Export citation  
     
    Bookmark  
  16. Gödel Mathematics Versus Hilbert Mathematics. II Logicism and Hilbert Mathematics, the Identification of Logic and Set Theory, and Gödel’s 'Completeness Paper' (1930).Vasil Penchev - 2023 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 15 (1):1-61.
    The previous Part I of the paper discusses the option of the Gödel incompleteness statement (1931: whether “Satz VI” or “Satz X”) to be an axiom due to the pair of the axiom of induction in arithmetic and the axiom of infinity in set theory after interpreting them as logical negations to each other. The present Part II considers the previous Gödel’s paper (1930) (and more precisely, the negation of “Satz VII”, or “the completeness theorem”) as a necessary condition for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17.  84
    Proofs of valid categorical syllogisms in one diagrammatic and two symbolic axiomatic systems.Antonielly Garcia Rodrigues & Eduardo Mario Dias - manuscript
    Gottfried Leibniz embarked on a research program to prove all the Aristotelic categorical syllogisms by diagrammatic and algebraic methods. He succeeded in proving them by means of Euler diagrams, but didn’t produce a manuscript with their algebraic proofs. We demonstrate how key excerpts scattered across various Leibniz’s drafts on logic contained sufficient ingredients to prove them by an algebraic method –which we call the Leibniz-Cayley (LC) system– without having to make use of the more expressive and complex machinery of first-order (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Two Faces of Obligation.Piotr Kulicki & Robert Trypuz - 2013 - In Anna Brożek, Jacek Jadacki & Berislav Žarnić (eds.), Theory of Imperatives from Different Points of View (2). Wydawnictwo Naukowe Semper.
    In the paper we discuss different intuitions about the properties of obligatory actions in the framework of deontic action logic based on boolean algebra. Two notions of obligation are distinguished–abstract and processed obligation. We introduce them formally into the system of deontic logic of actions and investigate their properties and mutual relations.
    Download  
     
    Export citation  
     
    Bookmark  
  19. Framework for formal ontology.Barry Smith & Kevin Mulligan - 1983 - Topoi 2 (1):73-85.
    The discussions which follow rest on a distinction, first expounded by Husserl, between formal logic and formal ontology. The former concerns itself with (formal) meaning-structures; the latter with formal structures amongst objects and their parts. The paper attempts to show how, when formal ontological considerations are brought into play, contemporary extensionalist theories of part and whole, and above all the mereology of Leniewski, can be generalised to embrace not only relations between concrete objects and object-pieces, but also relations between what (...)
    Download  
     
    Export citation  
     
    Bookmark   56 citations  
  20. george boole.John Corcoran - 2006 - In Encyclopedia of Philosophy. 2nd edition. macmillan.
    2006. George Boole. Encyclopedia of Philosophy. 2nd edition. Detroit: Macmillan Reference USA. -/- George Boole (1815-1864), whose name lives among modern computer-related sciences in Boolean Algebra, Boolean Logic, Boolean Operations, and the like, is one of the most celebrated logicians of all time. Ironically, his actual writings often go unread and his actual contributions to logic are virtually unknown—despite the fact that he was one of the clearest writers in the field. Working with various students including Susan (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. Gödel mathematics versus Hilbert mathematics. I. The Gödel incompleteness (1931) statement: axiom or theorem?Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (9):1-56.
    The present first part about the eventual completeness of mathematics (called “Hilbert mathematics”) is concentrated on the Gödel incompleteness (1931) statement: if it is an axiom rather than a theorem inferable from the axioms of (Peano) arithmetic, (ZFC) set theory, and propositional logic, this would pioneer the pathway to Hilbert mathematics. One of the main arguments that it is an axiom consists in the direct contradiction of the axiom of induction in arithmetic and the axiom of infinity in set theory. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Another Side of Categorical Propositions: The Keynes–Johnson Octagon of Oppositions.Amirouche Moktefi & Fabien Schang - 2023 - History and Philosophy of Logic 44 (4):459-475.
    The aim of this paper is to make sense of the Keynes–Johnson octagon of oppositions. We will discuss Keynes' logical theory, and examine how his view is reflected on this octagon. Then we will show how this structure is to be handled by means of a semantics of partition, thus computing logical relations between matching formulas with a semantic method that combines model theory and Boolean algebra.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  23. Prototypes, Poles, and Topological Tessellations of Conceptual Spaces.Thomas Mormann - 2021 - Synthese 199 (1):3675 - 3710.
    Abstract. The aim of this paper is to present a topological method for constructing discretizations (tessellations) of conceptual spaces. The method works for a class of topological spaces that the Russian mathematician Pavel Alexandroff defined more than 80 years ago. Alexandroff spaces, as they are called today, have many interesting properties that distinguish them from other topological spaces. In particular, they exhibit a 1-1 correspondence between their specialization orders and their topological structures. Recently, a special type of Alexandroff spaces was (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  24. Linguistic Multidimensional Spaces.W. B. Vasantha Kandasamy, Ilanthenral K. & Florentin Smarandache - 2023
    This book extends the concept of linguistic coordinate geometry using linguistic planes or semi-linguistic planes. In the case of coordinate planes, we are always guaranteed of the distance between any two points in that plane. However, in the case of linguistic and semi-linguistic planes, we can not always determine the linguistic distance between any two points. This is the first limitation of linguistic planes and semi-linguistic planes.
    Download  
     
    Export citation  
     
    Bookmark  
  25. Arithmetic is Necessary.Zachary Goodsell - 2024 - Journal of Philosophical Logic 53 (4).
    (Goodsell, Journal of Philosophical Logic, 51(1), 127-150 2022) establishes the noncontingency of sentences of first-order arithmetic, in a plausible higher-order modal logic. Here, the same result is derived using significantly weaker assumptions. Most notably, the assumption of rigid comprehension—that every property is coextensive with a modally rigid one—is weakened to the assumption that the Boolean algebra of properties under necessitation is countably complete. The results are generalized to extensions of the language of arithmetic, and are applied to answer a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. New Logic and the Seeds of Analytic Philosophy.Kevin C. Klement - 2019 - In John Shand (ed.), A Companion to Nineteenth Century Philosophy (Blackwell Companions to Philosophy). Hoboken: Wiley-Blackwell. pp. 454–479.
    Analytic philosophy has been perhaps the most successful philosophical movement of the twentieth century. While there is no one doctrine that defines it, one of the most salient features of analytic philosophy is its reliance on contemporary logic, the logic that had its origin in the works of George Boole and Gottlob Frege and others in the mid‐to‐late nineteenth century. Boolean algebra, the heart of Boole's contributions to logic, has also come to represent a cornerstone of modern computing. Frege (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  27. (1 other version)Twist-Valued Models for Three-valued Paraconsistent Set Theory.Walter Carnielli & Marcelo E. Coniglio - 2021 - Logic and Logical Philosophy 30 (2):187-226.
    Boolean-valued models of set theory were independently introduced by Scott, Solovay and Vopěnka in 1965, offering a natural and rich alternative for describing forcing. The original method was adapted by Takeuti, Titani, Kozawa and Ozawa to lattice-valued models of set theory. After this, Löwe and Tarafder proposed a class of algebras based on a certain kind of implication which satisfy several axioms of ZF. From this class, they found a specific 3-valued model called PS3 which satisfies all the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  28. A model-theoretic analysis of Fidel-structures for mbC.Marcelo E. Coniglio - 2019 - In Can Başkent & Thomas Macaulay Ferguson (eds.), Graham Priest on Dialetheism and Paraconsistency. Cham, Switzerland: Springer Verlag. pp. 189-216.
    In this paper the class of Fidel-structures for the paraconsistent logic mbC is studied from the point of view of Model Theory and Category Theory. The basic point is that Fidel-structures for mbC (or mbC-structures) can be seen as first-order structures over the signature of Boolean algebras expanded by two binary predicate symbols N (for negation) and O (for the consistency connective) satisfying certain Horn sentences. This perspective allows us to consider notions and results from Model Theory in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. “Two bits less” after quantum-information conservation and their interpretation as “distinguishability / indistinguishability” and “classical / quantum”.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (46):1-7.
    The paper investigates the understanding of quantum indistinguishability after quantum information in comparison with the “classical” quantum mechanics based on the separable complex Hilbert space. The two oppositions, correspondingly “distinguishability / indistinguishability” and “classical / quantum”, available implicitly in the concept of quantum indistinguishability can be interpreted as two “missing” bits of classical information, which are to be added after teleportation of quantum information to be restored the initial state unambiguously. That new understanding of quantum indistinguishability is linked to the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30.  70
    Lógica cuántica, Nmatrices y adecuación, II.Juan Pablo Jorge & Federico Holik - 2023 - Teorema: International Journal of Philosophy 42 (1):149-169.
    By elaborating on the results presented in Lógica cuántica, Nmatrices y adecuación I, here we discuss the notions of adequacy and truth functionality in quantum logic from the point of view of a non-deterministic semantics based on Nmatrices. We present a proof of the impossibility of providing a functional semantics for the quantum lattice. An advantage of our proof is that it is independent of the number of truth values involved, generalizing previous works. Due to the impossibility of defining adequate (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31.  78
    Counterfactuals 2.0: Logic, Truth Conditions, and Probability.Giuliano Rosella - 2023 - Dissertation, University of Turin
    The present thesis focuses on counterfactuals. Specifically, we will address new questions and open problems that arise for the standard semantic accounts of counterfactual conditionals. The first four chapters deal with the Lewisian semantic account of counterfactuals. On a technical level, we contribute by providing an equivalent algebraic semantics for Lewis' variably strict conditional logics, which is notably absent in the literature. We introduce a new kind of algebra and differentiate between local and global versions of each of Lewis' variably (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. What is Nominalistic Mereology?Jeremy Meyers - 2012 - Journal of Philosophical Logic 43 (1):71-108.
    Hybrid languages are introduced in order to evaluate the strength of “minimal” mereologies with relatively strong frame definability properties. Appealing to a robust form of nominalism, I claim that one investigated language \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}_{\textsf {m}}$\end{document} is maximally acceptable for nominalistic mereology. In an extension \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}_{\textsf {gem}}$\end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}_{\textsf {m}}$\end{document}, a modal analog (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  33. B-frame duality.Guillaume Massas - 2023 - Annals of Pure and Applied Logic 174 (5):103245.
    This paper introduces the category of b-frames as a new tool in the study of complete lattices. B-frames can be seen as a generalization of posets, which play an important role in the representation theory of Heyting algebras, but also in the study of complete Boolean algebras in forcing. This paper combines ideas from the two traditions in order to generalize some techniques and results to the wider context of complete lattices. In particular, we lift a representation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Specificity and Redundant Causation.Henning Strandin - manuscript
    In this paper I present a metaphysically minimalist but theoretically strong version of fact causation, in which the causal relata constitute a full Boolean algebra, mirroring the entailment relation of the sentences that express them. I suggest a generalization of the notion of multiple realizability of causes in terms of specificity of facts, and employ this in an interpretation of what goes on in cases of apparently redundant causation.
    Download  
     
    Export citation  
     
    Bookmark  
  35.  69
    On the Gettier Problem for Topological Logic of Knowledge and Belief.Thomas Mormann - manuscript
    Abstract. Gettier’s famous examples intended to show that knowledge cannot always be equated with justified true belief. The Gettier problem can also be considered as a problem for topological epistemic logic: If knowledge and justified belief are conceived as topological operators K and B on topological spaces (to be considered as universes of possible worlds), one may ask whether it happens that there is a proposition A such that KA ≠ A & BA or not. If this is the case, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Recapture, Transparency, Negation and a Logic for the Catuskoti.Adrian Kreutz - 2019 - Comparative Philosophy 10 (1):67-92.
    The recent literature on Nāgārjuna’s catuṣkoṭi centres around Jay Garfield’s (2009) and Graham Priest’s (2010) interpretation. It is an open discussion to what extent their interpretation is an adequate model of the logic for the catuskoti, and the Mūla-madhyamaka-kārikā. Priest and Garfield try to make sense of the contradictions within the catuskoti by appeal to a series of lattices – orderings of truth-values, supposed to model the path to enlightenment. They use Anderson & Belnaps's (1975) framework of First Degree Entailment. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  37. Neutrosophic Lattices.Vasantha Kandasamy & Florentin Smarandache - 2014 - Neutrosophic Sets and Systems 2:42-47.
    In this paper authors for the first time define a new notion called neutrosophic lattices. We define few properties related with them. Three types of neutrosophic lattices are defined and the special properties about these new class of lattices are discussed and developed. This paper is organised into three sections. First section introduces the concept of partially ordered neutrosophic set and neutrosophic lattices. Section two introduces different types of neutrosophic lattices and the final section studies neutrosophic Boolean algebras. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Hungarian disjunctions and positive polarity.Anna Szabolcsi - 2002 - In Istvan Kenesei & Peter Siptar (eds.), Approaches to Hungarian, Vol. 8. Univ. of Szeged.
    The de Morgan laws characterize how negation, conjunction, and disjunction interact with each other. They are fundamental in any semantics that bases itself on the propositional calculus/Boolean algebra. This paper is primarily concerned with the second law. In English, its validity is easy to demonstrate using linguistic examples. Consider the following: (3) Why is it so cold in here? We didn’t close the door or the window. The second sentence is ambiguous. It may mean that I suppose we did (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  39. Logic, mathematics, physics: from a loose thread to the close link: Or what gravity is for both logic and mathematics rather than only for physics.Vasil Penchev - 2023 - Astrophysics, Cosmology and Gravitation Ejournal 2 (52):1-82.
    Gravitation is interpreted to be an “ontomathematical” force or interaction rather than an only physical one. That approach restores Newton’s original design of universal gravitation in the framework of “The Mathematical Principles of Natural Philosophy”, which allows for Einstein’s special and general relativity to be also reinterpreted ontomathematically. The entanglement theory of quantum gravitation is inherently involved also ontomathematically by virtue of the consideration of the qubit Hilbert space after entanglement as the Fourier counterpart of pseudo-Riemannian space. Gravitation can be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Theory of pricing as relativistic kinematics.Sergiy Melnyk - manuscript
    The algebra of transactions as fundamental measurements is constructed on the basis of the analysis of their properties and represents an expansion of the Boolean algebra. The notion of the generalized economic measurements of the economic “quantity” and “quality” of objects of transactions is introduced. It has been shown that the vector space of economic states constructed on the basis of these measurements is relativistic. The laws of kinematics of economic objects in this space have been analyzed and the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Imprecise Probabilities in Quantum Mechanics.Stephan Hartmann - 2015 - In Colleen E. Crangle, Adolfo García de la Sienra & Helen E. Longino (eds.), Foundations and Methods From Mathematics to Neuroscience: Essays Inspired by Patrick Suppes. Stanford Univ Center for the Study. pp. 77-82.
    In his entry on "Quantum Logic and Probability Theory" in the Stanford Encyclopedia of Philosophy, Alexander Wilce (2012) writes that "it is uncontroversial (though remarkable) the formal apparatus quantum mechanics reduces neatly to a generalization of classical probability in which the role played by a Boolean algebra of events in the latter is taken over the 'quantum logic' of projection operators on a Hilbert space." For a long time, Patrick Suppes has opposed this view (see, for example, the paper (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Doing the right things–trivalence in deontic action logic.Piotr Kulicki & Robert Trypuz - 2012 - Trivalent Logics and Their Applications.
    Trivalence is quite natural for deontic action logic, where actions are treated as good, neutral or bad.We present the ideas of trivalent deontic logic after J. Kalinowski and its realisation in a 3-valued logic of M. Fisher and two systems designed by the authors of the paper: a 4-valued logic inspired by N. Belnap’s logic of truth and information and a 3-valued logic based on nondeterministic matrices. Moreover, we combine Kalinowski’s idea of trivalence with deontic action logic based on (...) algebra. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  43. Bilattices with Implications.Félix Bou & Umberto Rivieccio - 2013 - Studia Logica 101 (4):651-675.
    In a previous work we studied, from the perspective ofAlgebraic Logic, the implicationless fragment of a logic introduced by O. Arieli and A. Avron using a class of bilattice-based logical matrices called logical bilattices. Here we complete this study by considering the Arieli-Avron logic in the full language, obtained by adding two implication connectives to the standard bilattice language. We prove that this logic is algebraizable and investigate its algebraic models, which turn out to be distributive bilattices with additional implication (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  44. A norm-giver meets deontic action logic.Robert Trypuz & Piotr Kulicki - 2011 - Logic and Logical Philosophy 20 (1-2):2011.
    In the paper we present a formal system motivated by a specific methodology of creating norms. According to the methodology, a norm-giver before establishing a set of norms should create a picture of the agent by creating his repertoire of actions. Then, knowing what the agent can do in particular situations, the norm-giver regulates these actions by assigning deontic qualifications to each of them. The set of norms created for each situation should respect (1) generally valid deontic principles being the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  45. Logical reduction of relations: From relational databases to Peirce’s reduction thesis.Sergiy Koshkin - 2023 - Logic Journal of the IGPL 31 (5):779-809.
    We study logical reduction (factorization) of relations into relations of lower arity by Boolean or relative products that come from applying conjunctions and existential quantifiers to predicates, i.e. by primitive positive formulas of predicate calculus. Our algebraic framework unifies natural joins and data dependencies of database theory and relational algebra of clone theory with the bond algebra of C.S. Peirce. We also offer new constructions of reductions, systematically study irreducible relations and reductions to them and introduce a new characteristic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  46. Hilbert arithmetic as a Pythagorean arithmetic: arithmetic as transcendental.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (54):1-24.
    The paper considers a generalization of Peano arithmetic, Hilbert arithmetic as the basis of the world in a Pythagorean manner. Hilbert arithmetic unifies the foundations of mathematics (Peano arithmetic and set theory), foundations of physics (quantum mechanics and information), and philosophical transcendentalism (Husserl’s phenomenology) into a formal theory and mathematical structure literally following Husserl’s tracе of “philosophy as a rigorous science”. In the pathway to that objective, Hilbert arithmetic identifies by itself information related to finite sets and series and quantum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. The logic of partitions: Introduction to the dual of the logic of subsets: The logic of partitions.David Ellerman - 2010 - Review of Symbolic Logic 3 (2):287-350.
    Modern categorical logic as well as the Kripke and topological models of intuitionistic logic suggest that the interpretation of ordinary “propositional” logic should in general be the logic of subsets of a given universe set. Partitions on a set are dual to subsets of a set in the sense of the category-theoretic duality of epimorphisms and monomorphisms—which is reflected in the duality between quotient objects and subobjects throughout algebra. If “propositional” logic is thus seen as the logic of subsets of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  48. (2 other versions)Hyperintensional Ω-Logic.David Elohim - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich (eds.), On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer Verlag.
    This essay examines the philosophical significance of $\Omega$-logic in Zermelo-Fraenkel set theory with choice (ZFC). The categorical duality between coalgebra and algebra permits Boolean-valued algebraic models of ZFC to be interpreted as coalgebras. The hyperintensional profile of $\Omega$-logical validity can then be countenanced within a coalgebraic logic. I argue that the philosophical significance of the foregoing is two-fold. First, because the epistemic and modal and hyperintensional profiles of $\Omega$-logical validity correspond to those of second-order logical consequence, $\Omega$-logical validity is (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  49. Anotações acerca de Symbolic Knowledge from Leibniz to Husserl. [REVIEW]Gisele Dalva Secco - 2015 - Revista Latinoamericana de Filosofia (2):239-251.
    This note presents an analysis of Symbolic Knowledge from Leibniz to Husserl, a collection of works from some members of The Southern Cone Group for the Philosophy of Formal Sciences. The volume delineates an outlook of the philosophical treatments presented by Leibniz, Kant, Frege, and the Booleans, as well as by Husserl, of some questions related to the conceptual singularities of symbolic knowledge –whose standard we find in the arts of algebra and arithmetic. The book’s unity of themes and (at (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. An Introduction to Partition Logic.David Ellerman - 2014 - Logic Journal of the IGPL 22 (1):94-125.
    Classical logic is usually interpreted as the logic of propositions. But from Boole's original development up to modern categorical logic, there has always been the alternative interpretation of classical logic as the logic of subsets of any given (nonempty) universe set. Partitions on a universe set are dual to subsets of a universe set in the sense of the reverse-the-arrows category-theoretic duality--which is reflected in the duality between quotient objects and subobjects throughout algebra. Hence the idea arises of a dual (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
1 — 50 / 410