Results for 'boolean algebras'

85 found
Order:
  1. Agglomerative Algebras.Jeremy Goodman - 2018 - Journal of Philosophical Logic 48 (4):631-648.
    This paper investigates a generalization of Boolean algebras which I call agglomerative algebras. It also outlines two conceptions of propositions according to which they form an agglomerative algebra but not a Boolean algebra with respect to conjunction and negation.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2.  80
    Hyperboolean Algebras and Hyperboolean Modal Logic.Valentin Goranko & Dimiter Vakarelov - 1999 - Journal of Applied Non-Classical Logics 9 (2):345-368.
    Hyperboolean algebras are Boolean algebras with operators, constructed as algebras of complexes (or, power structures) of Boolean algebras. They provide an algebraic semantics for a modal logic (called here a {\em hyperboolean modal logic}) with a Kripke semantics accordingly based on frames in which the worlds are elements of Boolean algebras and the relations correspond to the Boolean operations. We introduce the hyperboolean modal logic, give a complete axiomatization of it, and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  3. Deontic Logics Based on Boolean Algebra.Pablo F. Castro & Piotr Kulicki - forthcoming - In Robert Trypuz (ed.), Krister Segerberg on Logic of Actions. Springer.
    Deontic logic is devoted to the study of logical properties of normative predicates such as permission, obligation and prohibition. Since it is usual to apply these predicates to actions, many deontic logicians have proposed formalisms where actions and action combinators are present. Some standard action combinators are action conjunction, choice between actions and not doing a given action. These combinators resemble boolean operators, and therefore the theory of boolean algebra offers a well-known athematical framework to study the properties (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  4. McKinsey Algebras and Topological Models of S4.1.Thomas Mormann - manuscript
    The aim of this paper is to show that every topological space gives rise to a wealth of topological models of the modal logic S4.1. The construction of these models is based on the fact that every space defines a Boolean closure algebra (to be called a McKinsey algebra) that neatly reflects the structure of the modal system S4.1. It is shown that the class of topological models based on McKinsey algebras contains a canonical model that can be (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  5.  93
    Non-Deterministic Algebraization of Logics by Swap Structures1.Marcelo E. Coniglio, Aldo Figallo-Orellano & Ana Claudia Golzio - 2020 - Logic Journal of the IGPL 28 (5):1021-1059.
    Multialgebras have been much studied in mathematics and in computer science. In 2016 Carnielli and Coniglio introduced a class of multialgebras called swap structures, as a semantic framework for dealing with several Logics of Formal Inconsistency that cannot be semantically characterized by a single finite matrix. In particular, these LFIs are not algebraizable by the standard tools of abstract algebraic logic. In this paper, the first steps towards a theory of non-deterministic algebraization of logics by swap structures are given. Specifically, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  6. Logics of Formal Inconsistency Enriched with Replacement: An Algebraic and Modal Account.Walter Carnielli, Marcelo E. Coniglio & David Fuenmayor - manuscript
    One of the most expected properties of a logical system is that it can be algebraizable, in the sense that an algebraic counterpart of the deductive machinery could be found. Since the inception of da Costa's paraconsistent calculi, an algebraic equivalent for such systems have been searched. It is known that these systems are non self-extensional (i.e., they do not satisfy the replacement property). More than this, they are not algebraizable in the sense of Blok-Pigozzi. The same negative results hold (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Twist-Valued Models for Three-Valued Paraconsistent Set Theory.Walter Carnielli & Marcelo E. Coniglio - manuscript
    Boolean-valued models of set theory were independently introduced by Scott, Solovay and Vopěnka in 1965, offering a natural and rich alternative for describing forcing. The original method was adapted by Takeuti, Titani, Kozawa and Ozawa to lattice-valued models of set theory. After this, Löwe and Tarafder proposed a class of algebras based on a certain kind of implication which satisfy several axioms of ZF. From this class, they found a specific 3-valued model called PS3 which satisfies all the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  8. What is Nominalistic Mereology?Jeremy Meyers - 2012 - Journal of Philosophical Logic 43 (1):71-108.
    Hybrid languages are introduced in order to evaluate the strength of “minimal” mereologies with relatively strong frame definability properties. Appealing to a robust form of nominalism, I claim that one investigated language \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}_{\textsf {m}}$\end{document} is maximally acceptable for nominalistic mereology. In an extension \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}_{\textsf {gem}}$\end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}_{\textsf {m}}$\end{document}, a modal analog (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  9. A Model-Theoretic Analysis of Fidel-Structures for mbC.Marcelo E. Coniglio - 2020 - In Can Baskent and Thomas Ferguson (ed.), Graham Priest on Dialetheism and Paraconsistency. Springer. pp. 189-216.
    In this paper the class of Fidel-structures for the paraconsistent logic mbC is studied from the point of view of Model Theory and Category Theory. The basic point is that Fidel-structures for mbC (or mbC-structures) can be seen as first-order structures over the signature of Boolean algebras expanded by two binary predicate symbols N (for negation) and O (for the consistency connective) satisfying certain Horn sentences. This perspective allows us to consider notions and results from Model Theory in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10.  21
    Conceptual Schemes and the Indefinability of Goodness.Stephen Gutwald - manuscript
    The indefinability of concepts is explored through the idea of a conceptual scheme. Using the Stone duality of Boolean algebras indefinable concepts are categorized as specific types of subspaces. Additionally, indefinability is formulated as a type of algebraic independence and conceptual atomism is investigated from a mathematical perspective.
    Download  
     
    Export citation  
     
    Bookmark  
  11. Prototypes, Poles, and Topological Tessellations of Conceptual Spaces.Thomas Mormann - 2021 - Synthese:1 - 36.
    Abstract. The aim of this paper is to present a topological method for constructing discretizations (tessellations) of conceptual spaces. The method works for a class of topological spaces that the Russian mathematician Pavel Alexandroff defined more than 80 years ago. Alexandroff spaces, as they are called today, have many interesting properties that distinguish them from other topological spaces. In particular, they exhibit a 1-1 correspondence between their specialization orders and their topological structures. Recently, a special type of Alexandroff spaces was (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. The Contact Algebra of the Euclidean Plane has Infinitely Many Elements.Thomas Mormann - manuscript
    Abstract. Let REL(O*E) be the relation algebra of binary relations defined on the Boolean algebra O*E of regular open regions of the Euclidean plane E. The aim of this paper is to prove that the canonical contact relation C of O*E generates a subalgebra REL(O*E, C) of REL(O*E) that has infinitely many elements. More precisely, REL(O*,C) contains an infinite family {SPPn, n ≥ 1} of relations generated by the relation SPP (Separable Proper Part). This relation can be used to (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  13. Non-Deterministic Algebras and Algebraization of Logics.Ana Claudia Golzio & Marcelo E. Coniglio - 2015 - Filosofia da Linguagem E da Lógica (Philosophy of Language and Philosophy of Logic, in Portuguese).
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14.  42
    The Strong Endomorphism Kernel Property in Double MS-Algebras.Jie Fang - 2017 - Studia Logica 105 (5):995-1013.
    An endomorphism on an algebra \ is said to be strong if it is compatible with every congruence on \; and \ is said to have the strong endomorphism kernel property if every congruence on \, other than the universal congruence, is the kernel of a strong endomorphism on \. Here we characterise the structure of those double MS-algebras that have this property by the way of Priestley duality.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  15. A Graph-Theoretic Method to Define Any Boolean Operation on Partitions.David Ellerman - 2019 - The Art of Discrete and Applied Mathematics 2 (2):1-9.
    The lattice operations of join and meet were defined for set partitions in the nineteenth century, but no new logical operations on partitions were defined and studied during the twentieth century. Yet there is a simple and natural graph-theoretic method presented here to define any n-ary Boolean operation on partitions. An equivalent closure-theoretic method is also defined. In closing, the question is addressed of why it took so long for all Boolean operations to be defined for partitions.
    Download  
     
    Export citation  
     
    Bookmark  
  16. A Simpler and More Realistic Subjective Decision Theory.Haim Gaifman & Yang Liu - 2018 - Synthese 195 (10):4205--4241.
    In his classic book “the Foundations of Statistics” Savage developed a formal system of rational decision making. The system is based on (i) a set of possible states of the world, (ii) a set of consequences, (iii) a set of acts, which are functions from states to consequences, and (iv) a preference relation over the acts, which represents the preferences of an idealized rational agent. The goal and the culmination of the enterprise is a representation theorem: Any preference relation that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  17. Quantifier Words and Their Multifunctional(?) Parts.Anna Szabolcsi, James Doh Whang & Vera Zu - 2014 - Language and Linguistics 15 (1).
    Formal semantic analyses often take words to be minimal building blocks for the purposes of compositionality. But various recent theories of morphology and syntax have converged on the view that there is no demarcation line corresponding to the word level. The same conclusion has emerged from the compositional semantics of superlatives. In the spirit of extending compositionality below the word level, this paper explores how a small set of particles (Japanese KA and MO, Chinese DOU, and Hungarian VALA/VAGY, MIND, and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  18.  51
    Colombeau Solutions to Einstein Field Equations.Gravitational Singularities.Jaykov Foukzon - manuscript
    In contemporary mathematics, a Colombeau algebra of Colombeau generalized functions is an algebra of a certain kind containing the space of Schwartz distributions. While in classical distribution theory a general multiplication of distributions is not possible, Colombeau algebras provide a rigorous framework for this. Remark 1.1.1.Such a multiplication of distributions has been a long time mistakenly believed to be impossible because of Schwartz’ impossibility result, which basically states that there cannot be a differential algebra containing the space of distributions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Framework for Formal Ontology.Barry Smith & Kevin Mulligan - 1983 - Topoi 2 (1):73-85.
    The discussions which follow rest on a distinction, first expounded by Husserl, between formal logic and formal ontology. The former concerns itself with (formal) meaning-structures; the latter with formal structures amongst objects and their parts. The paper attempts to show how, when formal ontological considerations are brought into play, contemporary extensionalist theories of part and whole, and above all the mereology of Leniewski, can be generalised to embrace not only relations between concrete objects and object-pieces, but also relations between what (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  20. Are Self-Organizing Biochemical Networks Emergent?Christophe Malaterre - 2009 - In Maryvonne Gérin & Marie-Christine Maurel (eds.), Origins of Life: Self-Organization and/or Biological Evolution? EDP Sciences. pp. 117--123.
    Biochemical networks are often called upon to illustrate emergent properties of living systems. In this contribution, I question such emergentist claims by means of theoretical work on genetic regulatory models and random Boolean networks. If the existence of a critical connectivity Kc of such networks has often been coined “emergent” or “irreducible”, I propose on the contrary that the existence of a critical connectivity Kc is indeed mathematically explainable in network theory. This conclusion also applies to many other types (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Recapture, Transparency, Negation and a Logic for the Catuskoti.Adrian Kreutz - 2019 - Comparative Philosophy 10 (1):67-92.
    The recent literature on Nāgārjuna’s catuṣkoṭi centres around Jay Garfield’s (2009) and Graham Priest’s (2010) interpretation. It is an open discussion to what extent their interpretation is an adequate model of the logic for the catuskoti, and the Mūla-madhyamaka-kārikā. Priest and Garfield try to make sense of the contradictions within the catuskoti by appeal to a series of lattices – orderings of truth-values, supposed to model the path to enlightenment. They use Anderson & Belnaps's (1975) framework of First Degree Entailment. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  22. The Logic of Partitions: Introduction to the Dual of the Logic of Subsets: The Logic of Partitions.David Ellerman - 2010 - Review of Symbolic Logic 3 (2):287-350.
    Modern categorical logic as well as the Kripke and topological models of intuitionistic logic suggest that the interpretation of ordinary “propositional” logic should in general be the logic of subsets of a given universe set. Partitions on a set are dual to subsets of a set in the sense of the category-theoretic duality of epimorphisms and monomorphisms—which is reflected in the duality between quotient objects and subobjects throughout algebra. If “propositional” logic is thus seen as the logic of subsets of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  23. Quantification.Anna Szabolcsi - 2010 - Cambridge University Press.
    This book surveys research in quantification starting with the foundational work in the 1970s. It paints a vivid picture of generalized quantifiers and Boolean semantics. It explains how the discovery of diverse scope behavior in the 1990s transformed the view of quantification, and how the study of the internal composition of quantifiers has become central in recent years. It presents different approaches to the same problems, and links modern logic and formal semantics to advances in generative syntax. A unique (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  24. A Norm-Giver Meets Deontic Action Logic.Robert Trypuz & Piotr Kulicki - 2011 - Logic and Logical Philosophy 20 (1-2):2011.
    In the paper we present a formal system motivated by a specific methodology of creating norms. According to the methodology, a norm-giver before establishing a set of norms should create a picture of the agent by creating his repertoire of actions. Then, knowing what the agent can do in particular situations, the norm-giver regulates these actions by assigning deontic qualifications to each of them. The set of norms created for each situation should respect (1) generally valid deontic principles being the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  25. A Modality Called ‘Negation’.Francesco Berto - 2015 - Mind 124 (495):761-793.
    I propose a comprehensive account of negation as a modal operator, vindicating a moderate logical pluralism. Negation is taken as a quantifier on worlds, restricted by an accessibility relation encoding the basic concept of compatibility. This latter captures the core meaning of the operator. While some candidate negations are then ruled out as violating plausible constraints on compatibility, different specifications of the notion of world support different logical conducts for negations. The approach unifies in a philosophically motivated picture the following (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  26. Deontic Modality and the Semantics of Choice.Melissa Fusco - 2015 - Philosophers' Imprint 15.
    I propose a unified solution to two puzzles: Ross's puzzle and free choice permission. I begin with a pair of cases from the decision theory literature illustrating the phenomenon of act dependence, where what an agent ought to do depends on what she does. The notion of permissibility distilled from these cases forms the basis for my analysis of 'may' and 'ought'. This framework is then combined with a generalization of the classical semantics for disjunction — equivalent to Boolean (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  27. Against Preservation.Matthew Mandelkern & Justin Khoo - 2019 - Analysis 79 (3):424-436.
    Bradley offers a quick and convincing argument that no Boolean semantic theory for conditionals can validate a very natural principle concerning the relationship between credences and conditionals. We argue that Bradley’s principle, Preservation, is, in fact, invalid; its appeal arises from the validity of a nearby, but distinct, principle, which we call Local Preservation, and which Boolean semantic theories can non-trivially validate.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  28. Probabilistic Opinion Pooling Generalized. Part One: General Agendas.Franz Dietrich & Christian List - 2017 - Social Choice and Welfare 48 (4):747–786.
    How can different individuals' probability assignments to some events be aggregated into a collective probability assignment? Classic results on this problem assume that the set of relevant events -- the agenda -- is a sigma-algebra and is thus closed under disjunction (union) and conjunction (intersection). We drop this demanding assumption and explore probabilistic opinion pooling on general agendas. One might be interested in the probability of rain and that of an interest-rate increase, but not in the probability of rain or (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  29. Weak Islands and an Algebraic Semantics for Scope Taking.Anna Szabolcsi & Frans Zwarts - 1997 - In Ways of Scope Taking. Dordrecht: Kluwer.
    Modifying the descriptive and theoretical generalizations of Relativized Minimality, we argue that a significant subset of weak island violations arise when an extracted phrase should scope over some intervener but is unable to. Harmless interveners seem harmless because they can support an alternative reading. This paper focuses on why certain wh-phrases are poor wide scope takers, and offers an algebraic perspective on scope interaction. Each scopal element SE is associated with certain operations (e.g., not with complements). When a wh-phrase scopes (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  30. Ancient Logic and its Modern Interpretations.John Corcoran (ed.) - 1974 - Boston: Reidel.
    This book treats ancient logic: the logic that originated in Greece by Aristotle and the Stoics, mainly in the hundred year period beginning about 350 BCE. Ancient logic was never completely ignored by modern logic from its Boolean origin in the middle 1800s: it was prominent in Boole’s writings and it was mentioned by Frege and by Hilbert. Nevertheless, the first century of mathematical logic did not take it seriously enough to study the ancient logic texts. A renaissance in (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  31. Acceptance, Aggregation and Scoring Rules.Jake Chandler - 2013 - Erkenntnis 78 (1):201-217.
    As the ongoing literature on the paradoxes of the Lottery and the Preface reminds us, the nature of the relation between probability and rational acceptability remains far from settled. This article provides a novel perspective on the matter by exploiting a recently noted structural parallel with the problem of judgment aggregation. After offering a number of general desiderata on the relation between finite probability models and sets of accepted sentences in a Boolean sentential language, it is noted that a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  32. An Arithmetization of Logical Oppositions.Fabien Schang - 2016 - In Jean-Yves Beziau & Gianfranco Basti (eds.), The Square of Opposition: A Cornerstone of Thought. Bâle, Suisse: pp. 215-237.
    An arithmetic theory of oppositions is devised by comparing expressions, Boolean bitstrings, and integers. This leads to a set of correspondences between three domains of investigation, namely: logic, geometry, and arithmetic. The structural properties of each area are investigated in turn, before justifying the procedure as a whole. Io finish, I show how this helps to improve the logical calculus of oppositions, through the consideration of corresponding operations between integers.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  33. An Introduction to Logical Entropy and its Relation to Shannon Entropy.David Ellerman - 2013 - International Journal of Semantic Computing 7 (2):121-145.
    The logical basis for information theory is the newly developed logic of partitions that is dual to the usual Boolean logic of subsets. The key concept is a "distinction" of a partition, an ordered pair of elements in distinct blocks of the partition. The logical concept of entropy based on partition logic is the normalized counting measure of the set of distinctions of a partition on a finite set--just as the usual logical notion of probability based on the (...) logic of subsets is the normalized counting measure of the subsets (events). Thus logical entropy is a measure on the set of ordered pairs, and all the compound notions of entropy (join entropy, conditional entropy, and mutual information) arise in the usual way from the measure (e.g., the inclusion-exclusion principle)--just like the corresponding notions of probability. The usual Shannon entropy of a partition is developed by replacing the normalized count of distinctions (dits) by the average number of binary partitions (bits) necessary to make all the distinctions of the partition. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  34.  73
    Logical Entropy: Introduction to Classical and Quantum Logical Information Theory.David Ellerman - 2018 - Entropy 20 (9):679.
    Logical information theory is the quantitative version of the logic of partitions just as logical probability theory is the quantitative version of the dual Boolean logic of subsets. The resulting notion of information is about distinctions, differences and distinguishability and is formalized using the distinctions of a partition. All the definitions of simple, joint, conditional and mutual entropy of Shannon information theory are derived by a uniform transformation from the corresponding definitions at the logical level. The purpose of this (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  35. Heyting Mereology as a Framework for Spatial Reasoning.Thomas Mormann - 2013 - Axiomathes 23 (1):137- 164.
    In this paper it is shown that Heyting and Co-Heyting mereological systems provide a convenient conceptual framework for spatial reasoning, in which spatial concepts such as connectedness, interior parts, (exterior) contact, and boundary can be defined in a natural and intuitively appealing way. This fact refutes the wide-spread contention that mereology cannot deal with the more advanced aspects of spatial reasoning and therefore has to be enhanced by further non-mereological concepts to overcome its congenital limitations. The allegedly unmereological concept of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  36. Hungarian Disjunctions and Positive Polarity.Anna Szabolcsi - 2002 - In Istvan Kenesei & Peter Siptar (eds.), Approaches to Hungarian, Vol. 8. Univ. of Szeged.
    The de Morgan laws characterize how negation, conjunction, and disjunction interact with each other. They are fundamental in any semantics that bases itself on the propositional calculus/Boolean algebra. This paper is primarily concerned with the second law. In English, its validity is easy to demonstrate using linguistic examples. Consider the following: (3) Why is it so cold in here? We didn’t close the door or the window. The second sentence is ambiguous. It may mean that I suppose we did (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   8 citations  
  37. An Introduction to Partition Logic.David Ellerman - 2014 - Logic Journal of the IGPL 22 (1):94-125.
    Classical logic is usually interpreted as the logic of propositions. But from Boole's original development up to modern categorical logic, there has always been the alternative interpretation of classical logic as the logic of subsets of any given (nonempty) universe set. Partitions on a universe set are dual to subsets of a universe set in the sense of the reverse-the-arrows category-theoretic duality--which is reflected in the duality between quotient objects and subobjects throughout algebra. Hence the idea arises of a dual (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  38. Continuous Lattices and Whiteheadian Theory of Space.Thomas Mormann - 1998 - Logic and Logical Philosophy 6:35 - 54.
    In this paper a solution of Whitehead’s problem is presented: Starting with a purely mereological system of regions a topological space is constructed such that the class of regions is isomorphic to the Boolean lattice of regular open sets of that space. This construction may be considered as a generalized completion in analogy to the well-known Dedekind completion of the rational numbers yielding the real numbers . The argument of the paper relies on the theories of continuous lattices and (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  39. Aristotle's Prior Analytics and Boole's Laws of Thought.John Corcoran - 2003 - History and Philosophy of Logic. 24 (4):261-288.
    Prior Analytics by the Greek philosopher Aristotle (384 – 322 BCE) and Laws of Thought by the English mathematician George Boole (1815 – 1864) are the two most important surviving original logical works from before the advent of modern logic. This article has a single goal: to compare Aristotle’s system with the system that Boole constructed over twenty-two centuries later intending to extend and perfect what Aristotle had started. This comparison merits an article itself. Accordingly, this article does not discuss (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  40. Ten Men and Women Got Married Today: Noun Coordination and the Intersective Theory of Conjunction.Lucas Champollion - 2016 - Journal of Semantics 33 (3):561–622.
    The word 'and' can be used both intersectively, as in 'John lies and cheats', and collectively, as in 'John and Mary met'. Research has tried to determine which one of these two meanings is basic. Focusing on coordination of nouns ('liar and cheat'), this article argues that the basic meaning of 'and' is intersective. This theory has been successfully applied to coordination of other kinds of constituents (Partee & Rooth 1983; Winter 2001). Certain cases of noun coordination ('men and women') (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  41. The Quantum Logic of Direct-Sum Decompositions: The Dual to the Quantum Logic of Subspaces.David Ellerman - 2017
    Since the pioneering work of Birkhoff and von Neumann, quantum logic has been interpreted as the logic of (closed) subspaces of a Hilbert space. There is a progression from the usual Boolean logic of subsets to the "quantum logic" of subspaces of a general vector space--which is then specialized to the closed subspaces of a Hilbert space. But there is a "dual" progression. The notion of a partition (or quotient set or equivalence relation) is dual (in a category-theoretic sense) (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  42. Swap Structures Semantics for Ivlev-Like Modal Logics.Marcelo E. Coniglio & Ana Claudia Golzio - 2019 - Soft Computing 23 (7):2243-2254.
    In 1988, J. Ivlev proposed some (non-normal) modal systems which are semantically characterized by four-valued non-deterministic matrices in the sense of A. Avron and I. Lev. Swap structures are multialgebras (a.k.a. hyperalgebras) of a special kind, which were introduced in 2016 by W. Carnielli and M. Coniglio in order to give a non-deterministic semantical account for several paraconsistent logics known as logics of formal inconsistency, which are not algebraizable by means of the standard techniques. Each swap structure induces naturally a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  43. Modal Ω-Logic: Automata, Neo-Logicism, and Set-Theoretic Realism.Hasen Khudairi - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich (eds.), On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer. pp. 65-82.
    This essay examines the philosophical significance of Ω-logic in Zermelo-Fraenkel set theory with choice (ZFC). The dual isomorphism between algebra and coalgebra permits Boolean-valued algebraic models of ZFC to be interpreted as coalgebras. The modal profile of Ω-logical validity can then be countenanced within a coalgebraic logic, and Ω-logical validity can be defined via deterministic automata. I argue that the philosophical significance of the foregoing is two-fold. First, because the epistemic and modal profiles of Ω-logical validity correspond to those (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. A Two-Dimensional Logic for Two Paradoxes of Deontic Modality.Fusco Melissa & Kocurek Alexander - forthcoming - Review of Symbolic Logic.
    In this paper, we axiomatize the deontic logic in Fusco 2015, which uses a Stalnaker-inspired account of diagonal acceptance and a two-dimensional account of disjunction to treat Ross’s Paradox and the Puzzle of Free Choice Permission. On this account, disjunction-involving validities are a priori rather than necessary. We show how to axiomatize two-dimensional disjunction so that the introduction/elimination rules for boolean disjunction can be viewed as one-dimensional projections of more general two-dimensional rules. These completeness results help make explicit the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45.  73
    Iterated Privation and Positive Predication.Bjørn Jespersen, Massimiliano Carrara & Marie Duží - 2017 - Journal of Applied Logic 25:S48-S71.
    The standard rule of single privative modification replaces privative modifiers by Boolean negation. This rule is valid, for sure, but also simplistic. If an individual a instantiates the privatively modified property (MF) then it is true that a instantiates the property of not being an F, but the rule fails to express the fact that the properties (MF) and F have something in common. We replace Boolean negation by property negation, enabling us to operate on contrary rather than (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  46. Epistemic Modality, Mind, and Mathematics.Hasen Khudairi - 2020 - Dissertation, University of St Andrews
    This book concerns the foundations of epistemic modality. I examine the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality relates to the computational theory of mind; metaphysical modality; the types of mathematical modality; to the epistemic status of undecidable propositions and abstraction principles in the philosophy of mathematics; to the modal profile of rational propositional intuition; and to the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47.  39
    Modal Cognitivism and Modal Expressivism.Hasen Khudairi - manuscript
    This paper aims to provide a mathematically tractable background against which to model both modal cognitivism and modal expressivism. I argue that epistemic modal algebras comprise a materially adequate fragment of the language of thought. I demonstrate, then, how modal expressivism can be regimented by modal coalgebraic automata, to which the above epistemic modal algebras are dual. I examine, in particular, the virtues unique to the modal expressivist approach here proffered in the setting of the foundations of mathematics, (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  48. Doing the Right Things–Trivalence in Deontic Action Logic.Piotr Kulicki & Robert Trypuz - 2012 - Trivalent Logics and Their Applications.
    Trivalence is quite natural for deontic action logic, where actions are treated as good, neutral or bad.We present the ideas of trivalent deontic logic after J. Kalinowski and its realisation in a 3-valued logic of M. Fisher and two systems designed by the authors of the paper: a 4-valued logic inspired by N. Belnap’s logic of truth and information and a 3-valued logic based on nondeterministic matrices. Moreover, we combine Kalinowski’s idea of trivalence with deontic action logic based on (...) algebra. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  49. Boole's Criteria for Validity and Invalidity.John Corcoran & Susan Wood - 1980 - Notre Dame Journal of Formal Logic 21 (4):609-638.
    It is one thing for a given proposition to follow or to not follow from a given set of propositions and it is quite another thing for it to be shown either that the given proposition follows or that it does not follow.* Using a formal deduction to show that a conclusion follows and using a countermodel to show that a conclusion does not follow are both traditional practices recognized by Aristotle and used down through the history of logic. These (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  50.  25
    Modal Logic and Universal Algebra I: Modal Axiomatizations of Structures.Valentin Goranko & Dimiter Vakarelov - 2000 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 265-292.
    We study the general problem of axiomatizing structures in the framework of modal logic and present a uniform method for complete axiomatization of the modal logics determined by a large family of classes of structures of any signature.
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 85