Results for 'nested calculus'

677 found
Order:
  1. Nested Sequents for Intuitionistic Modal Logics via Structural Refinement.Tim Lyon - 2021 - In Anupam Das & Sara Negri (eds.), Automated Reasoning with Analytic Tableaux and Related Methods: TABLEAUX 2021. pp. 409-427.
    We employ a recently developed methodology -- called "structural refinement" -- to extract nested sequent systems for a sizable class of intuitionistic modal logics from their respective labelled sequent systems. This method can be seen as a means by which labelled sequent systems can be transformed into nested sequent systems through the introduction of propagation rules and the elimination of structural rules, followed by a notational translation. The nested systems we obtain incorporate propagation rules that are parameterized (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2. On Deriving Nested Calculi for Intuitionistic Logics from Semantic Systems.Tim Lyon - 2013 - In Sergei Artemov & Anil Nerode (eds.), Logical Foundations of Computer Science (Lecture Notes in Computer Science 7734). Springer. pp. 177-194.
    This paper shows how to derive nested calculi from labelled calculi for propositional intuitionistic logic and first-order intuitionistic logic with constant domains, thus connecting the general results for labelled calculi with the more refined formalism of nested sequents. The extraction of nested calculi from labelled calculi obtains via considerations pertaining to the elimination of structural rules in labelled derivations. Each aspect of the extraction process is motivated and detailed, showing that each nested calculus inherits favorable (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  3. Syntactic Interpolation for Tense Logics and Bi-Intuitionistic Logic via Nested Sequents.Tim Lyon, Alwen Tiu, Rajeev Gore & Ranald Clouston - 2020 - In Maribel Fernandez & Anca Muscholl (eds.), 28th EACSL Annual Conference on Computer Science Logic (CSL 2020). pp. 1-16.
    We provide a direct method for proving Craig interpolation for a range of modal and intuitionistic logics, including those containing a "converse" modality. We demonstrate this method for classical tense logic, its extensions with path axioms, and for bi-intuitionistic logic. These logics do not have straightforward formalisations in the traditional Gentzen-style sequent calculus, but have all been shown to have cut-free nested sequent calculi. The proof of the interpolation theorem uses these calculi and is purely syntactic, without resorting (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  4. Automating Reasoning with Standpoint Logic via Nested Sequents.Tim Lyon & Lucía Gómez Álvarez - 2018 - In Michael Thielscher, Francesca Toni & Frank Wolter (eds.), Proceedings of the Sixteenth International Conference on Principles of Knowledge Representation and Reasoning (KR2018). pp. 257-266.
    Standpoint logic is a recently proposed formalism in the context of knowledge integration, which advocates a multi-perspective approach permitting reasoning with a selection of diverse and possibly conflicting standpoints rather than forcing their unification. In this paper, we introduce nested sequent calculi for propositional standpoint logics---proof systems that manipulate trees whose nodes are multisets of formulae---and show how to automate standpoint reasoning by means of non-deterministic proof-search algorithms. To obtain worst-case complexity-optimal proof-search, we introduce a novel technique in the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Refining Labelled Systems for Modal and Constructive Logics with Applications.Tim Lyon - 2021 - Dissertation, Technischen Universität Wien
    This thesis introduces the "method of structural refinement", which serves as a means of transforming the relational semantics of a modal and/or constructive logic into an 'economical' proof system by connecting two proof-theoretic paradigms: labelled and nested sequent calculi. The formalism of labelled sequents has been successful in that cut-free calculi in possession of desirable proof-theoretic properties can be automatically generated for large classes of logics. Despite these qualities, labelled systems make use of a complicated syntax that explicitly incorporates (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  6. Levels of abstraction and the Turing test.Luciano Floridi - 2010 - Kybernetes 39 (3):423-440.
    An important lesson that philosophy can learn from the Turing Test and computer science more generally concerns the careful use of the method of Levels of Abstraction (LoA). In this paper, the method is first briefly summarised. The constituents of the method are “observables”, collected together and moderated by predicates restraining their “behaviour”. The resulting collection of sets of observables is called a “gradient of abstractions” and it formalises the minimum consistency conditions that the chosen abstractions must satisfy. Two useful (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  7. The Metaphysical Commitments of Logic.Thomas Brouwer - 2013 - Dissertation, University of Leeds
    This thesis is about the metaphysics of logic. I argue against a view I refer to as ‘logical realism’. This is the view that the logical constants represent a particular kind of metaphysical structure, which I dub ‘logico-metaphysical structure’. I argue instead for a more metaphysically lightweight view of logic which I dub ‘logical expressivism’. -/- In the first part of this thesis (Chapters I and II) I argue against a number of arguments that Theodore Sider has given for logical (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  8. Differential Calculus Based on the Double Contradiction.Kazuhiko Kotani - 2016 - Open Journal of Philosophy 6 (4):420-427.
    The derivative is a basic concept of differential calculus. However, if we calculate the derivative as change in distance over change in time, the result at any instant is 0/0, which seems meaningless. Hence, Newton and Leibniz used the limit to determine the derivative. Their method is valid in practice, but it is not easy to intuitively accept. Thus, this article describes the novel method of differential calculus based on the double contradiction, which is easier to accept intuitively. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. (1 other version)A Cut-Free Sequent Calculus for Defeasible Erotetic Inferences.Jared Millson - 2019 - Studia Logica (6):1-34.
    In recent years, the e ffort to formalize erotetic inferences (i.e., inferences to and from questions) has become a central concern for those working in erotetic logic. However, few have sought to formulate a proof theory for these inferences. To fill this lacuna, we construct a calculus for (classes of) sequents that are sound and complete for two species of erotetic inferences studied by Inferential Erotetic Logic (IEL): erotetic evocation and regular erotetic implication. While an attempt has been made (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  10. (4 other versions)Calculus of Qualia: Introduction to Qualations 7 2 2022.Paul Merriam - manuscript
    The basic idea is to put qualia into equations (broadly understood) to get what might as well be called qualations. Qualations arguably have different truth behaviors than the analogous equations. Thus ‘black’ has a different behavior than ‘ █ ’. This is a step in the direction of a ‘calculus of qualia’. It might help clarify some issues.
    Download  
     
    Export citation  
     
    Bookmark  
  11. Nested Dissection for Sparse Null-Space Bases.Julio Michael Stern & Stephen Vavasis - 1993 - SIAM Journal of Matrix Analysis and Applications 14:766-775.
    The authors propose a nested dissection approach to finding a fundamental cycle basis in a planar graph. The cycle basis corresponds to a fundamental null-space basis of the adjacency matrix. This problem is meant to model sparse null-space basis computations occurring in a variety of settings. An O(n3/2) bound is achieved on the nullspace basis size (i.e., the number of nonzero entries in the basis), and an O(n log n) bound on the size in the special case of grid (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  12. Calculus of Qualia 6: Materialism, Dualism, Idealism, and 14 others.P. Merriam & M. A. Z. Habeeb - manuscript
    General Introduction: In [1] a Calculus of Qualia (CQ) was proposed. The key idea is that, for example, blackness is radically different than █. The former term, “blackness” refers to or is about a quale, whereas the latter term, “█” instantiates a quale in the reader’s mind and is non-referential; it does not even refer to itself. The meaning and behavior of these terms is radically different. All of philosophy, from Plato through Descartes through Chalmers, including hieroglyphics and emojis, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. A calculus for Belnap's logic in which each proof consists of two trees.Stefan Wintein & Reinhard Muskens - 2012 - Logique Et Analyse 220:643-656.
    In this paper we introduce a Gentzen calculus for (a functionally complete variant of) Belnap's logic in which establishing the provability of a sequent in general requires \emph{two} proof trees, one establishing that whenever all premises are true some conclusion is true and one that guarantees the falsity of at least one premise if all conclusions are false. The calculus can also be put to use in proving that one statement \emph{necessarily approximates} another, where necessary approximation is a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  14. Calculus of Qualia 4: Why Something Rather than Nothing; Rather than Weakest Assumptions; Contingent Possibility vs Necessary Actuality; Possibilities of Possibilities.P. Merriam & M. A. Z. Habeeb - manuscript
    General Introduction: In [1] a Calculus of Qualia (CQ) was proposed. The key idea is that, for example, blackness is radically different than █. The former term, “blackness” refers to or is about a quale, whereas the latter term, “█” instantiates a quale in the reader’s mind and is non-referential; it does not even refer to itself. The meaning and behavior of these terms is radically different. All of philosophy, from Plato through Descartes through Chalmers, including hieroglyphics and emojis, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. On the Correspondence between Nested Calculi and Semantic Systems for Intuitionistic Logics.Tim Lyon - 2021 - Journal of Logic and Computation 31 (1):213-265.
    This paper studies the relationship between labelled and nested calculi for propositional intuitionistic logic, first-order intuitionistic logic with non-constant domains and first-order intuitionistic logic with constant domains. It is shown that Fitting’s nested calculi naturally arise from their corresponding labelled calculi—for each of the aforementioned logics—via the elimination of structural rules in labelled derivations. The translational correspondence between the two types of systems is leveraged to show that the nested calculi inherit proof-theoretic properties from their associated labelled (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  16. Nestes Modes, ’Qua’ and the Incarnation.Alexander R. Pruss - 2014 - European Journal for Philosophy of Religion 6 (2):65--80.
    A nested mode ontology allows one to make sense of apparently contradictory Christological claims such as that Christ knows everything and there are some things Christ does not know.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  17. Addressing difficulty in Calculus limits using GeoGebra.Starr Clyde Sebial, Villa Althea Yap & Juvie Sebial - 2022 - Science International Lahore 34 (5):427-430.
    This paper aims to address the difficulties of high school students in bridging their computational understanding with their visualization skills in understanding the notion of the limits in their calculus class. This research used a pre-experimental one-group pretest-posttest design research on 62 grade 10 students enrolled in the Science, Technology, and Engineering Program (STEP) in one of the public high schools in Zamboanga del Sur, Philippines. A series of remedial sessions were given to help them understand the function values, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  18. The Narrative Calculus.Antti Kauppinen - 2015 - Oxford Studies in Normative Ethics 5.
    This paper examines systematically which features of a life story (or history) make it good for the subject herself - not aesthetically or morally good, but prudentially good. The tentative narrative calculus presented claims that the prudential narrative value of an event is a function of the extent to which it contributes to her concurrent and non-concurrent goals, the value of those goals, and the degree to which success in reaching the goals is deserved in virtue of exercising agency. (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  19. From Logical Calculus to Logical Formality—What Kant Did with Euler’s Circles.Huaping Lu-Adler - 2017 - In Corey W. Dyck & Falk Wunderlich (eds.), Kant and His German Contemporaries : Volume 1, Logic, Mind, Epistemology, Science and Ethics. New York, NY, USA: Cambridge University Press. pp. 35-55.
    John Venn has the “uneasy suspicion” that the stagnation in mathematical logic between J. H. Lambert and George Boole was due to Kant’s “disastrous effect on logical method,” namely the “strictest preservation [of logic] from mathematical encroachment.” Kant’s actual position is more nuanced, however. In this chapter, I tease out the nuances by examining his use of Leonhard Euler’s circles and comparing it with Euler’s own use. I do so in light of the developments in logical calculus from G. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. A Nonmonotonic Sequent Calculus for Inferentialist Expressivists.Ulf Hlobil - 2016 - In Pavel Arazim & Michal Dancak (eds.), The Logica Yearbook 2015. College Publications. pp. 87-105.
    I am presenting a sequent calculus that extends a nonmonotonic consequence relation over an atomic language to a logically complex language. The system is in line with two guiding philosophical ideas: (i) logical inferentialism and (ii) logical expressivism. The extension defined by the sequent rules is conservative. The conditional tracks the consequence relation and negation tracks incoherence. Besides the ordinary propositional connectives, the sequent calculus introduces a new kind of modal operator that marks implications that hold monotonically. Transitivity (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  21. A Calculus of Qualia 9 30 2022.Paul Merriam - manuscript
    The idea of this paper is to put actual qualia into equations (broadly understood) to get what might be called qualations. Qualations arguably have different meanings and truth behaviors than the analogous equations. For example, the term ‘ black ’ arguably has a different meaning and behavior than the term ‘ █ ’. This is a step in the direction of a ‘calculus of qualia’ and of expanding science to include 1st-person phenomena.
    Download  
     
    Export citation  
     
    Bookmark  
  22. A cut-free sequent calculus for the bi-intuitionistic logic 2Int.Sara Ayhan - manuscript
    The purpose of this paper is to introduce a bi-intuitionistic sequent calculus and to give proofs of admissibility for its structural rules. The calculus I will present, called SC2Int, is a sequent calculus for the bi-intuitionistic logic 2Int, which Wansing presents in [2016a]. There he also gives a natural deduction system for this logic, N2Int, to which SC2Int is equivalent in terms of what is derivable. What is important is that these calculi represent a kind of bilateralist (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  23. Humean Laws and (Nested) Counterfactuals.Christian Loew & Siegfried Jaag - 2019 - Philosophical Quarterly 70 (278):93-113.
    Humean reductionism about laws of nature is the view that the laws reduce to the total distribution of non-modal or categorical properties in spacetime. A worry about Humean reductionism is that it cannot motivate the characteristic modal resilience of laws under counterfactual suppositions and that it thus generates wrong verdicts about certain nested counterfactuals. In this paper, we defend Humean reductionism by motivating an account of the modal resilience of Humean laws that gets nested counterfactuals right.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  24. A Gentzen Calculus for Nothing but the Truth.Stefan Wintein & Reinhard Muskens - 2016 - Journal of Philosophical Logic 45 (4):451-465.
    In their paper Nothing but the Truth Andreas Pietz and Umberto Rivieccio present Exactly True Logic, an interesting variation upon the four-valued logic for first-degree entailment FDE that was given by Belnap and Dunn in the 1970s. Pietz & Rivieccio provide this logic with a Hilbert-style axiomatisation and write that finding a nice sequent calculus for the logic will presumably not be easy. But a sequent calculus can be given and in this paper we will show that a (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  25. Polynomial ring calculus for modal logics: A new semantics and proof method for modalities: Polynomial ring calculus for modal logics.Juan C. Agudelo - 2011 - Review of Symbolic Logic 4 (1):150-170.
    A new proof style adequate for modal logics is defined from the polynomial ring calculus. The new semantics not only expresses truth conditions of modal formulas by means of polynomials, but also permits to perform deductions through polynomial handling. This paper also investigates relationships among the PRC here defined, the algebraic semantics for modal logics, equational logics, the Dijkstra???Scholten equational-proof style, and rewriting systems. The method proposed is throughly exemplified for S 5, and can be easily extended to other (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  26. The Epsilon Calculus and Herbrand Complexity.Georg Moser & Richard Zach - 2006 - Studia Logica 82 (1):133-155.
    Hilbert's ε-calculus is based on an extension of the language of predicate logic by a term-forming operator εx. Two fundamental results about the ε-calculus, the first and second epsilon theorem, play a rôle similar to that which the cut-elimination theorem plays in sequent calculus. In particular, Herbrand's Theorem is a consequence of the epsilon theorems. The paper investigates the epsilon theorems and the complexity of the elimination procedure underlying their proof, as well as the length of Herbrand (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  27. A Speech Act Calculus. A Pragmatised Natural Deduction Calculus and its Meta-theory.Moritz Cordes & Friedrich Reinmuth - manuscript
    Building on the work of Peter Hinst and Geo Siegwart, we develop a pragmatised natural deduction calculus, i.e. a natural deduction calculus that incorporates illocutionary operators at the formal level, and prove its adequacy. In contrast to other linear calculi of natural deduction, derivations in this calculus are sequences of object-language sentences which do not require graphical or other means of commentary in order to keep track of assumptions or to indicate subproofs. (Translation of our German paper (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Is Leibnizian calculus embeddable in first order logic?Piotr Błaszczyk, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Taras Kudryk, Thomas Mormann & David Sherry - 2017 - Foundations of Science 22 (4):73 - 88.
    To explore the extent of embeddability of Leibnizian infinitesimal calculus in first-order logic (FOL) and modern frameworks, we propose to set aside ontological issues and focus on pro- cedural questions. This would enable an account of Leibnizian procedures in a framework limited to FOL with a small number of additional ingredients such as the relation of infinite proximity. If, as we argue here, first order logic is indeed suitable for developing modern proxies for the inferential moves found in Leibnizian (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29. From Syllogism to Predicate Calculus.Thomas J. McQuade - 1994 - Teaching Philosophy 17 (4):293-309.
    The purpose of this paper is to outline an alternative approach to introductory logic courses. Traditional logic courses usually focus on the method of natural deduction or introduce predicate calculus as a system. These approaches complicate the process of learning different techniques for dealing with categorical and hypothetical syllogisms such as alternate notations or alternate forms of analyzing syllogisms. The author's approach takes up observations made by Dijkstrata and assimilates them into a reasoning process based on modified notations. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Nesting Polybia rejecta (Fabricius) (Hymenoptera: Vespidae) Associated with Azteca chartifex Forel (Hymenoptera: Formicidae) in Ecotone Caatinga/Atlantic Forest, in the State of Rio Grande do Norte.Francisco Virgínio - 2015 - Entomobrasillis 8 (3).
    Some neotropical social wasps which are associated with some vertebrates and other insects like ants, and these interactions are reported for decades, but little is known about the presence of these in the Caatinga and Atlantic Forest. This study describes the first association’s record between nests of Polybia rejecta (Fabricius) wasp and Azteca chartifex Forel ants in the transition area of the Atlantic Forest and Caatinga in Rio Grande do Norte. The observations were in a private forest in Monte Alegre, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. A tableau calculus for partial functions.Manfred Kerber Michael Kohlhase - unknown
    Even though it is not very often admitted, partial functions do play a significant role in many practical applications of deduction systems. Kleene has already given a semantic account of partial functions using a three-valued logic decades ago, but there has not been a satisfactory mechanization. Recent years have seen a thorough investigation of the framework of many-valued truth-functional logics. However, strong Kleene logic, where quantification is restricted and therefore not truthfunctional, does not fit the framework directly. We solve this (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  32. Drug Regulation and the Inductive Risk Calculus.Jacob Stegenga - 2017 - In Kevin Christopher Elliott & Ted Richards (eds.), Exploring Inductive Risk: Case Studies of Values in Science. New York: Oup Usa. pp. 17-36.
    Drug regulation is fraught with inductive risk. Regulators must make a prediction about whether or not an experimental pharmaceutical will be effective and relatively safe when used by typical patients, and such predictions are based on a complex, indeterminate, and incomplete evidential basis. Such inductive risk has important practical consequences. If regulators reject an experimental drug when it in fact has a favourable benefit/harm profile, then a valuable intervention is denied to the public and a company’s material interests are needlessly (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  33. Russell's 1903 - 1905 Anticipation of the Lambda Calculus.Kevin C. Klement - 2003 - History and Philosophy of Logic 24 (1):15-37.
    It is well known that the circumflex notation used by Russell and Whitehead to form complex function names in Principia Mathematica played a role in inspiring Alonzo Church's “lambda calculus” for functional logic developed in the 1920s and 1930s. Interestingly, earlier unpublished manuscripts written by Russell between 1903–1905—surely unknown to Church—contain a more extensive anticipation of the essential details of the lambda calculus. Russell also anticipated Schönfinkel's combinatory logic approach of treating multiargument functions as functions having other functions (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  34. A Simple Logical Matrix and Sequent Calculus for Parry’s Logic of Analytic Implication.Damian E. Szmuc - 2021 - Studia Logica 109 (4):791-828.
    We provide a logical matrix semantics and a Gentzen-style sequent calculus for the first-degree entailments valid in W. T. Parry’s logic of Analytic Implication. We achieve the former by introducing a logical matrix closely related to that inducing paracomplete weak Kleene logic, and the latter by presenting a calculus where the initial sequents and the left and right rules for negation are subject to linguistic constraints.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  35. Previously unreported nesting associations of Yellow-Olive Flycatcher (Tolmomyias sulphurescens) (Aves: Tyrannidae) with social wasps and bees.João Carnio Teles Menezes, Bruno Corrêa Barbosa & Fábio Prezoto - 2014 - Ornitología Neotropical 25 (3):363–368.
    Previously unreported nesting associations of Yellow-Olive Flycatcher (Tolmomyias sulphurescens) (Aves: Tyrannidae) with social wasps and bees.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  36. Hegel on Calculus.Christopher Yeomans & Ralph Kaufmann - 2017 - History of Philosophy Quarterly 34 (4):371-390.
    It is fair to say that Georg Wilhelm Friedrich Hegel's philosophy of mathematics and his interpretation of the calculus in particular have not been popular topics of conversation since the early part of the twentieth century. Changes in mathematics in the late nineteenth century, the new set-theoretical approach to understanding its foundations, and the rise of a sympathetic philosophical logic have all conspired to give prior philosophies of mathematics (including Hegel's) the untimely appearance of naïveté. The common view was (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. The Dream of Geese Nesting in Trees: An Experiment that Tests an Interpretation.Maxson J. McDowell, Joenine E. Roberts & Nathalie Hausman - manuscript
    In an online, participatory class, we interpreted 'The Dream of Geese Nesting in Trees' knowing nothing of the dreamer beyond age and gender, and having none of the dreamer’s associations. Our interpretation included predictions about the dreamer. When it was complete, we asked the bringer of the dream (who had until then been mostly silent and who also gave no visual feedback to our discussion) to give us more information about the dreamer. Our main predictions were confirmed. Goslings are falling (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Static and dynamic vector semantics for lambda calculus models of natural language.Mehrnoosh Sadrzadeh & Reinhard Muskens - 2018 - Journal of Language Modelling 6 (2):319-351.
    Vector models of language are based on the contextual aspects of language, the distributions of words and how they co-occur in text. Truth conditional models focus on the logical aspects of language, compositional properties of words and how they compose to form sentences. In the truth conditional approach, the denotation of a sentence determines its truth conditions, which can be taken to be a truth value, a set of possible worlds, a context change potential, or similar. In the vector models, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  39. Completeness of a Hypersequent Calculus for Some First-order Gödel Logics with Delta.Matthias Baaz, Norbert Preining & Richard Zach - 2006 - In Baaz Matthias, Preining Norbert & Zach Richard (eds.), 36th Interna- tional Symposium on Multiple-valued Logic. May 2006, Singapore. Proceedings. IEEE Press.
    All first-order Gödel logics G_V with globalization operator based on truth value sets V C [0,1] where 0 and 1 lie in the perfect kernel of V are axiomatized by Ciabattoni’s hypersequent calculus HGIF.
    Download  
     
    Export citation  
     
    Bookmark  
  40. A Survey of Geometric Algebra and Geometric Calculus.Alan Macdonald - 2017 - Advances in Applied Clifford Algebras 27:853-891.
    The paper is an introduction to geometric algebra and geometric calculus for those with a knowledge of undergraduate mathematics. No knowledge of physics is required. The section Further Study lists many papers available on the web.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  41. Hegel and Deleuze on the metaphysical interpretation of the calculus.Henry Somers-Hall - 2009 - Continental Philosophy Review 42 (4):555-572.
    The aim of this paper is to explore the uses made of the calculus by Gilles Deleuze and G. W. F. Hegel. I show how both Deleuze and Hegel see the calculus as providing a way of thinking outside of finite representation. For Hegel, this involves attempting to show that the foundations of the calculus cannot be thought by the finite understanding, and necessitate a move to the standpoint of infinite reason. I analyse Hegel’s justification for this (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  42. A Simple Interpretation of Quantity Calculus.Boris Čulina - 2022 - Axiomathes (online first).
    A simple interpretation of quantity calculus is given. Quantities are described as two-place functions from objects, states or processes (or some combination of them) into numbers that satisfy the mutual measurability property. Quantity calculus is based on a notational simplification of the concept of quantity. A key element of the simplification is that we consider units to be intentionally unspecified numbers that are measures of exactly specified objects, states or processes. This interpretation of quantity calculus combines all (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Strong normalization of a symmetric lambda calculus for second-order classical logic.Yoriyuki Yamagata - 2002 - Archive for Mathematical Logic 41 (1):91-99.
    We extend Barbanera and Berardi's symmetric lambda calculus [2] to second-order classical propositional logic and prove its strong normalization.
    Download  
     
    Export citation  
     
    Bookmark  
  44. Variation in nesting behavior of the arboreal ant Camponotus sericeiventris (Hymenoptera: Formicidae).Elisa Furtado Fernandes, Mariana Monteiro de Castro, Bruno Corrêa Barbosa & Fábio Prezoto - 2014 - The Florida Entomologist 97 (3):1237-1239.
    This is the first record of nesting in the soil by the ant Camponotus sericeiventris (Guérin-Méneville, 1838), which has arboreal habit. The study was conducted in southeastern Brazil, in an ant colony located in a subterranean site. This study describes, for the first time, the ability of this arboreal species to vary its nesting site by the occupation of an unusual place in an urban environment; and this study demonstrates that this species is an interesting model for studies in urban (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  45. Hallden incomplete calculus of names.Piotr Kulicki - 2010 - Buletin of the Section of Logic 39 (1/2):53-55.
    Download  
     
    Export citation  
     
    Bookmark  
  46. Enhancing students’ performance on least taught topics in basic calculus through Moodle-based courseware package.Orville J. Evardo Jr & Estela C. Itaas - 2024 - Journal of Mathematics and Science Teacher 4 (2).
    This study utilized the developmental research design to identify the least taught topics in basic calculus and design and investigate the effectiveness of a Moodle-based courseware package. Data were collected from seven basic calculus teachers and five academic administrators through survey questionnaires, interviews, and validation sheets. The quasi-experimental phase of the study used a pre-/post-test control group design with a sample of 69 students, 34 students in the experimental group and 35 students in the control group. The experimental (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Of the Exterior Calculus and Relativistic Quantum Mechanics.Jose G. Vargas - manuscript
    Download  
     
    Export citation  
     
    Bookmark  
  48. Perception and Academic Performance of STEM Students in Learning Calculus.Bonifacio Giangan & Melanie Gurat - 2022 - Psychology and Education: A Multidisciplinary Journal 4 (1):2-7.
    This study aimed to determine the relationship between academic performance and students’ perceptions in learning Calculus during distance learning modality. Learning Calculus is part of developing students' Mathematics skills and abilities towards enhancing STEM education in Senior High School. Thirty-five (35) STEM students were purposively sampled at a public school in Davao Region, Philippines. These students took up Pre-Calculus and Basic Calculus during pandemic. This study used a quantitative research design, particularly the descriptive-correctional method, to analyze (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49.  86
    A Political Calculus: As Jamaat Looms, BNP Reaches Out.Kazi Huda - 2024 - New Age.
    This piece explores the recent diplomatic shift between the Bangladesh Nationalist Party (BNP) and India, following remarks by BNP Secretary General Mirza Fakhrul Islam Alamgir. I analyze the broader implications of this unexpected development and how it reflects deeper issues within Bangladesh’s political system, particularly the reemergence of Jamaat-e-Islami and the BNP’s strategic positioning against Awami League.
    Download  
     
    Export citation  
     
    Bookmark  
  50. (1 other version)Quantum mechanics over sets: a pedagogical model with non-commutative finite probability theory as its quantum probability calculus.David Ellerman - 2017 - Synthese (12).
    This paper shows how the classical finite probability theory (with equiprobable outcomes) can be reinterpreted and recast as the quantum probability calculus of a pedagogical or toy model of quantum mechanics over sets (QM/sets). There have been several previous attempts to develop a quantum-like model with the base field of ℂ replaced by ℤ₂. Since there are no inner products on vector spaces over finite fields, the problem is to define the Dirac brackets and the probability calculus. The (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
1 — 50 / 677