Results for ' quantification in Hilbert’s epsilon-calculus'

948 found
Order:
  1. (1 other version)The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences.Bhupinder Singh Anand - forthcoming
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2.  67
    Why there can be no mathematical or meta-mathematical proof of consistency for ZF.Bhupinder Singh Anand - manuscript
    In the first part of this investigation we highlight two, seemingly irreconcilable, beliefs that suggest an impending crisis in the teaching, research, and practice of—primarily state-supported—mathematics: (a) the belief, with increasing, essentially faith-based, conviction and authority amongst academics that first-order Set Theory can be treated as the lingua franca of mathematics, since its theorems—even if unfalsifiable—can be treated as ‘knowledge’ because they are finite proof sequences which are entailed finitarily by self-evidently Justified True Beliefs; and (b) the slowly emerging, but (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. The Epsilon Calculus and Herbrand Complexity.Georg Moser & Richard Zach - 2006 - Studia Logica 82 (1):133-155.
    Hilbert's ε-calculus is based on an extension of the language of predicate logic by a term-forming operator εx. Two fundamental results about the ε-calculus, the first and second epsilon theorem, play a rôle similar to that which the cut-elimination theorem plays in sequent calculus. In particular, Herbrand's Theorem is a consequence of the epsilon theorems. The paper investigates the epsilon theorems and the complexity of the elimination procedure underlying their proof, as well as the (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  4. Epsilon theorems in intermediate logics.Matthias Baaz & Richard Zach - 2022 - Journal of Symbolic Logic 87 (2):682-720.
    Any intermediate propositional logic can be extended to a calculus with epsilon- and tau-operators and critical formulas. For classical logic, this results in Hilbert’s $\varepsilon $ -calculus. The first and second $\varepsilon $ -theorems for classical logic establish conservativity of the $\varepsilon $ -calculus over its classical base logic. It is well known that the second $\varepsilon $ -theorem fails for the intuitionistic $\varepsilon $ -calculus, as prenexation is impossible. The paper investigates the effect (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  5. Gödel Mathematics Versus Hilbert Mathematics. II Logicism and Hilbert Mathematics, the Identification of Logic and Set Theory, and Gödel’s 'Completeness Paper' (1930).Vasil Penchev - 2023 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 15 (1):1-61.
    The previous Part I of the paper discusses the option of the Gödel incompleteness statement (1931: whether “Satz VI” or “Satz X”) to be an axiom due to the pair of the axiom of induction in arithmetic and the axiom of infinity in set theory after interpreting them as logical negations to each other. The present Part II considers the previous Gödel’s paper (1930) (and more precisely, the negation of “Satz VII”, or “the completeness theorem”) as a necessary condition for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Three Dogmas of First-Order Logic and some Evidence-based Consequences for Constructive Mathematics of differentiating between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism.Bhupinder Singh Anand - manuscript
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then adopt what (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Hilbert's Metamathematical Problems and Their Solutions.Besim Karakadilar - 2008 - Dissertation, Boston University
    This dissertation examines several of the problems that Hilbert discovered in the foundations of mathematics, from a metalogical perspective. The problems manifest themselves in four different aspects of Hilbert’s views: (i) Hilbert’s axiomatic approach to the foundations of mathematics; (ii) His response to criticisms of set theory; (iii) His response to intuitionist criticisms of classical mathematics; (iv) Hilbert’s contribution to the specification of the role of logical inference in mathematical reasoning. This dissertation argues that Hilbert’s axiomatic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Takeuti's proof theory in the context of the Kyoto School.Andrew Arana - 2019 - Jahrbuch Für Philosophie Das Tetsugaku-Ronso 46:1-17.
    Gaisi Takeuti (1926–2017) is one of the most distinguished logicians in proof theory after Hilbert and Gentzen. He extensively extended Hilbert's program in the sense that he formulated Gentzen's sequent calculus, conjectured that cut-elimination holds for it (Takeuti's conjecture), and obtained several stunning results in the 1950–60s towards the solution of his conjecture. Though he has been known chiefly as a great mathematician, he wrote many papers in English and Japanese where he expressed his philosophical thoughts. In particular, he (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  9. Buying Logical Principles with Ontological Coin: The Metaphysical Lessons of Adding epsilon to Intuitionistic Logic.David DeVidi & Corey Mulvihill - 2017 - IfCoLog Journal of Logics and Their Applications 4 (2):287-312.
    We discuss the philosophical implications of formal results showing the con- sequences of adding the epsilon operator to intuitionistic predicate logic. These results are related to Diaconescu’s theorem, a result originating in topos theory that, translated to constructive set theory, says that the axiom of choice (an “existence principle”) implies the law of excluded middle (which purports to be a logical principle). As a logical choice principle, epsilon allows us to translate that result to a logical setting, where (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Existence Assumptions and Logical Principles: Choice Operators in Intuitionistic Logic.Corey Edward Mulvihill - 2015 - Dissertation, University of Waterloo
    Hilbert’s choice operators τ and ε, when added to intuitionistic logic, strengthen it. In the presence of certain extensionality axioms they produce classical logic, while in the presence of weaker decidability conditions for terms they produce various superintuitionistic intermediate logics. In this thesis, I argue that there are important philosophical lessons to be learned from these results. To make the case, I begin with a historical discussion situating the development of Hilbert’s operators in relation to his evolving program (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  11. Numbers and functions in Hilbert's finitism.Richard Zach - 1998 - Taiwanese Journal for History and Philosophy of Science 10:33-60.
    David Hilbert's finitistic standpoint is a conception of elementary number theory designed to answer the intuitionist doubts regarding the security and certainty of mathematics. Hilbert was unfortunately not exact in delineating what that viewpoint was, and Hilbert himself changed his usage of the term through the 1920s and 30s. The purpose of this paper is to outline what the main problems are in understanding Hilbert and Bernays on this issue, based on some publications by them which have so far received (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  12. Transparent quantification into hyperpropositional contexts de re.Duží Marie & Bjørn Jespersen - 2012 - Logique & Analyse 55 (220):513-554.
    This paper is the twin of (Duží and Jespersen, in submission), which provides a logical rule for transparent quantification into hyperprop- ositional contexts de dicto, as in: Mary believes that the Evening Star is a planet; therefore, there is a concept c such that Mary be- lieves that what c conceptualizes is a planet. Here we provide two logical rules for transparent quantification into hyperpropositional contexts de re. (As a by-product, we also offer rules for possible- world propositional (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. How Hilbert’s attempt to unify gravitation and electromagnetism failed completely, and a plausible resolution.Victor Christianto, Florentin Smarandache & Robert N. Boyd - manuscript
    In the present paper, these authors argue on actual reasons why Hilbert’s axiomatic program to unify gravitation theory and electromagnetism failed completely. An outline of plausible resolution of this problem is given here, based on: a) Gödel’s incompleteness theorem, b) Newton’s aether stream model. And in another paper we will present our calculation of receding Moon from Earth based on such a matter creation hypothesis. More experiments and observations are called to verify this new hypothesis, albeit it is inspired (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Hilbert's 10th Problem for solutions in a subring of Q.Agnieszka Peszek & Apoloniusz Tyszka - 2019 - Scientific Annals of Computer Science 29 (1):101-111.
    Yuri Matiyasevich's theorem states that the set of all Diophantine equations which have a solution in non-negative integers is not recursive. Craig Smoryński's theorem states that the set of all Diophantine equations which have at most finitely many solutions in non-negative integers is not recursively enumerable. Let R be a subring of Q with or without 1. By H_{10}(R), we denote the problem of whether there exists an algorithm which for any given Diophantine equation with integer coefficients, can decide whether (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Hilbert's program then and now.Richard Zach - 2002 - In Dale Jacquette (ed.), Philosophy of Logic. Malden, Mass.: North Holland. pp. 411–447.
    Hilbert’s program was an ambitious and wide-ranging project in the philosophy and foundations of mathematics. In order to “dispose of the foundational questions in mathematics once and for all,” Hilbert proposed a two-pronged approach in 1921: first, classical mathematics should be formalized in axiomatic systems; second, using only restricted, “finitary” means, one should give proofs of the consistency of these axiomatic systems. Although Gödel’s incompleteness theorems show that the program as originally conceived cannot be carried out, it had many (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  16. Hilbert’s Finitism: Historical, Philosophical, and Metamathematical Perspectives.Richard Zach - 2001 - Dissertation, University of California, Berkeley
    In the 1920s, David Hilbert proposed a research program with the aim of providing mathematics with a secure foundation. This was to be accomplished by first formalizing logic and mathematics in their entirety, and then showing---using only so-called finitistic principles---that these formalizations are free of contradictions. ;In the area of logic, the Hilbert school accomplished major advances both in introducing new systems of logic, and in developing central metalogical notions, such as completeness and decidability. The analysis of unpublished material presented (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  17. Hilbert's different aims for the foundations of mathematics.Besim Karakadılar - manuscript
    The foundational ideas of David Hilbert have been generally misunderstood. In this dissertation prospectus, different aims of Hilbert are summarized and a new interpretation of Hilbert's work in the foundations of mathematics is roughly sketched out. Hilbert's view of the axiomatic method, his response to criticisms of set theory and intuitionist criticisms of the classical foundations of mathematics, and his view of the role of logical inference in mathematical reasoning are briefly outlined.
    Download  
     
    Export citation  
     
    Bookmark  
  18.  67
    Proofs of valid categorical syllogisms in one diagrammatic and two symbolic axiomatic systems.Antonielly Garcia Rodrigues & Eduardo Mario Dias - manuscript
    Gottfried Leibniz embarked on a research program to prove all the Aristotelic categorical syllogisms by diagrammatic and algebraic methods. He succeeded in proving them by means of Euler diagrams, but didn’t produce a manuscript with their algebraic proofs. We demonstrate how key excerpts scattered across various Leibniz’s drafts on logic contained sufficient ingredients to prove them by an algebraic method –which we call the Leibniz-Cayley (LC) system– without having to make use of the more expressive and complex machinery of first-order (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Fermat’s last theorem proved in Hilbert arithmetic. I. From the proof by induction to the viewpoint of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (7):1-57.
    In a previous paper, an elementary and thoroughly arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to Fermat himself though without being absolutely and precisely correct. The present paper elucidates the contemporary mathematical background, from which an inductive proof of FLT can be inferred since its proof for the case for “n (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Boguslawski's Analysis of Quantification in Natural Language.John-Michael Kuczynski - 2010 - Journal of Pragmatics 42 (10):2836-2844.
    The semantic rules governing natural language quantifiers (e.g. "all," "some," "most") neither coincide with nor resemble the semantic rules governing the analogues of those expressions that occur in the artificial languages used by semanticists. Some semanticists, e.g. Peter Strawson, have put forth data-consistent hypotheses as to the identities of the semantic rules governing some natural-language quantifiers. But, despite their obvious merits, those hypotheses have been universally rejected. In this paper, it is shown that those hypotheses are indeed correct. Moreover, data-consistent (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Nelson’s logic ????Thiago Nascimento, Umberto Rivieccio, João Marcos & Matthew Spinks - 2020 - Logic Journal of the IGPL 28 (6):1182-1206.
    Besides the better-known Nelson logic and paraconsistent Nelson logic, in 1959 David Nelson introduced, with motivations of realizability and constructibility, a logic called $\mathcal{S}$. The logic $\mathcal{S}$ was originally presented by means of a calculus with infinitely many rule schemata and no semantics. We look here at the propositional fragment of $\mathcal{S}$, showing that it is algebraizable, in the sense of Blok and Pigozzi, with respect to a variety of three-potent involutive residuated lattices. We thus introduce the first known (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  22. Fermat’s last theorem proved in Hilbert arithmetic. III. The quantum-information unification of Fermat’s last theorem and Gleason’s theorem.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (12):1-30.
    The previous two parts of the paper demonstrate that the interpretation of Fermat’s last theorem (FLT) in Hilbert arithmetic meant both in a narrow sense and in a wide sense can suggest a proof by induction in Part I and by means of the Kochen - Specker theorem in Part II. The same interpretation can serve also for a proof FLT based on Gleason’s theorem and partly similar to that in Part II. The concept of (probabilistic) measure of a subspace (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Fermat’s last theorem proved in Hilbert arithmetic. II. Its proof in Hilbert arithmetic by the Kochen-Specker theorem with or without induction.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (10):1-52.
    The paper is a continuation of another paper published as Part I. Now, the case of “n=3” is inferred as a corollary from the Kochen and Specker theorem (1967): the eventual solutions of Fermat’s equation for “n=3” would correspond to an admissible disjunctive division of qubit into two absolutely independent parts therefore versus the contextuality of any qubit, implied by the Kochen – Specker theorem. Incommensurability (implied by the absence of hidden variables) is considered as dual to quantum contextuality. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Quantification in the Ontology Room.Bradley Rettler - 2019 - Dialectica 73 (4):563-585.
    There is a growing movement towards construing some classic debates in ontology as meaningless, either because the answers seem obvious or the debates seem intractable. In this paper, I respond to this movement. The response has three components: First, the members of the two sides of the ontological debates that dismissivists have targeted are using different quantifiers. Second, the austere ontologist is using a more fundamental quantifier than her opponent. Third, the austere ontologist’s more fundamental quantifier is a restriction of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  25. Explaining Thermodynamic-Like Behavior in Terms of Epsilon-Ergodicity.Roman Frigg & Charlotte Werndl - 2011 - Philosophy of Science 78 (4):628-652.
    Gases reach equilibrium when left to themselves. Why do they behave in this way? The canonical answer to this question, originally proffered by Boltzmann, is that the systems have to be ergodic. This answer has been criticised on different grounds and is now widely regarded as flawed. In this paper we argue that some of the main arguments against Boltzmann's answer, in particular, arguments based on the KAM-theorem and the Markus-Meyer theorem, are beside the point. We then argue that something (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  26. Color relationalism and relativism.Alex Byrne & David R. Hilbert - 2017 - Topics in Cognitive Science 9 (1):172-192.
    This paper critically examines color relationalism and color relativism, two theories of color that are allegedly supported by variation in normal human color vision. We mostly discuss color relationalism, defended at length in Jonathan Cohen's The Red and the Real, and argue that the theory has insuperable problems.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  27. Meršić o Hilbertovoj aksiomatskoj metodi [Meršić on Hilbert's axiomatic method].Srećko Kovač - 2006 - In E. Banić-Pajnić & M. Girardi Karšulin (eds.), Zbornik u čast Franji Zenku. pp. 123-135.
    The criticism of Hilbert's axiomatic system of geometry by Mate Meršić (Merchich, 1850-1928), presented in his work "Organistik der Geometrie" (1914, also in "Modernes und Modriges", 1914), is analyzed and discussed. According to Meršić, geometry cannot be based on its own axioms, as a logical analysis of spatial intuition, but must be derived as a "spatial concretion" using "higher" axioms of arithmetic, logic, and "rational algorithmics." Geometry can only be one, because space is also only one. It cannot be reduced (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Gentzen’s “cut rule” and quantum measurement in terms of Hilbert arithmetic. Metaphor and understanding modeled formally.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal 14 (14):1-37.
    Hilbert arithmetic in a wide sense, including Hilbert arithmetic in a narrow sense consisting by two dual and anti-isometric Peano arithmetics, on the one hand, and the qubit Hilbert space (originating for the standard separable complex Hilbert space of quantum mechanics), on the other hand, allows for an arithmetic version of Gentzen’s cut elimination and quantum measurement to be described uniformy as two processes occurring accordingly in those two branches. A philosophical reflection also justifying that unity by quantum neo-Pythagoreanism links (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Logunov and Mestvirishvil disprove "general relativity".Alfonso Leon Guillen Gomez - manuscript
    Based on the various documents, 1989-2002, through the original texts, in addition to the author's contributions, this paper presents the refutation of the mathematicians and physicists A. Logunov and M. Mestvirishvil of A. Einstein's "general relativity", from the relativistic theory of gravitation of these authors, who applying the fundamental principle of the science of physics of the conservation of the energy-momentum and using absolute differential calculus they rigorously perform their mathematical tests. It is conclusively shown that, from the Einstein-Grossman-Hilbert (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. A calculus for Belnap's logic in which each proof consists of two trees.Stefan Wintein & Reinhard Muskens - 2012 - Logique Et Analyse 220:643-656.
    In this paper we introduce a Gentzen calculus for (a functionally complete variant of) Belnap's logic in which establishing the provability of a sequent in general requires \emph{two} proof trees, one establishing that whenever all premises are true some conclusion is true and one that guarantees the falsity of at least one premise if all conclusions are false. The calculus can also be put to use in proving that one statement \emph{necessarily approximates} another, where necessary approximation is a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  31. Hans Reichenbach’s Debt to David Hilbert and Bertrand Russell.Nikolay Milkov - forthcoming - In Elena Ficara, Andrea Reichenberger & Anna-Sophie Heinemann (eds.), Rethinking the History of Logic, Mathematics, and Exact Sciences. Rickmansworth (Herts): College Publications. pp. 259-285.
    Despite of the fact that Reichenbach clearly acknowledged his indebtedness to Hilbert, the influence of this leading mathematician of the time on him is grossly neglected. The present paper demonstrates that the decisive years of the development of Reichenbach as a philosopher of science coincide with, and also partly followed the “philosophical” turn of Hilbert’s mathematics after 1917 that was fixed in the so called “Hilbert’s program”. The paper specifically addresses the fact that after 1917, Hilbert saw the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Tracing Truth Through Conceptual Scaling: Mapping People’s Understanding of Abstract Concepts.Lukas S. Huber, David-Elias Künstle & Kevin Reuter - manuscript
    Traditionally, the investigation of truth has been anchored in a priori reasoning. Cognitive science deviates from this tradition by adding empirical data on how people understand and use concepts. Building on psychophysics and machine learning methods, we introduce conceptual scaling, an approach to map people's understanding of abstract concepts. This approach, allows computing participant-specific conceptual maps from obtained ordinal comparison data, thereby quantifying perceived similarities among abstract concepts. Using this approach, we investigated individual's alignment with philosophical theories on truth and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Russell's 1903 - 1905 Anticipation of the Lambda Calculus.Kevin C. Klement - 2003 - History and Philosophy of Logic 24 (1):15-37.
    It is well known that the circumflex notation used by Russell and Whitehead to form complex function names in Principia Mathematica played a role in inspiring Alonzo Church's “lambda calculus” for functional logic developed in the 1920s and 1930s. Interestingly, earlier unpublished manuscripts written by Russell between 1903–1905—surely unknown to Church—contain a more extensive anticipation of the essential details of the lambda calculus. Russell also anticipated Schönfinkel's combinatory logic approach of treating multiargument functions as functions having other functions (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  34. On what Hilbert aimed at in the foundations.Besim Karakadılar - manuscript
    Hilbert's axiomatic approach was an optimistic take over on the side of the logical foundations. It was also a response to various restrictive views of mathematics supposedly bounded by the reaches of epistemic elements in mathematics. A complete axiomatization should be able to exclude epistemic or ontic elements from mathematical theorizing, according to Hilbert. This exclusion is not necessarily a logicism in similar form to Frege's or Dedekind's projects. That is, intuition can still have a role in mathematical reasoning. Nevertheless, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Hume’s Scepticism in Masaryk’s Essay About Probability and in His Other Papers.Zdeněk Novotný - 2011 - Teorie Vědy / Theory of Science 33 (2):179-203.
    It was Hume's concept of knowledge that marked Masaryk's philosophy more than influential Kant. Masaryk devoted Hume his inaugural lecture The Probability Calculus and Hume's Scepticism at Prague University in 1882. He tried to face his scepticism concerning causation and induction by a formula P = n: or P = : where P means the increasing probability that an event that had happened n times in the past will happen again. Hume stresses that there is an essential difference between (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. The Role of Mathematics in Deleuze’s Critical Engagement with Hegel.Simon Duffy - 2009 - International Journal of Philosophical Studies 17 (4):563 – 582.
    The role of mathematics in the development of Gilles Deleuze's (1925-95) philosophy of difference as an alternative to the dialectical philosophy determined by the Hegelian dialectic logic is demonstrated in this paper by differentiating Deleuze's interpretation of the problem of the infinitesimal in Difference and Repetition from that which G. W. F Hegel (1770-1831) presents in the Science of Logic . Each deploys the operation of integration as conceived at different stages in the development of the infinitesimal calculus in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. The Frege–Hilbert controversy in context.Tabea Rohr - 2023 - Synthese 202 (1):1-30.
    This paper aims to show that Frege’s and Hilbert’s mutual disagreement results from different notions of Anschauung and their relation to axioms. In the first section of the paper, evidence is provided to support that Frege and Hilbert were influenced by the same developments of 19th-century geometry, in particular the work of Gauss, Plücker, and von Staudt. The second section of the paper shows that Frege and Hilbert take different approaches to deal with the problems that the developments in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Hilbert mathematics versus (or rather “without”) Gödel mathematics: V. Ontomathematics!Vasil Penchev - 2024 - Metaphysics eJournal (Elsevier: SSRN) 17 (10):1-57.
    The paper is the final, fifth part of a series of studies introducing the new conceptions of “Hilbert mathematics” and “ontomathematics”. The specific subject of the present investigation is the proper philosophical sense of both, including philosophy of mathematics and philosophy of physics not less than the traditional “first philosophy” (as far as ontomathematics is a conservative generalization of ontology as well as of Heidegger’s “fundamental ontology” though in a sense) and history of philosophy (deepening Heidegger’s destruction of it from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Logic and Ontology in Hegel's Theory of Predication.Kevin J. Harrelson - 2015 - European Journal of Philosophy 23 (4):1259-1280.
    In this paper I sketch some arguments that underlie Hegel's chapter on judgment, and I attempt to place them within a broad tradition in the history of logic. Focusing on his analysis of simple predicative assertions or ‘positive judgments’, I first argue that Hegel supplies an instructive alternative to the classical technique of existential quantification. The main advantage of his theory lies in his treatment of the ontological implications of judgments, implications that are inadequately captured by quantification. The (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  40. Quantification, Conceptual Reduction and Theoretical Under-determination in Psychological Science.Stan Klein - 2021 - Psychology of Consciousness: Theory, Research, and Practice 8 (1):95-103.
    I argue that academic psychology’s quest to achieve scientific respectability by reliance on quantification and objectification is deeply flawed. Specifically, psychological theory typically cannot support prognostication beyond the binary opposition of “effect present/effect absent”. Accordingly, the “numbers” assigned to experimental results amount to little more than affixing names (e.g., more than, less than) to the members of an ordered sequence of outcomes. This, in conjunction with the conceptual under-specification characterizing the targets of experimental inquiry, is, I contend, a primary (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Hilbert Mathematics Versus Gödel Mathematics. IV. The New Approach of Hilbert Mathematics Easily Resolving the Most Difficult Problems of Gödel Mathematics.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (75):1-52.
    The paper continues the consideration of Hilbert mathematics to mathematics itself as an additional “dimension” allowing for the most difficult and fundamental problems to be attacked in a new general and universal way shareable between all of them. That dimension consists in the parameter of the “distance between finiteness and infinity”, particularly able to interpret standard mathematics as a particular case, the basis of which are arithmetic, set theory and propositional logic: that is as a special “flat” case of Hilbert (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Reid, Constance. Hilbert (a Biography). Reviewed by Corcoran in Philosophy of Science 39 (1972), 106–08.John Corcoran - 1972 - Philosophy of Science 39 (1):106-108.
    Reid, Constance. Hilbert (a Biography). Reviewed by Corcoran in Philosophy of Science 39 (1972), 106–08. -/- Constance Reid was an insider of the Berkeley-Stanford logic circle. Her San Francisco home was in Ashbury Heights near the homes of logicians such as Dana Scott and John Corcoran. Her sister Julia Robinson was one of the top mathematical logicians of her generation, as was Julia’s husband Raphael Robinson for whom Robinson Arithmetic was named. Julia was a Tarski PhD and, in recognition of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  43. Addressing difficulty in Calculus limits using GeoGebra.Starr Clyde Sebial, Villa Althea Yap & Juvie Sebial - 2022 - Science International Lahore 34 (5):427-430.
    This paper aims to address the difficulties of high school students in bridging their computational understanding with their visualization skills in understanding the notion of the limits in their calculus class. This research used a pre-experimental one-group pretest-posttest design research on 62 grade 10 students enrolled in the Science, Technology, and Engineering Program (STEP) in one of the public high schools in Zamboanga del Sur, Philippines. A series of remedial sessions were given to help them understand the function values, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  44. What the Tortoise Said to Achilles: Lewis Carroll’s paradox in terms of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (22):1-32.
    Lewis Carroll, both logician and writer, suggested a logical paradox containing furthermore two connotations (connotations or metaphors are inherent in literature rather than in mathematics or logics). The paradox itself refers to implication demonstrating that an intermediate implication can be always inserted in an implication therefore postponing its ultimate conclusion for the next step and those insertions can be iteratively and indefinitely added ad lib, as if ad infinitum. Both connotations clear up links due to the shared formal structure with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Review of Macbeth, D. Diagrammatic reasoning in Frege's Begriffsschrift. Synthese 186 (2012), no. 1, 289–314. Mathematical Reviews MR 2935338.John Corcoran - 2014 - MATHEMATICAL REVIEWS 2014:2935338.
    A Mathematical Review by John Corcoran, SUNY/Buffalo -/- Macbeth, Danielle Diagrammatic reasoning in Frege's Begriffsschrift. Synthese 186 (2012), no. 1, 289–314. ABSTRACT This review begins with two quotations from the paper: its abstract and the first paragraph of the conclusion. The point of the quotations is to make clear by the “give-them-enough-rope” strategy how murky, incompetent, and badly written the paper is. I know I am asking a lot, but I have to ask you to read the quoted passages—aloud if (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Epsilon-ergodicity and the success of equilibrium statistical mechanics.Peter B. M. Vranas - 1998 - Philosophy of Science 65 (4):688-708.
    Why does classical equilibrium statistical mechanics work? Malament and Zabell (1980) noticed that, for ergodic dynamical systems, the unique absolutely continuous invariant probability measure is the microcanonical. Earman and Rédei (1996) replied that systems of interest are very probably not ergodic, so that absolutely continuous invariant probability measures very distant from the microcanonical exist. In response I define the generalized properties of epsilon-ergodicity and epsilon-continuity, I review computational evidence indicating that systems of interest are epsilon-ergodic, I adapt (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  47. Calculus of Qualia 6: Materialism, Dualism, Idealism, and 14 others.P. Merriam & M. A. Z. Habeeb - manuscript
    General Introduction: In [1] a Calculus of Qualia (CQ) was proposed. The key idea is that, for example, blackness is radically different than █. The former term, “blackness” refers to or is about a quale, whereas the latter term, “█” instantiates a quale in the reader’s mind and is non-referential; it does not even refer to itself. The meaning and behavior of these terms is radically different. All of philosophy, from Plato through Descartes through Chalmers, including hieroglyphics and emojis, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. From Logical Calculus to Logical Formality—What Kant Did with Euler’s Circles.Huaping Lu-Adler - 2017 - In Corey W. Dyck & Falk Wunderlich (eds.), Kant and His German Contemporaries : Volume 1, Logic, Mind, Epistemology, Science and Ethics. New York, NY, USA: Cambridge University Press. pp. 35-55.
    John Venn has the “uneasy suspicion” that the stagnation in mathematical logic between J. H. Lambert and George Boole was due to Kant’s “disastrous effect on logical method,” namely the “strictest preservation [of logic] from mathematical encroachment.” Kant’s actual position is more nuanced, however. In this chapter, I tease out the nuances by examining his use of Leonhard Euler’s circles and comparing it with Euler’s own use. I do so in light of the developments in logical calculus from G. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  49. The logic of distributive bilattices.Félix Bou & Umberto Rivieccio - 2011 - Logic Journal of the IGPL 19 (1):183-216.
    Bilattices, introduced by Ginsberg as a uniform framework for inference in artificial intelligence, are algebraic structures that proved useful in many fields. In recent years, Arieli and Avron developed a logical system based on a class of bilattice-based matrices, called logical bilattices, and provided a Gentzen-style calculus for it. This logic is essentially an expansion of the well-known Belnap–Dunn four-valued logic to the standard language of bilattices. Our aim is to study Arieli and Avron’s logic from the perspective of (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  50. Leibniz's Calculus Proof of Snell's Laws Violates Ptolemy's Theorem. Radhakrishanamurty - manuscript
    Leibniz proposed the ‘Most Determined Path Principle’ in seventeenth century. According to it, ‘ease’ of travel is the end purpose of motion. Using this principle and his calculus method he demonstrated Snell’s Laws of reflection and refraction. This method shows that light follows extremal (local minimum or maximum) time path in going from one point to another, either directly along a straight line path or along a broken line path when it undergoes reflection or refraction at plane or spherical (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 948