Results for 'Computation Tree Logic'

1000+ found
Order:
  1.  14
    Computation Tree Logics and Temporal Logics with Reference Pointers.Valentin Goranko - 2000 - Journal of Applied Non-Classical Logics 10 (3-4):221-242.
    A complete axiomatic system CTL$_{rp}$ is introduced for a temporal logic for finitely branching $\omega^+$-trees in a temporal language extended with so called reference pointers. Syntactic and semantic interpretations are constructed for the branching time computation tree logic CTL* into CTL$_{rp}$. In particular, that yields a complete axiomatization for the translations of all valid CTL*-formulae. Thus, the temporal logic with reference pointers is brought forward as a simpler (with no path quantifiers), but in a way (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  2.  68
    Temporal Logics with Reference Pointers and Computation Tree Logics.Valentin Goranko - 2000 - Journal of Applied Non-Classical Logics 10 (3):221-242.
    A complete axiomatic system CTL$_{rp}$ is introduced for a temporal logic for finitely branching $\omega^+$-trees in a temporal language extended with so called reference pointers. Syntactic and semantic interpretations are constructed for the branching time computation tree logic CTL$^{*}$ into CTL$_{rp}$. In particular, that yields a complete axiomatization for the translations of all valid CTL$^{*}$-formulae. Thus, the temporal logic with reference pointers is brought forward as a simpler (with no path quantifiers), but in a way (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  3.  30
    Sets, Logic, Computation.Richard Zach - 2017 - CreateSpace.
    Covers naive set theory, first-order logic, sequent calculus and natural deduction, the completeness, compactness, and Löwenheim-Skolem theorems, Turing machines, and the undecidability of the halting problem and of first-order logic.
    Download  
     
    Export citation  
     
    Bookmark  
  4.  44
    Computational Logic. Vol. 1: Classical Deductive Computing with Classical Logic.Luis M. Augusto - 2018 - London: College Publications.
    This is the first of a two-volume work combining two fundamental components of contemporary computing into classical deductive computing, a powerful form of computation, highly adequate for programming and automated theorem proving, which, in turn, have fundamental applications in areas of high complexity and/or high security such as mathematical proof, software specification and verification, and expert systems. Deductive computation is concerned with truth-preservation: This is the essence of the satisfiability problem, or SAT, the central computational problem in computability (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Second-Order Logic.John Corcoran - 2001 - In M. Zeleny (ed.), Logic, Meaning, and Computation: Essays in Memory of Alonzo Church. KLUKER. pp. 61–76.
    “Second-order Logic” in Anderson, C.A. and Zeleny, M., Eds. Logic, Meaning, and Computation: Essays in Memory of Alonzo Church. Dordrecht: Kluwer, 2001. Pp. 61–76. -/- Abstract. This expository article focuses on the fundamental differences between second- order logic and first-order logic. It is written entirely in ordinary English without logical symbols. It employs second-order propositions and second-order reasoning in a natural way to illustrate the fact that second-order logic is actually a familiar part of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  6.  41
    A Gentzen Calculus for Nothing but the Truth.Stefan Wintein & Reinhard Muskens - 2016 - Journal of Philosophical Logic 45 (4):451-465.
    In their paper Nothing but the Truth Andreas Pietz and Umberto Rivieccio present Exactly True Logic, an interesting variation upon the four-valued logic for first-degree entailment FDE that was given by Belnap and Dunn in the 1970s. Pietz & Rivieccio provide this logic with a Hilbert-style axiomatisation and write that finding a nice sequent calculus for the logic will presumably not be easy. But a sequent calculus can be given and in this paper we will show (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  7.  64
    Stoic Sequent Logic and Proof Theory.Susanne Bobzien - 2019 - History and Philosophy of Logic 40 (3):234-265.
    This paper contends that Stoic logic (i.e. Stoic analysis) deserves more attention from contemporary logicians. It sets out how, compared with contemporary propositional calculi, Stoic analysis is closest to methods of backward proof search for Gentzen-inspired substructural sequent logics, as they have been developed in logic programming and structural proof theory, and produces its proof search calculus in tree form. It shows how multiple similarities to Gentzen sequent systems combine with intriguing dissimilarities that may enrich contemporary discussion. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8.  75
    On an Intuitionistic Logic for Pragmatics.Gianluigi Bellin, Massimiliano Carrara & Daniele Chiffi - 2018 - Journal of Logic and Computation 50 (28):935–966..
    We reconsider the pragmatic interpretation of intuitionistic logic [21] regarded as a logic of assertions and their justi cations and its relations with classical logic. We recall an extension of this approach to a logic dealing with assertions and obligations, related by a notion of causal implication [14, 45]. We focus on the extension to co-intuitionistic logic, seen as a logic of hypotheses [8, 9, 13] and on polarized bi-intuitionistic logic as a (...) of assertions and conjectures: looking at the S4 modal translation, we give a de nition of a system AHL of bi-intuitionistic logic that correctly represents the duality between intuitionistic and co-intuitionistic logic, correcting a mistake in previous work [7, 10]. A computational interpretation of cointuitionism as a distributed calculus of coroutines is then used to give an operational interpretation of subtraction.Work on linear co-intuitionism is then recalled, a linear calculus of co-intuitionistic coroutines is de ned and a probabilistic interpretation of linear co-intuitionism is given as in [9]. Also we remark that by extending the language of intuitionistic logic we can express the notion of expectation, an assertion that in all situations the truth of p is possible and that in a logic of expectations the law of double negation holds. Similarly, extending co-intuitionistic logic, we can express the notion of conjecture that p, de ned as a hypothesis that in some situation the truth of p is epistemically necessary. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  9.  63
    Enriching Deontic Logic.Ilaria Canavotto & Alessandro Giordani - 2018 - Journal of Logic and Computation 1:1-23.
    It is well known that systems of action deontic logic emerging from a standard analysis of permission in terms of possibility of doing an action without incurring in a violation of the law are subject to paradoxes. In general, paradoxes are acknowledged as such if we have intuitions telling us that things should be different. The aim of this paper is to introduce a paradox-free deontic action system by (i) identifying the basic intuitions leading to the emergence of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Modal Logic S4 as a Paraconsistent Logic with a Topological Semantics.Marcelo E. Coniglio & Leonardo Prieto-Sanabria - 2017 - In Carlos Caleiro, Francisco Dionisio, Paula Gouveia, Paulo Mateus & João Rasga (eds.), Logic and Computation: Essays in Honour of Amilcar Sernadas. London, UK: College Publications. pp. 171-196.
    In this paper the propositional logic LTop is introduced, as an extension of classical propositional logic by adding a paraconsistent negation. This logic has a very natural interpretation in terms of topological models. The logic LTop is nothing more than an alternative presentation of modal logic S4, but in the language of a paraconsistent logic. Moreover, LTop is a logic of formal inconsistency in which the consistency and inconsistency operators have a nice topological (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11.  29
    Algorithmic Correspondence and Completeness in Modal Logic. V. Recursive Extensions of SQEMA.Willem Conradie, Valentin Goranko & Dimitar Vakarelov - 2010 - Journal of Applied Logic 8 (4):319-333.
    The previously introduced algorithm \sqema\ computes first-order frame equivalents for modal formulae and also proves their canonicity. Here we extend \sqema\ with an additional rule based on a recursive version of Ackermann's lemma, which enables the algorithm to compute local frame equivalents of modal formulae in the extension of first-order logic with monadic least fixed-points \mffo. This computation operates by transforming input formulae into locally frame equivalent ones in the pure fragment of the hybrid mu-calculus. In particular, we (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  12.  43
    Two-Sided Trees for Sentential Logic, Predicate Logic, and Sentential Modal Logic.Jesse Fitts & David Beisecker - 2019 - Teaching Philosophy 42 (1):41-56.
    This paper will present two contributions to teaching introductory logic. The first contribution is an alternative tree proof method that differs from the traditional one-sided tree method. The second contribution combines this tree system with an index system to produce a user-friendly tree method for sentential modal logic.
    Download  
     
    Export citation  
     
    Bookmark  
  13. Proofs Are Programs: 19th Century Logic and 21st Century Computing.Philip Wadler - manuscript
    As the 19th century drew to a close, logicians formalized an ideal notion of proof. They were driven by nothing other than an abiding interest in truth, and their proofs were as ethereal as the mind of God. Yet within decades these mathematical abstractions were realized by the hand of man, in the digital stored-program computer. How it came to be recognized that proofs and programs are the same thing is a story that spans a century, a chase with as (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  14.  74
    Cognitive Computation Sans Representation.Paul Schweizer - 2017 - In Thomas Powers (ed.), Philosophy and Computing: Essays in epistemology, philosophy of mind, logic, and ethics,. Cham, Switzerland: Springer. pp. 65-84.
    The Computational Theory of Mind (CTM) holds that cognitive processes are essentially computational, and hence computation provides the scientific key to explaining mentality. The Representational Theory of Mind (RTM) holds that representational content is the key feature in distinguishing mental from non-mental systems. I argue that there is a deep incompatibility between these two theoretical frameworks, and that the acceptance of CTM provides strong grounds for rejecting RTM. The focal point of the incompatibility is the fact that representational content (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  15. Sense and the Computation of Reference.Reinhard Muskens - 2004 - Linguistics and Philosophy 28 (4):473 - 504.
    The paper shows how ideas that explain the sense of an expression as a method or algorithm for finding its reference, preshadowed in Frege’s dictum that sense is the way in which a referent is given, can be formalized on the basis of the ideas in Thomason (1980). To this end, the function that sends propositions to truth values or sets of possible worlds in Thomason (1980) must be replaced by a relation and the meaning postulates governing the behaviour of (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  16.  58
    The Logic of the Method of Agent-Based Simulation in the Social Sciences: Empirical and Intentional Adequacy of Computer Programs.Nuno David, Jaime Sichman & Helder Coleho - 2005 - Journal of Artificial Societies and Social Simulation 8 (4).
    The classical theory of computation does not represent an adequate model of reality for simulation in the social sciences. The aim of this paper is to construct a methodological perspective that is able to conciliate the formal and empirical logic of program verification in computer science, with the interpretative and multiparadigmatic logic of the social sciences. We attempt to evaluate whether social simulation implies an additional perspective about the way one can understand the concepts of program and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  17.  38
    Is Classical Mathematics Appropriate for Theory of Computation?Farzad Didehvar - manuscript
    Throughout this paper, we are trying to show how and why our Mathematical frame-work seems inappropriate to solve problems in Theory of Computation. More exactly, the concept of turning back in time in paradoxes causes inconsistency in modeling of the concept of Time in some semantic situations. As we see in the first chapter, by introducing a version of “Unexpected Hanging Paradox”,first we attempt to open a new explanation for some paradoxes. In the second step, by applying this paradox, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  18. Creating Reality.Bruce Bokor - manuscript
    Our commonsense notion of reality is supported by two critical assumptions for which we have little understanding: The conscious experience which underpins the observations integral to the scientific method and language, which is the method by which all theories, scientific or otherwise, are communicated. This book examines both of these matters in detail and arrives at a new theoretical foundation for understanding how nature undertakes the task of building the universe. -/- Creating Reality is a synthesis of Darwin’s The Origin (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. How We Naturally Reason.Fred Sommers - manuscript
    In the 17th century, Hobbes stated that we reason by addition and subtraction. Historians of logic note that Hobbes thought of reasoning as “a ‘species of computation’” but point out that “his writing contains in fact no attempt to work out such a project.” Though Leibniz mentions the plus/minus character of the positive and negative copulas, neither he nor Hobbes say anything about a plus/minus character of other common logical words that drive our deductive judgments, words like ‘some’, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Some Resonances Between Eastern Thought and Integral Biomathics in the Framework of the WLIMES Formalism for Modelling Living Systems.Plamen L. Simeonov & Andree C. Ehresmann - forthcoming - Progress in Biophysics and Molecular Biology 131 (Special).
    Forty-two years ago, Capra published “The Tao of Physics” (Capra, 1975). In this book (page 17) he writes: “The exploration of the atomic and subatomic world in the twentieth century has …. necessitated a radical revision of many of our basic concepts” and that, unlike ‘classical’ physics, the sub-atomic and quantum “modern physics” shows resonances with Eastern thoughts and “leads us to a view of the world which is very similar to the views held by mystics of all ages and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21.  45
    “Fuzzy Time”, a Solution of Unexpected Hanging Paradox (a Fuzzy Interpretation of Quantum Mechanics).Farzad Didehvar - manuscript
    Although Fuzzy logic and Fuzzy Mathematics is a widespread subject and there is a vast literature about it, yet the use of Fuzzy issues like Fuzzy sets and Fuzzy numbers was relatively rare in time concept. This could be seen in the Fuzzy time series. In addition, some attempts are done in fuzzing Turing Machines but seemingly there is no need to fuzzy time. Throughout this article, we try to change this picture and show why it is helpful to (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  22.  71
    Truthmaker Semantics for Relevant Logic.Mark Jago - forthcoming - Journal of Philosophical Logic.
    I develop and defend a truthmaker semantics for the relevant logic R. The approach begins with a simple philosophical idea and develops it in various directions, so as to build a technically adequate relevant semantics. The central philosophical idea is that truths are true in virtue of specific states. Developing the idea formally results in a semantics on which truthmakers are relevant to what they make true. A very natural notion of conditionality is added, giving us relevant implication. I (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23.  27
    On Graph-Theoretic Fibring of Logics.A. Sernadas, C. Sernadas, J. Rasga & M. Coniglio - 2009 - Journal of Logic and Computation 19 (6):1321-1357.
    A graph-theoretic account of fibring of logics is developed, capitalizing on the interleaving characteristics of fibring at the linguistic, semantic and proof levels. Fibring of two signatures is seen as a multi-graph (m-graph) where the nodes and the m-edges include the sorts and the constructors of the signatures at hand. Fibring of two models is a multi-graph (m-graph) where the nodes and the m-edges are the values and the operations in the models, respectively. Fibring of two deductive systems is an (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  24.  74
    Intuitionism and the Modal Logic of Vagueness.Susanne Bobzien & Ian Rumfitt - forthcoming - Journal of Philosophical Logic.
    ABSTRACT: Intuitionistic logic provides an elegant solution to the Sorites Paradox. Its acceptance has been hampered by two factors. First, the lack of an accepted semantics for languages containing vague terms has led even philosophers sympathetic to intuitionism to complain that no explanation has been given of why intuitionistic logic is the correct logic for such languages. Second, switching from classical to intuitionistic logic, while it may help with the Sorites, does not appear to offer any (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25.  85
    Effective Physical Processes and Active Information in Quantum Computing.Ignazio Licata - 2007 - Quantum Biosystems 1 (1):51-65.
    The recent debate on hypercomputation has raised new questions both on the computational abilities of quantum systems and the Church-Turing Thesis role in Physics.We propose here the idea of “effective physical process” as the essentially physical notion of computation. By using the Bohm and Hiley active information concept we analyze the differences between the standard form (quantum gates) and the non-standard one (adiabatic and morphogenetic) of Quantum Computing, and we point out how its Super-Turing potentialities derive from an incomputable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26.  72
    Logical Openness in Cognitive Models.Prof Ignazio Licata - 2008 - Epistemologia:177-192.
    It is here proposed an analysis of symbolic and sub-symbolic models for studying cognitive processes, centered on emergence and logical openness notions. The Theory of logical openness connects the Physics of system/environment relationships to the system informational structure. In this theory, cognitive models can be ordered according to a hierarchy of complexity depending on their logical openness degree, and their descriptive limits are correlated to Gödel-Turing Theorems on formal systems. The symbolic models with low logical openness describe cognition by means (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Logic and Semantics for Imperatives.Nate Charlow - 2014 - Journal of Philosophical Logic 43 (4):617-664.
    In this paper I will develop a view about the semantics of imperatives, which I term Modal Noncognitivism, on which imperatives might be said to have truth conditions (dispositionally, anyway), but on which it does not make sense to see them as expressing propositions (hence does not make sense to ascribe to them truth or falsity). This view stands against “Cognitivist” accounts of the semantics of imperatives, on which imperatives are claimed to express propositions, which are then enlisted in explanations (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  28.  43
    Formalizing Kant's Rules: A Logic of Conditional Imperatives and Permissives.Richard Evans, Andrew Stephenson & Marek Sergot - forthcoming - Journal of Philosophical Logic.
    This paper formalizes part of the cognitive architecture that Kant develops in the Critique of Pure Reason. The central Kantian notion that we formalize is the rule. As we interpret Kant, a rule is not a declarative conditional stating what would be true if such and such conditions hold. Rather, a Kantian rule is a general procedure, represented by a conditional imperative or permissive, indicating which acts must or may be performed, given certain acts that are already being performed. These (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Logic for Exact Entailment.Kit Fine & Mark Jago - 2018 - Review of Symbolic Logic:1-21.
    An exact truthmaker for A is a state which, as well as guaranteeing A’s truth, is wholly relevant to it. States with parts irrelevant to whether A is true do not count as exact truthmakers for A. Giving semantics in this way produces a very unusual consequence relation, on which conjunctions do not entail their conjuncts. This feature makes the resulting logic highly unusual. In this paper, we set out formal semantics for exact truthmaking and characterise the resulting notion (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  30. Sentence, Proposition, Judgment, Statement, and Fact: Speaking About the Written English Used in Logic.John Corcoran - 2009 - In W. A. Carnielli (ed.), The Many Sides of Logic. College Publications. pp. 71-103.
    The five English words—sentence, proposition, judgment, statement, and fact—are central to coherent discussion in logic. However, each is ambiguous in that logicians use each with multiple normal meanings. Several of their meanings are vague in the sense of admitting borderline cases. In the course of displaying and describing the phenomena discussed using these words, this paper juxtaposes, distinguishes, and analyzes several senses of these and related words, focusing on a constellation of recommended senses. One of the purposes of this (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  31. Deontic Logic.Paul McNamara - 2006 - In Dov Gabbay & John Woods (eds.), The Handbook of the History of Logic, vol. 7: Logic and the Modalities in the Twentieth Century. Elsevier Press. pp. 197-288.
    Overview of fundamental work in deontic logic.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  32. An Introduction to Partition Logic.David Ellerman - 2014 - Logic Journal of the IGPL 22 (1):94-125.
    Classical logic is usually interpreted as the logic of propositions. But from Boole's original development up to modern categorical logic, there has always been the alternative interpretation of classical logic as the logic of subsets of any given (nonempty) universe set. Partitions on a universe set are dual to subsets of a universe set in the sense of the reverse-the-arrows category-theoretic duality--which is reflected in the duality between quotient objects and subobjects throughout algebra. Hence the (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  33.  68
    Laws of Thought and Laws of Logic After Kant.Lydia Patton - 2018 - In Sandra Lapointe (ed.), Logic from Kant to Russell. New York: Routledge. pp. 123-137.
    George Boole emerged from the British tradition of the “New Analytic”, known for the view that the laws of logic are laws of thought. Logicians in the New Analytic tradition were influenced by the work of Immanuel Kant, and by the German logicians Wilhelm Traugott Krug and Wilhelm Esser, among others. In his 1854 work An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities, Boole argues that the laws of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. What is the Correct Logic of Necessity, Actuality and Apriority?Peter Fritz - 2014 - Review of Symbolic Logic 7 (3):385-414.
    This paper is concerned with a propositional modal logic with operators for necessity, actuality and apriority. The logic is characterized by a class of relational structures defined according to ideas of epistemic two-dimensional semantics, and can therefore be seen as formalizing the relations between necessity, actuality and apriority according to epistemic two-dimensional semantics. We can ask whether this logic is correct, in the sense that its theorems are all and only the informally valid formulas. This paper gives (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  35. Neo-Logicism and its Logic.Panu Raatikainen - forthcoming - History and Philosophy of Logic.
    The rather unrestrained use of second-order logic in the neo-logicist program is critically examined. It is argued in some detail that it brings with it genuine set-theoretical existence assumptions, and that the mathematical power that Hume’s Principle seems to provide, in the derivation of Frege’s Theorem, comes largely from the “logic” assumed rather than from Hume’s principle. It is shown that Hume’s principle is in reality not stronger than the very weak Robinson Arithmetic Q. Consequently, only few rudimentary (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  36.  93
    Modal Logic with Names.George Gargov & Valentin Goranko - 1993 - Journal of Philosophical Logic 22 (6):607 - 636.
    We investigate an enrichment of the propositional modal language L with a "universal" modality ■ having semantics x ⊧ ■φ iff ∀y(y ⊧ φ), and a countable set of "names" - a special kind of propositional variables ranging over singleton sets of worlds. The obtained language ℒ $_{c}$ proves to have a great expressive power. It is equivalent with respect to modal definability to another enrichment ℒ(⍯) of ℒ, where ⍯ is an additional modality with the semantics x ⊧ ⍯φ (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  37. A Norm-Giver Meets Deontic Action Logic.Robert Trypuz & Piotr Kulicki - 2011 - Logic and Logical Philosophy 20 (1-2):2011.
    In the paper we present a formal system motivated by a specific methodology of creating norms. According to the methodology, a norm-giver before establishing a set of norms should create a picture of the agent by creating his repertoire of actions. Then, knowing what the agent can do in particular situations, the norm-giver regulates these actions by assigning deontic qualifications to each of them. The set of norms created for each situation should respect (1) generally valid deontic principles being the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  38.  78
    Non-Analytic Tableaux for Chellas's Conditional Logic CK and Lewis's Logic of Counterfactuals VC.Richard Zach - 2018 - Australasian Journal of Logic 15 (3):609-628.
    Priest has provided a simple tableau calculus for Chellas's conditional logic Ck. We provide rules which, when added to Priest's system, result in tableau calculi for Chellas's CK and Lewis's VC. Completeness of these tableaux, however, relies on the cut rule.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  39. Aristotle's Demonstrative Logic.John Corcoran - 2009 - History and Philosophy of Logic 30 (1):1-20.
    Demonstrative logic, the study of demonstration as opposed to persuasion, is the subject of Aristotle's two-volume Analytics. Many examples are geometrical. Demonstration produces knowledge (of the truth of propositions). Persuasion merely produces opinion. Aristotle presented a general truth-and-consequence conception of demonstration meant to apply to all demonstrations. According to him, a demonstration, which normally proves a conclusion not previously known to be true, is an extended argumentation beginning with premises known to be truths and containing a chain of reasoning (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  40. A Logic of Justification and Truthmaking.Alessandro Giordani - 2013 - Review of Symbolic Logic 6 (2):323-342.
    In the present paper we propose a system of propositional logic for reasoning about justification, truthmaking, and the connection between justifiers and truthmakers. The logic of justification and truthmaking is developed according to the fundamental ideas introduced by Artemov. Justifiers and truthmakers are treated in a similar way, exploiting the intuition that justifiers provide epistemic grounds for propositions to be considered true, while truthmakers provide ontological grounds for propositions to be true. This system of logic is then (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  41. Dynamic Epistemic Logic and Logical Omniscience.Mattias Skipper Rasmussen - 2015 - Logic and Logical Philosophy 24 (3):377-399.
    Epistemic logics based on the possible worlds semantics suffer from the problem of logical omniscience, whereby agents are described as knowing all logical consequences of what they know, including all tautologies. This problem is doubly challenging: on the one hand, agents should be treated as logically non-omniscient, and on the other hand, as moderately logically competent. Many responses to logical omniscience fail to meet this double challenge because the concepts of knowledge and reasoning are not properly separated. In this paper, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  42.  67
    What Isn’T Obvious About ‘Obvious’: A Data-Driven Approach to Philosophy of Logic.Moti Mizrahi - 2019 - In Andrew Aberdein & Matthew Inglis (eds.), Advances in Experimental Philosophy of Logic and Mathematics. London: Bloomsbury Press. pp. 201-224.
    It is often said that ‘every logical truth is obvious’ (Quine 1970: 82), that the ‘axioms and rules of logic are true in an obvious way’ (Murawski 2014: 87), or that ‘logic is a theory of the obvious’ (Sher 1999: 207). In this chapter, I set out to test empirically how the idea that logic is obvious is reflected in the scholarly work of logicians and philosophers of logic. My approach is data-driven. That is to say, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Logic in the Tractatus.Max Weiss - 2017 - Review of Symbolic Logic 10 (1):1-50.
    I present a reconstruction of the logical system of the Tractatus, which differs from classical logic in two ways. It includes an account of Wittgenstein’s “form-series” device, which suffices to express some effectively generated countably infinite disjunctions. And its attendant notion of structure is relativized to the fixed underlying universe of what is named. -/- There follow three results. First, the class of concepts definable in the system is closed under finitary induction. Second, if the universe of objects is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  44. Completeness of an Ancient Logic.John Corcoran - 1972 - Journal of Symbolic Logic 37 (4):696-702.
    In previous articles, it has been shown that the deductive system developed by Aristotle in his "second logic" is a natural deduction system and not an axiomatic system as previously had been thought. It was also stated that Aristotle's logic is self-sufficient in two senses: First, that it presupposed no other logical concepts, not even those of propositional logic; second, that it is (strongly) complete in the sense that every valid argument expressible in the language of the (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  45. The Logic of Partitions: Introduction to the Dual of the Logic of Subsets: The Logic of Partitions.David Ellerman - 2010 - Review of Symbolic Logic 3 (2):287-350.
    Modern categorical logic as well as the Kripke and topological models of intuitionistic logic suggest that the interpretation of ordinary “propositional” logic should in general be the logic of subsets of a given universe set. Partitions on a set are dual to subsets of a set in the sense of the category-theoretic duality of epimorphisms and monomorphisms—which is reflected in the duality between quotient objects and subobjects throughout algebra. If “propositional” logic is thus seen as (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  46. Logic is Metaphysics.Daniel Durante Pereira Alves - 2011 - Principia: An International Journal of Epistemology 15 (1):31-42.
    Analyzing the position of two philosophers whose views are recognizably divergent, W. O. Quine and M. Dummett, we intend to support a striking point of agreement between them: the idea that our logical principles constitute our principles about what there is, and therefore, that logic is metaphysics.
    Download  
     
    Export citation  
     
    Bookmark  
  47.  9
    A Binary Quantifier for Definite Descriptions in Intuitionist Negative Free Logic: Natural Deduction and Normalisation.Nils Kürbis - 2019 - Bulletin of the Section of Logic 48 (2):81-97.
    This paper presents a way of formalising definite descriptions with a binary quantifier ι, where ιx[F, G] is read as ‘The F is G’. Introduction and elimination rules for ι in a system of intuitionist negative free logic are formulated. Procedures for removing maximal formulas of the form ιx[F, G] are given, and it is shown that deductions in the system can be brought into normal form.
    Download  
     
    Export citation  
     
    Bookmark  
  48. A Cognitive Computation Fallacy? Cognition, Computations and Panpsychism.John Mark Bishop - 2009 - Cognitive Computation 1 (3):221-233.
    The journal of Cognitive Computation is defined in part by the notion that biologically inspired computational accounts are at the heart of cognitive processes in both natural and artificial systems. Many studies of various important aspects of cognition (memory, observational learning, decision making, reward prediction learning, attention control, etc.) have been made by modelling the various experimental results using ever-more sophisticated computer programs. In this manner progressive inroads have been made into gaining a better understanding of the many components (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  49. Proofnets for S5: Sequents and Circuits for Modal Logic.Greg Restall - 2007 - In C. Dimitracopoulos, L. Newelski & D. Normann (eds.), Logic Colloquium 2005. Cambridge: Cambridge University Press. pp. 151-172.
    In this paper I introduce a sequent system for the propositional modal logic S5. Derivations of valid sequents in the system are shown to correspond to proofs in a novel natural deduction system of circuit proofs (reminiscient of proofnets in linear logic, or multiple-conclusion calculi for classical logic). -/- The sequent derivations and proofnets are both simple extensions of sequents and proofnets for classical propositional logic, in which the new machinery—to take account of the modal vocabulary—is (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  50. Basic Action Deontic Logic.Alessandro Giordani & Ilaria Canavotto - 2016 - In O. Roy, T. Allard & W. Malte (eds.), Deontic Logic and Normative Systems. College Publications. pp. 80-92.
    The aim of this paper is to introduce a system of dynamic deontic logic in which the main problems related to the de finition of deontic concepts, especially those emerging from a standard analysis of permission in terms of possibility of doing an action without incurring in a violation of the law, are solved. The basic idea is to introduce two crucial distinctions allowing us to differentiate (i) what is ideal with respect to a given code, which fixes the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 1000