Results for 'Incompleteness Theorem'

950 found
Order:
  1. The Gödel Incompleteness Theorems (1931) by the Axiom of Choice.Vasil Penchev - 2020 - Econometrics: Mathematical Methods and Programming eJournal (Elsevier: SSRN) 13 (39):1-4.
    Those incompleteness theorems mean the relation of (Peano) arithmetic and (ZFC) set theory, or philosophically, the relation of arithmetical finiteness and actual infinity. The same is managed in the framework of set theory by the axiom of choice (respectively, by the equivalent well-ordering "theorem'). One may discuss that incompleteness form the viewpoint of set theory by the axiom of choice rather than the usual viewpoint meant in the proof of theorems. The logical corollaries from that "nonstandard" viewpoint (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. On interpreting Chaitin's incompleteness theorem.Panu Raatikainen - 1998 - Journal of Philosophical Logic 27 (6):569-586.
    The aim of this paper is to comprehensively question the validity of the standard way of interpreting Chaitin's famous incompleteness theorem, which says that for every formalized theory of arithmetic there is a finite constant c such that the theory in question cannot prove any particular number to have Kolmogorov complexity larger than c. The received interpretation of theorem claims that the limiting constant is determined by the complexity of the theory itself, which is assumed to be (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  3. Gödel's incompleteness theorems, free will and mathematical thought.Solomon Feferman - 2011 - In Richard Swinburne (ed.), Free Will and Modern Science. New York: OUP/British Academy.
    The determinism-free will debate is perhaps as old as philosophy itself and has been engaged in from a great variety of points of view including those of scientific, theological, and logical character. This chapter focuses on two arguments from logic. First, there is an argument in support of determinism that dates back to Aristotle, if not farther. It rests on acceptance of the Law of Excluded Middle, according to which every proposition is either true or false, no matter whether the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  4. Kurt Gödel, paper on the incompleteness theorems (1931).Richard Zach - 2004 - In Ivor Grattan-Guinness (ed.), Landmark Writings in Mathematics. North-Holland. pp. 917-925.
    This chapter describes Kurt Gödel's paper on the incompleteness theorems. Gödel's incompleteness results are two of the most fundamental and important contributions to logic and the foundations of mathematics. It had been assumed that first-order number theory is complete in the sense that any sentence in the language of number theory would be either provable from the axioms or refutable. Gödel's first incompleteness theorem showed that this assumption was false: it states that there are sentences of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Gödel's Incomplete Theorem: a sequel to Logic and Analytic Philosophy.Yusuke Kaneko - 2021 - The Basis : The Annual Bulletin of Research Center for Liberal Education 11:81-107.
    Although written in Japanese, this article handles historical and technical survey of Gödel's incompleteness theorem thoroughly.
    Download  
     
    Export citation  
     
    Bookmark  
  6. On the philosophical relevance of Gödel's incompleteness theorems.Panu Raatikainen - 2005 - Revue Internationale de Philosophie 59 (4):513-534.
    A survey of more philosophical applications of Gödel's incompleteness results.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  7. Application of "A Thing Exists If It's A Grouping" to Russell's Paradox and Godel's First Incompletness Theorem.Roger Granet - manuscript
    A resolution to the Russell Paradox is presented that is similar to Russell's “theory of types” method but is instead based on the definition of why a thing exists as described in previous work by this author. In that work, it was proposed that a thing exists if it is a grouping tying "stuff" together into a new unit whole. In tying stuff together, this grouping defines what is contained within the new existent entity. A corollary is that a thing, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  8. Incompleteness and Computability: An Open Introduction to Gödel's Theorems.Richard Zach - 2019 - Open Logic Project.
    Textbook on Gödel’s incompleteness theorems and computability theory, based on the Open Logic Project. Covers recursive function theory, arithmetization of syntax, the first and second incompleteness theorem, models of arithmetic, second-order logic, and the lambda calculus.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  9. Does Gödel's Incompleteness Theorem Prove that Truth Transcends Proof?Joseph Vidal-Rosset - 2006 - In Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.), The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today. Dordrecht, Netherland: Springer. pp. 51--73.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  10. Do Goedel's incompleteness theorems set absolute limits on the ability of the brain to express and communicate mental concepts verifiably?Bhupinder Singh Anand - 2004 - Neuroquantology 2:60-100.
    Classical interpretations of Goedels formal reasoning, and of his conclusions, implicitly imply that mathematical languages are essentially incomplete, in the sense that the truth of some arithmetical propositions of any formal mathematical language, under any interpretation, is, both, non-algorithmic, and essentially unverifiable. However, a language of general, scientific, discourse, which intends to mathematically express, and unambiguously communicate, intuitive concepts that correspond to scientific investigations, cannot allow its mathematical propositions to be interpreted ambiguously. Such a language must, therefore, define mathematical truth (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  11. Von Neumann's Methodology of Science: From Incompleteness Theorems to Later foundational Reflections.Giambattista Formica - 2010 - Perspectives on Science 18 (4):480-499.
    In spite of the many efforts made to clarify von Neumann’s methodology of science, one crucial point seems to have been disregarded in recent literature: his closeness to Hilbert’s spirit. In this paper I shall claim that the scientific methodology adopted by von Neumann in his later foundational reflections originates in the attempt to revaluate Hilbert’s axiomatics in the light of Gödel’s incompleteness theorems. Indeed, axiomatics continues to be pursued by the Hungarian mathematician in the spirit of Hilbert’s school. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Torkel Franzén, Gödel's Theorem: An Incomplete Guide to its Use and Abuse. [REVIEW]R. Zach - 2005 - History and Philosophy of Logic 26 (4):369-371.
    On the heels of Franzén's fine technical exposition of Gödel's incompleteness theorems and related topics (Franzén 2004) comes this survey of the incompleteness theorems aimed at a general audience. Gödel's Theorem: An Incomplete Guide to its Use and Abuse is an extended and self-contained exposition of the incompleteness theorems and a discussion of what informal consequences can, and in particular cannot, be drawn from them.
    Download  
     
    Export citation  
     
    Bookmark  
  13. (1 other version)Wolpert, Chaitin and Wittgenstein on impossibility, incompleteness, the liar paradox, theism, the limits of computation, a non-quantum mechanical uncertainty principle and the universe as computer—the ultimate theorem in Turing Machine Theory (revised 2019).Michael Starks - 2019 - In Suicidal Utopian Delusions in the 21st Century -- Philosophy, Human Nature and the Collapse of Civilization-- Articles and Reviews 2006-2019 4th Edition Michael Starks. Las Vegas, NV USA: Reality Press. pp. 294-299.
    I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv dot org) on the limits to inference (computation) that are so general they are independent of the device doing the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. David Wolpert on impossibility, incompleteness, the liar paradox, the limits of computation, a non-quantum mechanical uncertainty principle and the universe as computer—the ultimate theorem in Turing Machine Theory.Michael Starks - manuscript
    I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv.org) on the limits to inference (computation) that are so general they are independent of the device doing the computation, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Formal Background for the Incompleteness and Undefinability Theorems.Richard Kimberly Heck - manuscript
    A teaching document I've used in my courses on truth and on incompleteness. Aimed at students who have a good grasp of basic logic, and decent math skills, it attempts to give them the background they need to understand a proper statement of the classic results due to Gödel and Tarski, and sketches their proofs. Topics covered include the notions of language and theory, the basics of formal syntax and arithmetization, formal arithmetic (Q and PA), representability, diagonalization, and the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Wolpert, Chaitin and Wittgenstein on impossibility, incompleteness, the limits of computation, theism and the universe as computer-the ultimate Turing Theorem.Michael Starks - 2017 - Philosophy, Human Nature and the Collapse of Civilization Michael Starks 3rd Ed. (2017).
    I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv.org) on the limits to inference (computation) that are so general they are independent of the device doing the computation, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Gödel Incompleteness and Turing Completeness.Ramón Casares - manuscript
    Following Post program, we will propose a linguistic and empirical interpretation of Gödel’s incompleteness theorem and related ones on unsolvability by Church and Turing. All these theorems use the diagonal argument by Cantor in order to find limitations in finitary systems, as human language, which can make “infinite use of finite means”. The linguistic version of the incompleteness theorem says that every Turing complete language is Gödel incomplete. We conclude that the incompleteness and unsolvability theorems (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. A new reading and comparative interpretation of Gödel’s completeness (1930) and incompleteness (1931) theorems.Vasil Penchev - 2016 - Логико-Философские Штудии 13 (2):187-188.
    Peano arithmetic cannot serve as the ground of mathematics for it is inconsistent to infinity, and infinity is necessary for its foundation. Though Peano arithmetic cannot be complemented by any axiom of infinity, there exists at least one (logical) axiomatics consistent to infinity. That is nothing else than a new reading at issue and comparative interpretation of Gödel’s papers (1930; 1931) meant here. Peano arithmetic admits anyway generalizations consistent to infinity and thus to some addable axiom(s) of infinity. The most (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Gödel mathematics versus Hilbert mathematics. I. The Gödel incompleteness (1931) statement: axiom or theorem?Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (9):1-56.
    The present first part about the eventual completeness of mathematics (called “Hilbert mathematics”) is concentrated on the Gödel incompleteness (1931) statement: if it is an axiom rather than a theorem inferable from the axioms of (Peano) arithmetic, (ZFC) set theory, and propositional logic, this would pioneer the pathway to Hilbert mathematics. One of the main arguments that it is an axiom consists in the direct contradiction of the axiom of induction in arithmetic and the axiom of infinity in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Neo-Logicism and Gödelian Incompleteness.Fabian Pregel - 2023 - Mind 131 (524):1055-1082.
    There is a long-standing gap in the literature as to whether Gödelian incompleteness constitutes a challenge for Neo-Logicism, and if so how serious it is. In this paper, I articulate and address the challenge in detail. The Neo-Logicist project is to demonstrate the analyticity of arithmetic by deriving all its truths from logical principles and suitable definitions. The specific concern raised by Gödel’s first incompleteness theorem is that no single sound system of logic syntactically implies all arithmetical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Refuting Incompleteness and Undefinability.P. Olcott - manuscript
    Within the (Haskell Curry) notion of a formal system we complete Tarski's formal correctness: ∀x True(x) ↔ ⊢ x and use this finally formalized notion of Truth to refute his own Undefinability Theorem (based on the Liar Paradox), the Liar Paradox, and the (Panu Raatikainen) essence of the conclusion of the 1931 Incompleteness Theorem.
    Download  
     
    Export citation  
     
    Bookmark  
  22. Mathematical instrumentalism, Gödel’s theorem, and inductive evidence.Alexander Paseau - 2011 - Studies in History and Philosophy of Science Part A 42 (1):140-149.
    Mathematical instrumentalism construes some parts of mathematics, typically the abstract ones, as an instrument for establishing statements in other parts of mathematics, typically the elementary ones. Gödel’s second incompleteness theorem seems to show that one cannot prove the consistency of all of mathematics from within elementary mathematics. It is therefore generally thought to defeat instrumentalisms that insist on a proof of the consistency of abstract mathematics from within the elementary portion. This article argues that though some versions of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  23. Fermat’s last theorem proved in Hilbert arithmetic. III. The quantum-information unification of Fermat’s last theorem and Gleason’s theorem.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (12):1-30.
    The previous two parts of the paper demonstrate that the interpretation of Fermat’s last theorem (FLT) in Hilbert arithmetic meant both in a narrow sense and in a wide sense can suggest a proof by induction in Part I and by means of the Kochen - Specker theorem in Part II. The same interpretation can serve also for a proof FLT based on Gleason’s theorem and partly similar to that in Part II. The concept of (probabilistic) measure (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Automated Theorem Proving and Its Prospects. [REVIEW]Desmond Fearnley-Sander - 1995 - PSYCHE: An Interdisciplinary Journal of Research On Consciousness 2.
    REVIEW OF: Automated Development of Fundamental Mathematical Theories by Art Quaife. (1992: Kluwer Academic Publishers) 271pp. Using the theorem prover OTTER Art Quaife has proved four hundred theorems of von Neumann-Bernays-Gödel set theory; twelve hundred theorems and definitions of elementary number theory; dozens of Euclidean geometry theorems; and Gödel's incompleteness theorems. It is an impressive achievement. To gauge its significance and to see what prospects it offers this review looks closely at the book and the proofs it presents.
    Download  
     
    Export citation  
     
    Bookmark  
  25. 沃尔珀特、柴廷和维特根斯坦关于不可能、不完整、说谎的悖论、有论、计算极限、非量子力学不确定性原理和宇宙作为计算机——图灵机器理论的终极定理 (Wolpert, Chaitin and Wittgenstein on impossibility, incompleteness, the liar paradox, theism, the limits of computation, a non-quantum mechanical uncertainty principle and the universe as computer—the ultimate theorem in T Machine Theory) (修订 2019).Michael Richard Starks - 2020 - In 欢迎来到地球上的地狱 婴儿,气候变化,比特币,卡特尔,中国,民主,多样性,养成基因,平等,黑客,人权,伊斯兰教,自由主义,繁荣,网络,混乱。饥饿,疾病,暴力,人工智能,战争. Las Vegas, NV USA: Reality Press. pp. 173-177.
    我最近读过许多关于计算极限和宇宙作为计算机的讨论,希望找到一些关于多面体物理学家和决策理论家大卫·沃尔珀特的惊人工作的评论,但没有发现一个引文,所以我提出这个非常简短的总结。Wolpert 证明了一些惊人的不可能或不完整的定理(1992-2008-见arxiv dot org)对推理(计算)的限制,这些极限非常一般,它们独立于执行计算的设备,甚至独立于物理定律,因此,它们适用于计算机、物理和人类行为。他们利用Cantor的对角线、骗子悖论和世界线来提供图灵机器理论的 终极定理,并似乎提供了对不可能、不完整、计算极限和宇宙的见解。计算机,在所有可能的宇宙和所有生物或机制,产生,除其他外,非量子力学不确定性原理和一神论的证明。与柴廷、所罗门诺夫、科莫尔加罗夫和维特根斯 坦的经典作品以及任何程序(因此没有设备)能够生成比它拥有的更大复杂性的序列(或设备)的概念有着明显的联系。有人可能会说,这一工作意味着无政府主义,因为没有比物质宇宙更复杂的实体,从维特根斯坦的观点来看 ,"更复杂的"是毫无意义的(没有满足的条件,即真理制造者或测试)。即使是"上帝"(即具有无限时间/空间和能量的"设备")也无法确定给定的&q uot;数字"是否为"随机",也无法找到某种方式来显示给定的"公式"、"定理"或"句子"或"设备&q uot;(所有这些语言都是复杂的语言)游戏)是特定"系统"的一部分。 那些希望从现代两个系统的观点来看为人类行为建立一个全面的最新框架的人,可以查阅我的书《路德维希的哲学、心理学、Mind 和语言的逻辑结构》维特根斯坦和约翰·西尔的《第二部》(2019年)。那些对我更多的作品感兴趣的人可能会看到《会说话的猴子——一个末日星球上的哲学、心理学、科学、宗教和政治——文章和评论2006-201 9年第二次(2019年)》和《自杀乌托邦幻想》第21篇世纪4日 (2019).
    Download  
     
    Export citation  
     
    Bookmark  
  26. Intensionality and the gödel theorems.David D. Auerbach - 1985 - Philosophical Studies 48 (3):337--51.
    Philosophers of language have drawn on metamathematical results in varied ways. Extensionalist philosophers have been particularly impressed with two, not unrelated, facts: the existence, due to Frege/Tarski, of a certain sort of semantics, and the seeming absence of intensional contexts from mathematical discourse. The philosophical import of these facts is at best murky. Extensionalists will emphasize the success and clarity of the model theoretic semantics; others will emphasize the relative poverty of the mathematical idiom; still others will question the aptness (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  27. From the four-color theorem to a generalizing “four-letter theorem”: A sketch for “human proof” and the philosophical interpretation.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 12 (21):1-10.
    The “four-color” theorem seems to be generalizable as follows. The four-letter alphabet is sufficient to encode unambiguously any set of well-orderings including a geographical map or the “map” of any logic and thus that of all logics or the DNA plan of any alive being. Then the corresponding maximally generalizing conjecture would state: anything in the universe or mind can be encoded unambiguously by four letters. That admits to be formulated as a “four-letter theorem”, and thus one can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. What is Mathematics: Gödel's Theorem and Around (Edition 2015).Karlis Podnieks - manuscript
    Introduction to mathematical logic. Part 2.Textbook for students in mathematical logic and foundations of mathematics. Platonism, Intuition, Formalism. Axiomatic set theory. Around the Continuum Problem. Axiom of Determinacy. Large Cardinal Axioms. Ackermann's Set Theory. First order arithmetic. Hilbert's 10th problem. Incompleteness theorems. Consequences. Connected results: double incompleteness theorem, unsolvability of reasoning, theorem on the size of proofs, diophantine incompleteness, Loeb's theorem, consistent universal statements are provable, Berry's paradox, incompleteness and Chaitin's theorem. Around (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  29. Eliminating Undecidability and Incompleteness in Formal Systems.P. Olcott - manuscript
    To eliminate incompleteness, undecidability and inconsistency from formal systems we only need to convert the formal proofs to theorem consequences of symbolic logic to conform to the sound deductive inference model. -/- Within the sound deductive inference model there is a (connected sequence of valid deductions from true premises to a true conclusion) thus unlike the formal proofs of symbolic logic provability cannot diverge from truth.
    Download  
     
    Export citation  
     
    Bookmark  
  30.  76
    Wittgenstein x Gödel: reflexões sobre o Teorema da Incompletude.Rafael Ongaratto - 2024 - Dissertation, Unicamp
    In the Appendix I of his "Remarks on the Foundations of Mathematics", Wittgenstein elaborates a different interpretation of Gödel’s First Incompleteness Theorem, which we have come to refer to as "Gödel’s Theorem" or "Incompleteness Theorem". This nomenclature arises from the recognition that the so-called "Second Incompleteness Theorem" is essentially a corollary of the primary theorem. Wittgenstein aims to reassess Gödel’s conclusion that there exist true formulas not demonstrable within formal systems capable of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Wittgenstein on Gödelian 'Incompleteness', Proofs and Mathematical Practice: Reading Remarks on the Foundations of Mathematics, Part I, Appendix III, Carefully.Wolfgang Kienzler & Sebastian Sunday Grève - 2016 - In Sebastian Sunday Grève & Jakub Mácha (eds.), Wittgenstein and the Creativity of Language. Palgrave Macmillan. pp. 76-116.
    We argue that Wittgenstein’s philosophical perspective on Gödel’s most famous theorem is even more radical than has commonly been assumed. Wittgenstein shows in detail that there is no way that the Gödelian construct of a string of signs could be assigned a useful function within (ordinary) mathematics. — The focus is on Appendix III to Part I of Remarks on the Foundations of Mathematics. The present reading highlights the exceptional importance of this particular set of remarks and, more specifically, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  32. The gödel paradox and Wittgenstein's reasons.Francesco Berto - 2009 - Philosophia Mathematica 17 (2):208-219.
    An interpretation of Wittgenstein’s much criticized remarks on Gödel’s First Incompleteness Theorem is provided in the light of paraconsistent arithmetic: in taking Gödel’s proof as a paradoxical derivation, Wittgenstein was drawing the consequences of his deliberate rejection of the standard distinction between theory and metatheory. The reasoning behind the proof of the truth of the Gödel sentence is then performed within the formal system itself, which turns out to be inconsistent. It is shown that the features of paraconsistent (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  33. Remark on Artificial Intelligence, humanoid and Terminator scenario: A Neutrosophic way to futurology.Victor Christianto & Florentin Smarandache - manuscript
    This article is an update of our previous article in this SGJ journal, titled: On Gödel's Incompleteness Theorem, Artificial Intelligence & Human Mind. We provide some commentary on the latest developments around AI, humanoid robotics, and future scenario. Basically, we argue that a more thoughtful approach to the future is "techno-realism.".
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. (1 other version)The incompleteness of extensional object languages of physics and time reversal. Part 2.Andrew Holster - manuscript
    This continues from Part 1. It is shown how an intensional interpretation of physics object languages can be formalised, and how a syntactic compositional time reversal operator can subsequently be defined. This is applied to solve the problems used as examples in Part 1. A proof of a general theorem that such an operator must be defineable is sketched. A number of related issues about the interpretation of theories of physics, including classical and quantum mechanics and classical EM theory (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. A note on incomplete theory.Han Geurdes - manuscript
    In the paper it is demonstrated that Bell's theorem is unproveable.
    Download  
     
    Export citation  
     
    Bookmark  
  36. Douglas Hofstadter's Gödelian Philosophy of Mind.Theodor Nenu - 2022 - Journal of Artificial Intelligence and Consciousness 9 (2):241-266.
    Hofstadter [1979, 2007] offered a novel Gödelian proposal which purported to reconcile the apparently contradictory theses that (1) we can talk, in a non-trivial way, of mental causation being a real phenomenon and that (2) mental activity is ultimately grounded in low-level rule-governed neural processes. In this paper, we critically investigate Hofstadter’s analogical appeals to Gödel’s [1931] First Incompleteness Theorem, whose “diagonal” proof supposedly contains the key ideas required for understanding both consciousness and mental causation. We maintain that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. On Rudimentarity, Primitive Recursivity and Representability.Saeed Salehi - 2020 - Reports on Mathematical Logic 55:73–85.
    It is quite well-known from Kurt G¨odel’s (1931) ground-breaking Incompleteness Theorem that rudimentary relations (i.e., those definable by bounded formulae) are primitive recursive, and that primitive recursive functions are representable in sufficiently strong arithmetical theories. It is also known, though perhaps not as well-known as the former one, that some primitive recursive relations are not rudimentary. We present a simple and elementary proof of this fact in the first part of the paper. In the second part, we review (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics.Vladimir Kanovei, Mikhail G. Katz & Thomas Mormann - 2013 - Foundations of Science 18 (2):259-296.
    We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in functional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S , all definable sets of reals are (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  39. Remarks on Wittgenstein, Gödel, Chaitin, Incompleteness, Impossiblity and the Psychological Basis of Science and Mathematics.Michael Richard Starks - 2019 - In Remarks on Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason in Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, da Costa, Godel, Searle, Rodych, Berto, Floyd, Moyal. Reality Press. pp. 24-38.
    It is commonly thought that such topics as Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason are disparate scientific physical or mathematical issues having little or nothing in common. I suggest that they are largely standard philosophical problems (i.e., language games) which were resolved by Wittgenstein over 80 years ago. -/- Wittgenstein also demonstrated the fatal error in regarding mathematics or language or our behavior in general as a unitary coherent logical ‘system,’ rather than (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. “the Animal” After Derrida: Interrogating the Bioethics of Geno-Cide.Norman Swazo - 2013 - Les Ateliers de L'Éthique 8 (1):91-123.
    Bioethics tends to be dominated by discourses concerned with the ethical dimension of medical practice, the organization of medical care, and the integrity of biomedical research involving human subjects and animal testing. Jacques Derrida has explored the fundamental question of the “limit” that identifies and differentiates the human animal from the nonhuman animal. However, to date his work has not received any reception in the field of biomedical ethics. In this paper, I examine what Derrida’s thought about this limit might (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  41. Two Strategies to Infinity: Completeness and Incompleteness. The Completeness of Quantum Mechanics.Vasil Penchev - 2020 - High Performance Computing eJournal 12 (11):1-8.
    Two strategies to infinity are equally relevant for it is as universal and thus complete as open and thus incomplete. Quantum mechanics is forced to introduce infinity implicitly by Hilbert space, on which is founded its formalism. One can demonstrate that essential properties of quantum information, entanglement, and quantum computer originate directly from infinity once it is involved in quantum mechanics. Thus, thеse phenomena can be elucidated as both complete and incomplete, after which choice is the border between them. A (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Tarski Undefinability Theorem Terse Refutation.P. Olcott - manuscript
    Both Tarski and Gödel “prove” that provability can diverge from Truth. When we boil their claim down to its simplest possible essence it is really claiming that valid inference from true premises might not always derive a true consequence. This is obviously impossible.
    Download  
     
    Export citation  
     
    Bookmark  
  43. How Hilbert’s attempt to unify gravitation and electromagnetism failed completely, and a plausible resolution.Victor Christianto, Florentin Smarandache & Robert N. Boyd - manuscript
    In the present paper, these authors argue on actual reasons why Hilbert’s axiomatic program to unify gravitation theory and electromagnetism failed completely. An outline of plausible resolution of this problem is given here, based on: a) Gödel’s incompleteness theorem, b) Newton’s aether stream model. And in another paper we will present our calculation of receding Moon from Earth based on such a matter creation hypothesis. More experiments and observations are called to verify this new hypothesis, albeit it is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Logical Foundations of Local Gauge Symmetry and Symmetry Breaking.Yingrui Yang - 2022 - Journal of Human Cognition 6 (1):18-23.
    The present paper intends to report two results. It is shown that the formula P(x)=∀y∀z[¬G(x, y)→¬M(z)] provides the logic underlying gauge symmetry, where M denotes the predicate of being massive. For the logic of spontaneous symmetry breaking, by Higgs mechanism, we have P(x)=∀y∀z[G(x, y)→M(z)]. Notice that the above two formulas are not logically equivalent. The results are obtained by integrating four components, namely, gauge symmetry and Higgs mechanism in quantum field theory, and Gödel's incompleteness theorem and Tarski's indefinability (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Gödelova věta a relace logického důsledku.Jaroslav Zouhar - 2010 - Teorie Vědy / Theory of Science 32 (1):59-95.
    In his proof of the first incompleteness theorem, Kurt Gödel provided a method of showing the truth of specific arithmetical statements on the condition that all the axioms of a certain formal theory of arithmetic are true. Furthermore, the statement whose truth is shown in this way cannot be proved in the theory in question. Thus it may seem that the relation of logical consequence is wider than the relation of derivability by a pre-defined set of rules. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. The Boundary between Mind and Machine.Dingzhou Fei - 2018 - Journal of Human Cognition 2 (1):5-15.
    The mind-body problem is one of the important topics in philosophy of mind and cognitive science. Following the analytical tradition of linguistic and logical analysis, we focus on two aspects of the mind- body problem: one is around Gödel's incompleteness theorem, and the other is on cognitive logic, especially on the question of whether Epistemological Arithmetic and machines are private. In the former case, in response to the popular view that the Gödel Incompleteness Theorem supports dualism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Formal Methods.Richard Pettigrew - manuscript
    (This is for the Cambridge Handbook of Analytic Philosophy, edited by Marcus Rossberg) In this handbook entry, I survey the different ways in which formal mathematical methods have been applied to philosophical questions throughout the history of analytic philosophy. I consider: formalization in symbolic logic, with examples such as Aquinas’ third way and Anselm’s ontological argument; Bayesian confirmation theory, with examples such as the fine-tuning argument for God and the paradox of the ravens; foundations of mathematics, with examples such as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Are Evolutionary Debunking Arguments Really Self-Defeating?Fabio Sterpetti - 2015 - Philosophia 43 (3):877-889.
    Evolutionary Debunking Arguments are defined as arguments that appeal to the evolutionary genealogy of our beliefs to undermine their justification. Recently, Helen De Cruz and her co-authors supported the view that EDAs are self-defeating: if EDAs claim that human arguments are not justified, because the evolutionary origin of the beliefs which figure in such arguments undermines those beliefs, and EDAs themselves are human arguments, then EDAs are not justified, and we should not accept their conclusions about the fact that human (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  49. How to Say Things with Formalisms.David Auerbach - 1992 - In Michael Detlefsen (ed.), Proof, Logic and Formalization. London, England: Routledge. pp. 77--93.
    Recent attention to "self-consistent" (Rosser-style) systems raises anew the question of the proper interpretation of the Gödel Second Incompleteness Theorem and its effect on Hilbert's Program. The traditional rendering and consequence is defended with new arguments justifying the intensional correctness of the derivability conditions.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  50. A Note on Gödel, Priest and Naïve Proof.Massimiliano Carrara - forthcoming - Logic and Logical Philosophy:1.
    In the 1951 Gibbs lecture, Gödel asserted his famous dichotomy, where the notion of informal proof is at work. G. Priest developed an argument, grounded on the notion of naïve proof, to the effect that Gödel’s first incompleteness theorem suggests the presence of dialetheias. In this paper, we adopt a plausible ideal notion of naïve proof, in agreement with Gödel’s conception, superseding the criticisms against the usual notion of naïve proof used by real working mathematicians. We explore the (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 950