Results for 'Mathematical structures'

941 found
Order:
  1. Mathematical Structure of the Emergent Event.Kent Palmer - manuscript
    Exploration of a hypothetical model of the structure of the Emergent Event. -/- Key Words: Emergent Event, Foundational Mathematical Categories, Emergent Meta-system, Orthogonal Centering Dialectic, Hegel, Sartre, Badiou, Derrida, Deleuze, Philosophy of Science.
    Download  
     
    Export citation  
     
    Bookmark  
  2. Structure and Categoricity: Determinacy of Reference and Truth Value in the Philosophy of Mathematics.Tim Button & Sean Walsh - 2016 - Philosophia Mathematica 24 (3):283-307.
    This article surveys recent literature by Parsons, McGee, Shapiro and others on the significance of categoricity arguments in the philosophy of mathematics. After discussing whether categoricity arguments are sufficient to secure reference to mathematical structures up to isomorphism, we assess what exactly is achieved by recent ‘internal’ renditions of the famous categoricity arguments for arithmetic and set theory.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  3.  77
    Margaret Morrison, Unifying Scientific Theories, Physical Concepts and Mathematical Structures[REVIEW]Donata Romizi - 2004 - Nuncius 19:427-430.
    Download  
     
    Export citation  
     
    Bookmark  
  4. Structural equation model of students' competence in Mathematics among Filipino high school students.Melanie Gurat - 2018 - Journal in Interdisciplinary Studies in Education 7 (1):67-77.
    This study aimed to construct structural equation model of students’ competence in mathematics through selected students profile variables. The structural model revealed interesting influence of the profile variables to the competency in mathematics. It can be conveyed that better mother’s work status, higher educational level expected to complete, more confident and did not repeat kinder, have better competency in mathematics. The four variables that directly influenced the competence variables were also influenced with other profile variables such as family background. The (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. Structure and applied mathematics.Travis McKenna - 2022 - Synthese 200 (5):1-31.
    ‘Mapping accounts’ of applied mathematics hold that the application of mathematics in physical science is best understood in terms of ‘mappings’ between mathematical structures and physical structures. In this paper, I suggest that mapping accounts rely on the assumption that the mathematics relevant to any application of mathematics in empirical science can be captured in an appropriate mathematical structure. If we are interested in assessing the plausibility of mapping accounts, we must ask ourselves: how plausible is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Mathematical anti-realism and explanatory structure.Bruno Whittle - 2021 - Synthese 199 (3-4):6203-6217.
    Plausibly, mathematical claims are true, but the fundamental furniture of the world does not include mathematical objects. This can be made sense of by providing mathematical claims with paraphrases, which make clear how the truth of such claims does not require the fundamental existence of mathematical objects. This paper explores the consequences of this type of position for explanatory structure. There is an apparently straightforward relationship between this sort of structure, and the logical sort: i.e. logically (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Physical Mathematics and The Fine-Structure Constant.Michael A. Sherbon - 2018 - Journal of Advances in Physics 14 (3):5758-64.
    Research into ancient physical structures, some having been known as the seven wonders of the ancient world, inspired new developments in the early history of mathematics. At the other end of this spectrum of inquiry the research is concerned with the minimum of observations from physical data as exemplified by Eddington's Principle. Current discussions of the interplay between physics and mathematics revive some of this early history of mathematics and offer insight into the fine-structure constant. Arthur Eddington's work leads (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. Mathematics as the Science of Pure Structure.John-Michael Kuczynski - manuscript
    A brief but rigorous description of the logical structure of mathematical truth.
    Download  
     
    Export citation  
     
    Bookmark  
  9. The normative structure of mathematization in systematic biology.Beckett Sterner & Scott Lidgard - 2014 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 46 (1):44-54.
    We argue that the mathematization of science should be understood as a normative activity of advocating for a particular methodology with its own criteria for evaluating good research. As a case study, we examine the mathematization of taxonomic classification in systematic biology. We show how mathematization is a normative activity by contrasting its distinctive features in numerical taxonomy in the 1960s with an earlier reform advocated by Ernst Mayr starting in the 1940s. Both Mayr and the numerical taxonomists sought to (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  10. An Aristotelian Realist Philosophy of Mathematics: Mathematics as the science of quantity and structure.James Franklin - 2014 - London and New York: Palgrave MacMillan.
    An Aristotelian Philosophy of Mathematics breaks the impasse between Platonist and nominalist views of mathematics. Neither a study of abstract objects nor a mere language or logic, mathematics is a science of real aspects of the world as much as biology is. For the first time, a philosophy of mathematics puts applied mathematics at the centre. Quantitative aspects of the world such as ratios of heights, and structural ones such as symmetry and continuity, are parts of the physical world and (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  11. (1 other version)Structural Analogies Between Mathematical and Empirical Theories.Andoni Ibarra & Thomas Mormann - 1992 - In Javier Echeverría, Andoni Ibarra & Thomas Mormann (eds.), The space of mathematics: philosophical, epistemological, and historical explorations. New York: W. de Gruyter.
    Download  
     
    Export citation  
     
    Bookmark  
  12. The connection between mathematics and philosophy on the discrete–structural plane of thinking: the discrete–structural model of the world.Eldar Amirov - 2017 - Гілея: Науковий Вісник 126 (11):266-270.
    The discrete–structural structure of the world is described. In comparison with the idea of Heraclitus about an indissoluble world, preference is given to the discrete world of Democritus. It is noted that if the discrete atoms of Democritus were simple and indivisible, the atoms of the modern world indicated in the article would possess, rather, a structural structure. The article proves the problem of how the mutual connection of mathematics and philosophy influences cognition, which creates a discrete–structural worldview. The author (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13.  84
    Mathematics and its Applications: A Transcendental-Idealist Perspective.Jairo José da Silva - 2017 - Cham: Springer Verlag.
    This monograph offers a fresh perspective on the applicability of mathematics in science. It explores what mathematics must be so that its applications to the empirical world do not constitute a mystery. In the process, readers are presented with a new version of mathematical structuralism. The author details a philosophy of mathematics in which the problem of its applicability, particularly in physics, in all its forms can be explained and justified. Chapters cover: mathematics as a formal science, mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  14. Discourse Grammars and the Structure of Mathematical Reasoning II: The Nature of a Correct Theory of Proof and Its Value.John Corcoran - 1971 - Journal of Structural Learning 3 (2):1-16.
    1971. Discourse Grammars and the Structure of Mathematical Reasoning II: The Nature of a Correct Theory of Proof and Its Value, Journal of Structural Learning 3, #2, 1–16. REPRINTED 1976. Structural Learning II Issues and Approaches, ed. J. Scandura, Gordon & Breach Science Publishers, New York, MR56#15263. -/- This is the second of a series of three articles dealing with application of linguistics and logic to the study of mathematical reasoning, especially in the setting of a concern for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  15. The Applicability of Mathematics to Physical Modality.Nora Berenstain - 2017 - Synthese 194 (9):3361-3377.
    This paper argues that scientific realism commits us to a metaphysical determination relation between the mathematical entities that are indispensible to scientific explanation and the modal structure of the empirical phenomena those entities explain. The argument presupposes that scientific realism commits us to the indispensability argument. The viewpresented here is that the indispensability of mathematics commits us not only to the existence of mathematical structures and entities but to a metaphysical determination relation between those entities and the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  16. The Nature of the Structures of Applied Mathematics and the Metatheoretical Justification for the Mathematical Modeling.Catalin Barboianu - 2015 - Romanian Journal of Analytic Philosophy 9 (2):1-32.
    The classical (set-theoretic) concept of structure has become essential for every contemporary account of a scientific theory, but also for the metatheoretical accounts dealing with the adequacy of such theories and their methods. In the latter category of accounts, and in particular, the structural metamodels designed for the applicability of mathematics have struggled over the last decade to justify the use of mathematical models in sciences beyond their 'indispensability' in terms of either method or concepts/entities. In this paper, I (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Syntactic characterizations of first-order structures in mathematical fuzzy logic.Guillermo Badia, Pilar Dellunde, Vicent Costa & Carles Noguera - forthcoming - Soft Computing.
    This paper is a contribution to graded model theory, in the context of mathematical fuzzy logic. We study characterizations of classes of graded structures in terms of the syntactic form of their first-order axiomatization. We focus on classes given by universal and universal-existential sentences. In particular, we prove two amalgamation results using the technique of diagrams in the setting of structures valued on a finite MTL-algebra, from which analogues of the Łoś–Tarski and the Chang–Łoś–Suszko preservation theorems follow.
    Download  
     
    Export citation  
     
    Bookmark  
  18. Growing block time structures for mathematical and conscious ontologies.Sylvain Poirier - manuscript
    A version of the growing block theory of time is developed based on the choice of both consciousness and mathematics as fundamental substances, while dismissing the reality/semantics distinction usually assumed by works on time theory. The well-analyzable growing block structure of mathematical ontology revealed by mathematical logic, is used as a model for a possible deeper working of conscious time. Physical reality is explained as emerging from a combination of both substances, with a proposed specific version of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Mathematical and Non-causal Explanations: an Introduction.Daniel Kostić - 2019 - Perspectives on Science 1 (27):1-6.
    In the last couple of years, a few seemingly independent debates on scientific explanation have emerged, with several key questions that take different forms in different areas. For example, the questions what makes an explanation distinctly mathematical and are there any non-causal explanations in sciences (i.e., explanations that don’t cite causes in the explanans) sometimes take a form of the question of what makes mathematical models explanatory, especially whether highly idealized models in science can be explanatory and in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Semi-Platonist Aristotelianism: Review of James Franklin, An Aristotelian Realist Philosophy of Mathematics: Mathematics as the Science of Quantity and Structure[REVIEW]Catherine Legg - 2015 - Australasian Journal of Philosophy 93 (4):837-837.
    This rich book differs from much contemporary philosophy of mathematics in the author’s witty, down to earth style, and his extensive experience as a working mathematician. It accords with the field in focusing on whether mathematical entities are real. Franklin holds that recent discussion of this has oscillated between various forms of Platonism, and various forms of nominalism. He denies nominalism by holding that universals exist and denies Platonism by holding that they are concrete, not abstract - looking to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Discourse Grammars and the Structure of Mathematical Reasoning III: Two Theories of Proof,.John Corcoran - 1971 - Journal of Structural Learning 3 (3):1-24.
    ABSTRACT This part of the series has a dual purpose. In the first place we will discuss two kinds of theories of proof. The first kind will be called a theory of linear proof. The second has been called a theory of suppositional proof. The term "natural deduction" has often and correctly been used to refer to the second kind of theory, but I shall not do so here because many of the theories so-called are not of the second kind--they (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  22. On Some Considerations of Mathematical Physics: May we Identify Clifford Algebra as a Common Algebraic Structure for Classical Diffusion and Schrödinger Equations?Elio Conte - 2012 - Advanced Studies in Theoretical Physics 6 (26):1289-1307.
    We start from previous studies of G.N. Ord and A.S. Deakin showing that both the classical diffusion equation and Schrödinger equation of quantum mechanics have a common stump. Such result is obtained in rigorous terms since it is demonstrated that both diffusion and Schrödinger equations are manifestation of the same mathematical axiomatic set of the Clifford algebra. By using both such ( ) i A S and the i,±1 N algebra, it is evidenced, however, that possibly the two basic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Structure-preserving Representations, Constitution and the Relative A priori.Thomas Mormann - 2021 - Synthese 198 (Supplement 21):1-24.
    The aim of this paper is to show that a comprehensive account of the role of representations in science should reconsider some neglected theses of the classical philosophy of science proposed in the first decades of the 20th century. More precisely, it is argued that the accounts of Helmholtz and Hertz may be taken as prototypes of representational accounts in which structure preservation plays an essential role. Following Reichenbach, structure-preserving representations provide a useful device for formulating an up-to-date version of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  24. A Structural Equation Model on Pro-Social Skills and Expectancy-Value of STEM Students.Starr Clyde Sebial & Joy Mirasol - 2023 - European Journal of Educational Research 12 (2):967-976.
    The objective of the study was to develop a structural model that explores the relationship between Mathematics Performance and students’ self-regulated learning skills, grit, and expectancy-value towards science, technology, engineering and mathematics (STEM). The research collected survey data from 664 senior high school students from 17 STEM high schools, and conducted a covariance-based structural equation modeling (SEM) analysis. The results of the SEM analysis indicate that the Re-specified Self-Regulated Learning Skill – Expectancy-Value towards STEM – Grit – Mathematics Performance (Re-specified (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Chasing Individuation: Mathematical Description of Physical Systems.Zalamea Federico - 2016 - Dissertation, Paris Diderot University
    This work is a conceptual analysis of certain recent developments in the mathematical foundations of Classical and Quantum Mechanics which have allowed to formulate both theories in a common language. From the algebraic point of view, the set of observables of a physical system, be it classical or quantum, is described by a Jordan-Lie algebra. From the geometric point of view, the space of states of any system is described by a uniform Poisson space with transition probability. Both these (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Who's Afraid of Mathematical Diagrams?Silvia De Toffoli - 2023 - Philosophers' Imprint 23 (1).
    Mathematical diagrams are frequently used in contemporary mathematics. They are, however, widely seen as not contributing to the justificatory force of proofs: they are considered to be either mere illustrations or shorthand for non-diagrammatic expressions. Moreover, when they are used inferentially, they are seen as threatening the reliability of proofs. In this paper, I examine certain examples of diagrams that resist this type of dismissive characterization. By presenting two diagrammatic proofs, one from topology and one from algebra, I show (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  27. Structural Relativity and Informal Rigour.Neil Barton - 2022 - In Gianluigi Oliveri, Claudio Ternullo & Stefano Boscolo (eds.), Objects, Structures, and Logics, FilMat Studies in the Philosophy of Mathematics. Springer. pp. 133-174.
    Informal rigour is the process by which we come to understand particular mathematical structures and then manifest this rigour through axiomatisations. Structural relativity is the idea that the kinds of structures we isolate are dependent upon the logic we employ. We bring together these ideas by considering the level of informal rigour exhibited by our set-theoretic discourse, and argue that different foundational programmes should countenance different underlying logics (intermediate between first- and second-order) for formulating set theory. By (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Mathematical Modeling of Biological and Social Evolutionary Macrotrends.Leonid Grinin, Alexander V. Markov & Andrey V. Korotayev - 2014 - In Leonid Grinin & Andrey Korotayev (eds.), History & Mathematics: Trends and Cycles. Volgograd: "Uchitel" Publishing House. pp. 9-48.
    In the first part of this article we survey general similarities and differences between biological and social macroevolution. In the second (and main) part, we consider a concrete mathematical model capable of describing important features of both biological and social macroevolution. In mathematical models of historical macrodynamics, a hyperbolic pattern of world population growth arises from non-linear, second-order positive feedback between demographic growth and technological development. Based on diverse paleontological data and an analogy with macrosociological models, we suggest (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Mathematics as a science of non-abstract reality: Aristotelian realist philosophies of mathematics.James Franklin - 2022 - Foundations of Science 27 (2):327-344.
    There is a wide range of realist but non-Platonist philosophies of mathematics—naturalist or Aristotelian realisms. Held by Aristotle and Mill, they played little part in twentieth century philosophy of mathematics but have been revived recently. They assimilate mathematics to the rest of science. They hold that mathematics is the science of X, where X is some observable feature of the (physical or other non-abstract) world. Choices for X include quantity, structure, pattern, complexity, relations. The article lays out and compares these (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  30. Human Thought, Mathematics, and Physical Discovery.Gila Sher - 2023 - In Carl Posy & Yemima Ben-Menahem (eds.), Mathematical Knowledge, Objects and Applications: Essays in Memory of Mark Steiner. Springer. pp. 301-325.
    In this paper I discuss Mark Steiner’s view of the contribution of mathematics to physics and take up some of the questions it raises. In particular, I take up the question of discovery and explore two aspects of this question – a metaphysical aspect and a related epistemic aspect. The metaphysical aspect concerns the formal structure of the physical world. Does the physical world have mathematical or formal features or constituents, and what is the nature of these constituents? The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Time, Mathematics, and the Fold: A Post-Heideggerian Itinerary.Said Mikki - manuscript
    A perspective is provided on how to move beyond postmodernism while struggling to do philosophy in the twenty-first century. The ontological structures of time, history, and mathematics are analyzed from the vantagepoint of the Heideggerian theory of nonspatial Fold.
    Download  
     
    Export citation  
     
    Bookmark  
  32. Mathematical representation: playing a role.Kate Hodesdon - 2014 - Philosophical Studies 168 (3):769-782.
    The primary justification for mathematical structuralism is its capacity to explain two observations about mathematical objects, typically natural numbers. Non-eliminative structuralism attributes these features to the particular ontology of mathematics. I argue that attributing the features to an ontology of structural objects conflicts with claims often made by structuralists to the effect that their structuralist theses are versions of Quine’s ontological relativity or Putnam’s internal realism. I describe and argue for an alternative explanation for these features which instead (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  33.  85
    On the origin of fine structure constant and its derived expression in the BSM- Supergravitation Unified Theory.Stoyan Sarg Sargoytchev - unknown
    The fine structure constant appears in several fields of physics and its value is experimentally obtained with a high accuracy. Its physical origin however is unsolved long-standing problem. Richard Feynman expressed the idea that it could be similar to the natural irrational numbers, pi, and e. Amongst the proposed theoretical expressions with values closer to the experimental one is the formula of I. Gorelik which is based on rotating dipole with two empirically suggested coefficients, while the physical origin is unknown. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Mathematics as Metaphysical and Constructive.Eric Schmid - 2024 - Rue Americaine 13.
    Andr ́e Weil viewed mathematics as deeply intertwined with metaphysics. In his essay ”From Metaphysics to Mathematics,” he illustrates how mathematical ideas often arise from vague, metaphysical analogies and reflections that guide researchers toward new theories. For instance, Weil discusses how analogies between different areas, such as number theory and algebraic functions, have led to significant breakthroughs. These metaphysical underpinnings provide a fertile ground for mathematical creativity, eventually transforming into rigorous mathematical structures. -/- Alexander Grothendieck’s work, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Equilibrium explanation as structural non-mechanistic explanation: The case long-term bacterial persistence in human hosts.Javier Suárez & Roger Deulofeu - 2019 - Teorema: International Journal of Philosophy 3 (38):95-120.
    Philippe Huneman has recently questioned the widespread application of mechanistic models of scientific explanation based on the existence of structural explanations, i.e. explanations that account for the phenomenon to be explained in virtue of the mathematical properties of the system where the phenomenon obtains, rather than in terms of the mechanisms that causally produce the phenomenon. Structural explanations are very diverse, including cases like explanations in terms of bowtie structures, in terms of the topological properties of the system, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  36. The Ontogenesis of Mathematical Objects.Barry Smith - 1975 - Journal of the British Society for Phenomenology 6 (2):91-101.
    Mathematical objects are divided into (1) those which are autonomous, i.e., not dependent for their existence upon mathematicians’ conscious acts, and (2) intentional objects, which are so dependent. Platonist philosophy of mathematics argues that all objects belong to group (1), Brouwer’s intuitionism argues that all belong to group (2). Here we attempt to develop a dualist ontology of mathematics (implicit in the work of, e.g., Hilbert), exploiting the theories of Meinong, Husserl and Ingarden on the relations between autonomous and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  37. Set Theory and Structures.Neil Barton & Sy-David Friedman - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 223-253.
    Set-theoretic and category-theoretic foundations represent different perspectives on mathematical subject matter. In particular, category-theoretic language focusses on properties that can be determined up to isomorphism within a category, whereas set theory admits of properties determined by the internal structure of the membership relation. Various objections have been raised against this aspect of set theory in the category-theoretic literature. In this article, we advocate a methodological pluralism concerning the two foundational languages, and provide a theory that fruitfully interrelates a `structural' (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. Mathematics, The Computer Revolution and the Real World.James Franklin - 1988 - Philosophica 42:79-92.
    The philosophy of mathematics has largely abandoned foundational studies, but is still fixated on theorem proving, logic and number theory, and on whether mathematical knowledge is certain. That is not what mathematics looks like to, say, a knot theorist or an industrial mathematical modeller. The "computer revolution" shows that mathematics is a much more direct study of the world, especially its structural aspects.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  39. Mathematical Representation and Explanation: structuralism, the similarity account, and the hotchpotch picture.Ziren Yang - 2020 - Dissertation, University of Leeds
    This thesis starts with three challenges to the structuralist accounts of applied mathematics. Structuralism views applied mathematics as a matter of building mapping functions between mathematical and target-ended structures. The first challenge concerns how it is possible for a non-mathematical target to be represented mathematically when the mapping functions per se are mathematical objects. The second challenge arises out of inconsistent early calculus, which suggests that mathematical representation does not require rigorous mathematical structures. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Fine-Structure Constant from Golden Ratio Geometry.Michael A. Sherbon - 2018 - International Journal of Mathematics and Physical Sciences Research 5 (2):89-100.
    After a brief review of the golden ratio in history and our previous exposition of the fine-structure constant and equations with the exponential function, the fine-structure constant is studied in the context of other research calculating the fine-structure constant from the golden ratio geometry of the hydrogen atom. This research is extended and the fine-structure constant is then calculated in powers of the golden ratio to an accuracy consistent with the most recent publications. The mathematical constants associated with the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  41. The Physical Numbers: A New Foundational Logic-Numerical Structure For Mathematics And Physics.Gomez-Ramirez Danny A. J. - manuscript
    The boundless nature of the natural numbers imposes paradoxically a high formal bound to the use of standard artificial computer programs for solving conceptually challenged problems in number theory. In the context of the new cognitive foundations for mathematics' and physics' program immersed in the setting of artificial mathematical intelligence, we proposed a refined numerical system, called the physical numbers, preserving most of the essential intuitions of the natural numbers. Even more, this new numerical structure additionally possesses the property (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Well-Structured Biology: Numerical Taxonomy's Epistemic Vision for Systematics.Beckett Sterner - 2014 - In Andrew Hamilton (ed.), Patterns in Nature. University of California Press. pp. 213-244.
    What does it look like when a group of scientists set out to re-envision an entire field of biology in symbolic and formal terms? I analyze the founding and articulation of Numerical Taxonomy between 1950 and 1970, the period when it set out a radical new approach to classification and founded a tradition of mathematics in systematic biology. I argue that introducing mathematics in a comprehensive way also requires re-organizing the daily work of scientists in the field. Numerical taxonomists sought (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  43. Leibniz, Mathematics and the Monad.Simon Duffy - 2010 - In Sjoerd van Tuinen & Niamh McDonnell (eds.), Deleuze and The fold: a critical reader. New York: Palgrave-Macmillan. pp. 89--111.
    The reconstruction of Leibniz’s metaphysics that Deleuze undertakes in The Fold provides a systematic account of the structure of Leibniz’s metaphysics in terms of its mathematical foundations. However, in doing so, Deleuze draws not only upon the mathematics developed by Leibniz—including the law of continuity as reflected in the calculus of infinite series and the infinitesimal calculus—but also upon developments in mathematics made by a number of Leibniz’s contemporaries—including Newton’s method of fluxions. He also draws upon a number of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  44. Mathematics, isomorphism, and the identity of objects.Graham White - 2021 - Journal of Knowledge Structures and Systems 2 (2):56-58.
    We compare the medieval projects of commentaries and disputations with the modern projects of formal ontology and of mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  45. Mathematics embodied: Merleau-Ponty on geometry and algebra as fields of motor enaction.Jan Halák - 2022 - Synthese 200 (1):1-28.
    This paper aims to clarify Merleau-Ponty’s contribution to an embodied-enactive account of mathematical cognition. I first identify the main points of interest in the current discussions of embodied higher cognition and explain how they relate to Merleau-Ponty and his sources, in particular Husserl’s late works. Subsequently, I explain these convergences in greater detail by more specifically discussing the domains of geometry and algebra and by clarifying the role of gestalt psychology in Merleau-Ponty’s account. Beyond that, I explain how, for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Mathematical models of games of chance: Epistemological taxonomy and potential in problem-gambling research.Catalin Barboianu - 2015 - UNLV Gaming Research and Review Journal 19 (1):17-30.
    Games of chance are developed in their physical consumer-ready form on the basis of mathematical models, which stand as the premises of their existence and represent their physical processes. There is a prevalence of statistical and probabilistic models in the interest of all parties involved in the study of gambling – researchers, game producers and operators, and players – while functional models are of interest more to math-inclined players than problem-gambling researchers. In this paper I present a structural analysis (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  47. (1 other version)Mathematical Modality: An Investigation in Higher-order Logic.Andrew Bacon - forthcoming - Journal of Philosophical Logic.
    An increasing amount of contemporary philosophy of mathematics posits, and theorizes in terms of special kinds of mathematical modality. The goal of this paper is to bring recent work on higher-order metaphysics to bear on the investigation of these modalities. The main focus of the paper will be views that posit mathematical contingency or indeterminacy about statements that concern the `width' of the set theoretic universe, such as Cantor's continuum hypothesis. Within a higher-order framework I show that contingency (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  48. A Mathematical Model of Aristotle’s Syllogistic.John Corcoran - 1973 - Archiv für Geschichte der Philosophie 55 (2):191-219.
    In the present article we attempt to show that Aristotle's syllogistic is an underlying logiC which includes a natural deductive system and that it isn't an axiomatic theory as had previously been thought. We construct a mathematical model which reflects certain structural aspects of Aristotle's logic. We examine the relation of the model to the system of logic envisaged in scattered parts of Prior and Posterior Analytics. Our interpretation restores Aristotle's reputation as a logician of consummate imagination and skill. (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  49. Set Theory and Structures.Sy-David Friedman & Neil Barton - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 223-253.
    Set-theoretic and category-theoretic foundations represent different perspectives on mathematical subject matter. In particular, category-theoretic language focusses on properties that can be determined up to isomorphism within a category, whereas set theory admits of properties determined by the internal structure of the membership relation. Various objections have been raised against this aspect of set theory in the category-theoretic literature. In this article, we advocate a methodological pluralism concerning the two foundational languages, and provide a theory that fruitfully interrelates a ‘structural’ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Can mathematics explain the evolution of human language?Guenther Witzany - 2011 - Communicative and Integrative Biology 4 (5):516-520.
    Investigation into the sequence structure of the genetic code by means of an informatic approach is a real success story. The features of human language are also the object of investigation within the realm of formal language theories. They focus on the common rules of a universal grammar that lies behind all languages and determine generation of syntactic structures. This universal grammar is a depiction of material reality, i.e., the hidden logical order of things and its relations determined by (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
1 — 50 / 941