Results for 'Philosophy of Arithmetic'

955 found
Order:
  1.  60
    Husserl’s Philosophy of Arithmetic in Reviews.Carlo Ierna - 2013 - The New Yearbook for Phenomenology and Phenomenological Philosophy 12:198-242.
    This present collection of (translations of) reviews is intended to help obtain a more balanced picture of the reception and impact of Edmund Husserl’s first book, the 1891 Philosophy of Arithmetic. One of the insights to be gained from this non-exhaustive collection of reviews is that the Philosophy of Arithmetic had a much more widespread reception than hitherto assumed: in the present collection alone there already are fourteen, all published between 1891 and 1895. Three of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Husserl’s Early Semiotics and Number Signs: Philosophy of Arithmetic through the Lens of “On the Logic of Signs ”.Thomas Byrne - 2017 - Journal of the British Society for Phenomenology 48 (4):287-303.
    This paper demonstrates that Edmund Husserl’s frequently overlooked 1890 manuscript, “On the Logic of Signs,” when closely investigated, reveals itself to be the hermeneutical touchstone for his seminal 1891 Philosophy of Arithmetic. As the former comprises Husserl’s earliest attempt to account for all of the different kinds of signitive experience, his conclusions there can be directly applied to the latter, which is focused on one particular type of sign; namely, number signs. Husserl’s 1890 descriptions of motivating and replacing (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  3. An empirically feasible approach to the epistemology of arithmetic.Markus Pantsar - 2014 - Synthese 191 (17):4201-4229.
    Recent years have seen an explosion of empirical data concerning arithmetical cognition. In this paper that data is taken to be philosophically important and an outline for an empirically feasible epistemological theory of arithmetic is presented. The epistemological theory is based on the empirically well-supported hypothesis that our arithmetical ability is built on a protoarithmetical ability to categorize observations in terms of quantities that we have already as infants and share with many nonhuman animals. It is argued here that (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  4. On Radical Enactivist Accounts of Arithmetical Cognition.Markus Pantsar - 2022 - Ergo: An Open Access Journal of Philosophy 9.
    Hutto and Myin have proposed an account of radically enactive (or embodied) cognition (REC) as an explanation of cognitive phenomena, one that does not include mental representations or mental content in basic minds. Recently, Zahidi and Myin have presented an account of arithmetical cognition that is consistent with the REC view. In this paper, I first evaluate the feasibility of that account by focusing on the evolutionarily developed proto-arithmetical abilities and whether empirical data on them support the radical enactivist view. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. Logicism, Interpretability, and Knowledge of Arithmetic.Sean Walsh - 2014 - Review of Symbolic Logic 7 (1):84-119.
    A crucial part of the contemporary interest in logicism in the philosophy of mathematics resides in its idea that arithmetical knowledge may be based on logical knowledge. Here an implementation of this idea is considered that holds that knowledge of arithmetical principles may be based on two things: (i) knowledge of logical principles and (ii) knowledge that the arithmetical principles are representable in the logical principles. The notions of representation considered here are related to theory-based and structure-based notions of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  6. From Maximal Intersubjectivity to Objectivity: An Argument from the Development of Arithmetical Cognition.Markus Pantsar - 2022 - Topoi 42 (1):271-281.
    One main challenge of non-platonist philosophy of mathematics is to account for the apparent objectivity of mathematical knowledge. Cole and Feferman have proposed accounts that aim to explain objectivity through the intersubjectivity of mathematical knowledge. In this paper, focusing on arithmetic, I will argue that these accounts as such cannot explain the apparent objectivity of mathematical knowledge. However, with support from recent progress in the empirical study of the development of arithmetical cognition, a stronger argument can be provided. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Frege, Dedekind, and the Modern Epistemology of Arithmetic.Markus Pantsar - 2016 - Acta Analytica 31 (3):297-318.
    In early analytic philosophy, one of the most central questions concerned the status of arithmetical objects. Frege argued against the popular conception that we arrive at natural numbers with a psychological process of abstraction. Instead, he wanted to show that arithmetical truths can be derived from the truths of logic, thus eliminating all psychological components. Meanwhile, Dedekind and Peano developed axiomatic systems of arithmetic. The differences between the logicist and axiomatic approaches turned out to be philosophical as well (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. ONE AND THE MULTIPLE ON THE PHILOSOPHY OF MATHEMATICS - ALEXIS KARPOUZOS.Alexis Karpouzos - 2025 - Comsic Spirit 1:6.
    The relationship between the One and the Multiple in mystic philosophy is a profound and central theme that explores the nature of existence, the cosmos, and the divine. This theme is present in various mystical traditions, including those of the East and West, and it addresses the paradoxical coexistence of the unity and multiplicity of all things. -/- In mystic philosophy, the **One** often represents the ultimate reality, the source from which all things emanate and to which all (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  9. Could experience disconfirm the propositions of arithmetic?Jessica M. Wilson - 2000 - Canadian Journal of Philosophy 30 (1):55--84.
    Alberto Casullo ("Necessity, Certainty, and the A Priori", Canadian Journal of Philosophy 18, 1988) argues that arithmetical propositions could be disconfirmed by appeal to an invented scenario, wherein our standard counting procedures indicate that 2 + 2 != 4. Our best response to such a scenario would be, Casullo suggests, to accept the results of the counting procedures, and give up standard arithmetic. While Casullo's scenario avoids arguments against previous "disconfirming" scenarios, it founders on the assumption, common to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  10. Husserl’s Early Genealogy of the Number System.Thomas Byrne - 2019 - Meta: Research in Hermeneutics, Phenomenology, and Practical Philosophy 2 (11):408-428.
    This article accomplishes two goals. First, the paper clarifies Edmund Husserl’s investigation of the historical inception of the number system from his early works, Philosophy of Arithmetic and, “On the Logic of Signs (Semiotic)”. The article explores Husserl’s analysis of five historical developmental stages, which culminated in our ancestor’s ability to employ and enumerate with number signs. Second, the article reveals how Husserl’s conclusions about the history of the number system from his early works opens up a fusion (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  11. Mathematics as a science of non-abstract reality: Aristotelian realist philosophies of mathematics.James Franklin - 2022 - Foundations of Science 27 (2):327-344.
    There is a wide range of realist but non-Platonist philosophies of mathematics—naturalist or Aristotelian realisms. Held by Aristotle and Mill, they played little part in twentieth century philosophy of mathematics but have been revived recently. They assimilate mathematics to the rest of science. They hold that mathematics is the science of X, where X is some observable feature of the (physical or other non-abstract) world. Choices for X include quantity, structure, pattern, complexity, relations. The article lays out and compares (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  12. Three Kantian Strands in Frege’s View of Arithmetic.Gilead Bar-Elli - 2014 - Journal for the History of Analytical Philosophy 2 (7).
    On the background of explaining their different notions of analyticity, their different views on definitions, and some aspects of Frege’s notion of sense, three important Kantian strands that interweave into Frege’s view are exposed. First, Frege’s remarkable view that arithmetic, though analytic, contains truths that “extend our knowledge”, and by Kant’s use of the term, should be regarded synthetic. Secondly, that our arithmetical (and logical) knowledge depends on a sort of a capacity to recognize and identify objects, which are (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. Logicism and the ontological commitments of arithmetic.Harold T. Hodes - 1984 - Journal of Philosophy 81 (3):123-149.
    Download  
     
    Export citation  
     
    Bookmark   126 citations  
  14. Structure and Categoricity: Determinacy of Reference and Truth Value in the Philosophy of Mathematics.Tim Button & Sean Walsh - 2016 - Philosophia Mathematica 24 (3):283-307.
    This article surveys recent literature by Parsons, McGee, Shapiro and others on the significance of categoricity arguments in the philosophy of mathematics. After discussing whether categoricity arguments are sufficient to secure reference to mathematical structures up to isomorphism, we assess what exactly is achieved by recent ‘internal’ renditions of the famous categoricity arguments for arithmetic and set theory.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  15. Some Remarks on Wittgenstein’s Philosophy of Mathematics.Richard Startup - 2020 - Open Journal of Philosophy 10 (1):45-65.
    Drawing mainly from the Tractatus Logico-Philosophicus and his middle period writings, strategic issues and problems arising from Wittgenstein’s philosophy of mathematics are discussed. Topics have been so chosen as to assist mediation between the perspective of philosophers and that of mathematicians on their developing discipline. There is consideration of rules within arithmetic and geometry and Wittgenstein’s distinctive approach to number systems whether elementary or transfinite. Examples are presented to illuminate the relation between the meaning of an arithmetical generalisation (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  16. (1 other version)The Modal Status of Contextually A Priori Arithmetical Truths.Markus Pantsar - 2016 - In Francesca Boccuni & Andrea Sereni (eds.), Objectivity, Realism, and Proof. FilMat Studies in the Philosophy of Mathematics. Cham, Switzerland: Springer International Publishing. pp. 67-79.
    In Pantsar (2014), an outline for an empirically feasible epistemological theory of arithmetic is presented. According to that theory, arithmetical knowledge is based on biological primitives but in the resulting empirical context develops an essentially a priori character. Such contextual a priori theory of arithmetical knowledge can explain two of the three characteristics that are usually associated with mathematical knowledge: that it appears to be a priori and objective. In this paper it is argued that it can also explain (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  17. Arithmetic, Set Theory, Reduction and Explanation.William D’Alessandro - 2018 - Synthese 195 (11):5059-5089.
    Philosophers of science since Nagel have been interested in the links between intertheoretic reduction and explanation, understanding and other forms of epistemic progress. Although intertheoretic reduction is widely agreed to occur in pure mathematics as well as empirical science, the relationship between reduction and explanation in the mathematical setting has rarely been investigated in a similarly serious way. This paper examines an important particular case: the reduction of arithmetic to set theory. I claim that the reduction is unexplanatory. In (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  18. Reducing Arithmetic to Set Theory.A. C. Paseau - 2009 - In Ø. Linnebo O. Bueno (ed.), New Waves in Philosophy of Mathematics. Palgrave-Macmillan. pp. 35-55.
    The revival of the philosophy of mathematics in the 60s following its post-1931 slump left us with two conflicting positions on arithmetic’s ontological relationship to set theory. W.V. Quine’s view, presented in 'Word and Object' (1960), was that numbers are sets. The opposing view was advanced in another milestone of twentieth-century philosophy of mathematics, Paul Benacerraf’s 'What Numbers Could Not Be' (1965): one of the things numbers could not be, it explained, was sets; the other thing numbers (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  19. Reid, Constance. Hilbert (a Biography). Reviewed by Corcoran in Philosophy of Science 39 (1972), 106–08.John Corcoran - 1972 - Philosophy of Science 39 (1):106-108.
    Reid, Constance. Hilbert (a Biography). Reviewed by Corcoran in Philosophy of Science 39 (1972), 106–08. -/- Constance Reid was an insider of the Berkeley-Stanford logic circle. Her San Francisco home was in Ashbury Heights near the homes of logicians such as Dana Scott and John Corcoran. Her sister Julia Robinson was one of the top mathematical logicians of her generation, as was Julia’s husband Raphael Robinson for whom Robinson Arithmetic was named. Julia was a Tarski PhD and, in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  20. The Enculturated Move From Proto-Arithmetic to Arithmetic.Markus Pantsar - 2019 - Frontiers in Psychology 10.
    The basic human ability to treat quantitative information can be divided into two parts. With proto-arithmetical ability, based on the core cognitive abilities for subitizing and estimation, numerosities can be treated in a limited and/or approximate manner. With arithmetical ability, numerosities are processed (counted, operated on) systematically in a discrete, linear, and unbounded manner. In this paper, I study the theory of enculturation as presented by Menary (2015) as a possible explanation of how we make the move from the proto-arithmetical (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  21. Gentzen’s “cut rule” and quantum measurement in terms of Hilbert arithmetic. Metaphor and understanding modeled formally.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal 14 (14):1-37.
    Hilbert arithmetic in a wide sense, including Hilbert arithmetic in a narrow sense consisting by two dual and anti-isometric Peano arithmetics, on the one hand, and the qubit Hilbert space (originating for the standard separable complex Hilbert space of quantum mechanics), on the other hand, allows for an arithmetic version of Gentzen’s cut elimination and quantum measurement to be described uniformy as two processes occurring accordingly in those two branches. A philosophical reflection also justifying that unity by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Purity in Arithmetic: some Formal and Informal Issues.Andrew Arana - 2014 - In Godehard Link (ed.), Formalism and Beyond: On the Nature of Mathematical Discourse. Boston: De Gruyter. pp. 315-336.
    Over the years many mathematicians have voiced a preference for proofs that stay “close” to the statements being proved, avoiding “foreign”, “extraneous”, or “remote” considerations. Such proofs have come to be known as “pure”. Purity issues have arisen repeatedly in the practice of arithmetic; a famous instance is the question of complex-analytic considerations in the proof of the prime number theorem. This article surveys several such issues, and discusses ways in which logical considerations shed light on these issues.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  23. Fermat’s last theorem proved in Hilbert arithmetic. III. The quantum-information unification of Fermat’s last theorem and Gleason’s theorem.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (12):1-30.
    The previous two parts of the paper demonstrate that the interpretation of Fermat’s last theorem (FLT) in Hilbert arithmetic meant both in a narrow sense and in a wide sense can suggest a proof by induction in Part I and by means of the Kochen - Specker theorem in Part II. The same interpretation can serve also for a proof FLT based on Gleason’s theorem and partly similar to that in Part II. The concept of (probabilistic) measure of a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. The Ontology of Knowledge, logic, arithmetic, sets theory and geometry (issue 20220523).Jean-Louis Boucon - 2021 - Published.
    Despite the efforts undertaken to separate scientific reasoning and metaphysical considerations, despite the rigor of construction of mathematics, these are not, in their very foundations, independent of the modalities, of the laws of representation of the world. The OdC shows that the logical Facts Exist neither more nor less than the Facts of the world which are Facts of Knowledge. Mathematical facts are representation facts. The primary objective of this article is to integrate the subject into mathematics as a mode (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Fermat’s last theorem proved in Hilbert arithmetic. I. From the proof by induction to the viewpoint of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (7):1-57.
    In a previous paper, an elementary and thoroughly arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to Fermat himself though without being absolutely and precisely correct. The present paper elucidates the contemporary mathematical background, from which an inductive proof of FLT can be inferred since its proof for the case for “n (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. (1 other version)Hermann Lotze and the Genesis of Husserl's early philosophy (1886-1901).Denis Fisette - forthcoming - In N. De Warren (ed.), From Lotze to Husserl: Psychology, Mathematics and Philosophy in Göttingen. Springer.
    The purpose of this study is to assess Husserl’s debt to Lotze’s philosophy during the Halle period (1886-1901). I shall first track the sources of Husserl’s knowledge of Lotze’s philosophy during his studies with Brentano in Vienna and then with Stumpf in Halle. I shall then briefly comment on Husserl’s references to Lotze in his early work and research manuscripts for the second volume of his Philosophy of Arithmetic. In the third section, I examine Lotze’s influence (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  27. What the Tortoise Said to Achilles: Lewis Carroll’s paradox in terms of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (22):1-32.
    Lewis Carroll, both logician and writer, suggested a logical paradox containing furthermore two connotations (connotations or metaphors are inherent in literature rather than in mathematics or logics). The paradox itself refers to implication demonstrating that an intermediate implication can be always inserted in an implication therefore postponing its ultimate conclusion for the next step and those insertions can be iteratively and indefinitely added ad lib, as if ad infinitum. Both connotations clear up links due to the shared formal structure with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Arithmetic Judgements, First-Person Judgements and Immunity to Error Through Misidentification.Michele Palmira - 2018 - Review of Philosophy and Psychology 10 (1):155-172.
    The paper explores the idea that some singular judgements about the natural numbers are immune to error through misidentification by pursuing a comparison between arithmetic judgements and first-person judgements. By doing so, the first part of the paper offers a conciliatory resolution of the Coliva-Pryor dispute about so-called “de re” and “which-object” misidentification. The second part of the paper draws some lessons about what it takes to explain immunity to error through misidentification. The lessons are: First, the so-called Simple (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  29. Developing Artificial Human-Like Arithmetical Intelligence (and Why).Markus Pantsar - 2023 - Minds and Machines 33 (3):379-396.
    Why would we want to develop artificial human-like arithmetical intelligence, when computers already outperform humans in arithmetical calculations? Aside from arithmetic consisting of much more than mere calculations, one suggested reason is that AI research can help us explain the development of human arithmetical cognition. Here I argue that this question needs to be studied already in the context of basic, non-symbolic, numerical cognition. Analyzing recent machine learning research on artificial neural networks, I show how AI studies could potentially (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  30. Hilbert arithmetic as a Pythagorean arithmetic: arithmetic as transcendental.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (54):1-24.
    The paper considers a generalization of Peano arithmetic, Hilbert arithmetic as the basis of the world in a Pythagorean manner. Hilbert arithmetic unifies the foundations of mathematics (Peano arithmetic and set theory), foundations of physics (quantum mechanics and information), and philosophical transcendentalism (Husserl’s phenomenology) into a formal theory and mathematical structure literally following Husserl’s tracе of “philosophy as a rigorous science”. In the pathway to that objective, Hilbert arithmetic identifies by itself information related to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Hilbert mathematics versus (or rather “without”) Gödel mathematics: V. Ontomathematics!Vasil Penchev - 2024 - Metaphysics eJournal (Elsevier: SSRN) 17 (10):1-57.
    The paper is the final, fifth part of a series of studies introducing the new conceptions of “Hilbert mathematics” and “ontomathematics”. The specific subject of the present investigation is the proper philosophical sense of both, including philosophy of mathematics and philosophy of physics not less than the traditional “first philosophy” (as far as ontomathematics is a conservative generalization of ontology as well as of Heidegger’s “fundamental ontology” though in a sense) and history of philosophy (deepening Heidegger’s (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. On What Ground Do Thin Objects Exist? In Search of the Cognitive Foundation of Number Concepts.Markus Pantsar - 2023 - Theoria 89 (3):298-313.
    Linnebo in 2018 argues that abstract objects like numbers are “thin” because they are only required to be referents of singular terms in abstraction principles, such as Hume's principle. As the specification of existence claims made by analytic truths (the abstraction principles), their existence does not make any substantial demands of the world; however, as Linnebo notes, there is a potential counter-argument concerning infinite regress against introducing objects this way. Against this, he argues that vicious regress is avoided in the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  33. Fermat’s last theorem proved in Hilbert arithmetic. II. Its proof in Hilbert arithmetic by the Kochen-Specker theorem with or without induction.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (10):1-52.
    The paper is a continuation of another paper published as Part I. Now, the case of “n=3” is inferred as a corollary from the Kochen and Specker theorem (1967): the eventual solutions of Fermat’s equation for “n=3” would correspond to an admissible disjunctive division of qubit into two absolutely independent parts therefore versus the contextuality of any qubit, implied by the Kochen – Specker theorem. Incommensurability (implied by the absence of hidden variables) is considered as dual to quantum contextuality. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Application of natural deduction in Renaissance geometry.Mirek Ryszard - 2014 - Argument: Biannual Philosophical Journal 4 (2):425-438.
    my goal here is to provide a detailed analysis of the methods of inference that are employed in De prospectiva pingendi. For this purpose, a method of natural deduction is proposed. the treatise by Piero della Francesca is a manifestation of a union between the ne arts and the mathematical sciences of arithmetic and geometry. He de nes painting as a part of perspective and, speaking precisely, as a branch of geometry, which is why we nd advanced geometrical exercises (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. (1 other version)The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences.Bhupinder Singh Anand - forthcoming
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  36. Gödel Mathematics Versus Hilbert Mathematics. II Logicism and Hilbert Mathematics, the Identification of Logic and Set Theory, and Gödel’s 'Completeness Paper' (1930).Vasil Penchev - 2023 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 15 (1):1-61.
    The previous Part I of the paper discusses the option of the Gödel incompleteness statement (1931: whether “Satz VI” or “Satz X”) to be an axiom due to the pair of the axiom of induction in arithmetic and the axiom of infinity in set theory after interpreting them as logical negations to each other. The present Part II considers the previous Gödel’s paper (1930) (and more precisely, the negation of “Satz VII”, or “the completeness theorem”) as a necessary condition (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Early numerical cognition and mathematical processes.Markus Pantsar - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (2):285-304.
    In this paper I study the development of arithmetical cognition with the focus on metaphorical thinking. In an approach developing on Lakoff and Núñez, I propose one particular conceptual metaphor, the Process → Object Metaphor, as a key element in understanding the development of mathematical thinking.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  38. PROGRAM IMPLEMENTATION OF COMMUNITY-ORIENTED POLICING.Rhena Fe P. Tondo, Lessel Franco, Hasna Gumandol & Mark Patalinghu - 2020 - IOER INTERNATIONAL MULTIDISCIPLINARY RESEARCH JOURNAL, VOL. 2, NO. 4, DEC., 2020 2 (4).
    As the philosophy of policing shifts from a traditional to a community-based approach, its implementation needs to be assessed. The study determined the program implementation of community-oriented policing in the town of Dumingag Zamboanga del Sur and its effectiveness in crime reduction from 2014 to 2018. The study employed a descriptive-survey method with the questionnaire-checklist as the main instrument used in gathering the data and information. The survey questionnaire underwent an evaluation process by field expert and tested using Cronbach’s (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Review of The Art of the Infinite by R. Kaplan, E. Kaplan 324p(2003).Michael Starks - 2016 - In Suicidal Utopian Delusions in the 21st Century: Philosophy, Human Nature and the Collapse of Civilization-- Articles and Reviews 2006-2017 2nd Edition Feb 2018. Las Vegas, USA: Reality Press. pp. 619.
    This book tries to present math to the millions and does a pretty good job. It is simple and sometimes witty but often the literary allusions intrude and the text bogs down in pages of relentless math--lovely if you like it and horrid if you don´t. If you already know alot of math you will still probably find the discussions of general math, geometry, projective geometry, and infinite series to be a nice refresher. If you don´t know any and don´t (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. A Phenomenology of Race in Frege's Logic.Joshua M. Hall - forthcoming - Humanities Bulletin.
    This article derives from a project attempting to show that Western formal logic, from Aristotle onward, has both been partially constituted by, and partially constitutive of, what has become known as racism. In the present article, I will first discuss, in light of Frege’s honorary role as founder of the philosophy of mathematics, Reuben Hersh’s What is Mathematics, Really? Second, I will explore how the infamous section of Frege’s 1924 diary (specifically the entries from March 10 to April 9) (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  41.  50
    Foundations of Mathematics.Kliment Babushkovski - manuscript
    Analytical philosophy defines mathematics as an extension of logic. This research will restructure the progress in mathematical philosophy made by analytical thinkers like Wittgenstein, Russell, and Frege. We are setting up a new theory of mathematics and arithmetic’s familiar to Wittgenstein’s philosophy of language. The analytical theory proposed here proves that mathematics can be defined with non-logical terms, like numbers, theorems, and operators. We’ll explain the role of the arithmetical operators and geometrical theorems to be foundational (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42.  80
    Brouwer's Intuition of Twoity and Constructions in Separable Mathematics.Bruno Bentzen - 2023 - History and Philosophy of Logic 45 (3):341-361.
    My first aim in this paper is to use time diagrams in the style of Brentano to analyze constructions in Brouwer's separable mathematics more precisely. I argue that constructions must involve not only pairing and projecting as basic operations guaranteed by the intuition of twoity, as sometimes assumed in the literature, but also a recalling operation. My second aim is to argue that Brouwer's views on the intuition of twoity and arithmetic lead to an ontological explosion. Redeveloping the constructions (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  43. All science as rigorous science: the principle of constructive mathematizability of any theory.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (12):1-15.
    A principle, according to which any scientific theory can be mathematized, is investigated. Social science, liberal arts, history, and philosophy are meant first of all. That kind of theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Three Dogmas of First-Order Logic and some Evidence-based Consequences for Constructive Mathematics of differentiating between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism.Bhupinder Singh Anand - manuscript
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then adopt what (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Syntactical Treatment of Modalities, 6 February.Lorenz Demey & Jan Heylen - 2013 - The Reasoner 7 (4):45-45.
    The workshop took place in Leuven, Belgium, and was hosted by the KU Leuven's Centre for Logic and Analytic Philosophy. The workshop’s theme was the syntactical treatment of (alethic, epistemic, etc.) modalities. The standard view on modalities nowadays is that they are operators. Syntactic theories, however, treat modalities as predicates, and thus have to assume a background theory which is sufficiently strong to encode its own formulas (usually, one works with some system of arithmetic and Gödel coding). As (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Hilbert's Metamathematical Problems and Their Solutions.Besim Karakadilar - 2008 - Dissertation, Boston University
    This dissertation examines several of the problems that Hilbert discovered in the foundations of mathematics, from a metalogical perspective. The problems manifest themselves in four different aspects of Hilbert’s views: (i) Hilbert’s axiomatic approach to the foundations of mathematics; (ii) His response to criticisms of set theory; (iii) His response to intuitionist criticisms of classical mathematics; (iv) Hilbert’s contribution to the specification of the role of logical inference in mathematical reasoning. This dissertation argues that Hilbert’s axiomatic approach was guided primarily (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Truth, Proof and Gödelian Arguments: A Defence of Tarskian Truth in Mathematics.Markus Pantsar - 2009 - Dissertation, University of Helsinki
    One of the most fundamental questions in the philosophy of mathematics concerns the relation between truth and formal proof. The position according to which the two concepts are the same is called deflationism, and the opposing viewpoint substantialism. In an important result of mathematical logic, Kurt Gödel proved in his first incompleteness theorem that all consistent formal systems containing arithmetic include sentences that can neither be proved nor disproved within that system. However, such undecidable Gödel sentences can be (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  48. Frege, Carnap, and Explication: ‘Our Concern Here Is to Arrive at a Concept of Number Usable for the Purpose of Science’.Gregory Lavers - 2013 - History and Philosophy of Logic 34 (3):225-41.
    This paper argues that Carnap both did not view and should not have viewed Frege's project in the foundations of mathematics as misguided metaphysics. The reason for this is that Frege's project was to give an explication of number in a very Carnapian sense — something that was not lost on Carnap. Furthermore, Frege gives pragmatic justification for the basic features of his system, especially where there are ontological considerations. It will be argued that even on the question of the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  49. Sarah Ricardo’s tale of Wealth and Virtue.Sergio Volodia Marcello Cremaschi - 2014 - History of Economics Review 60 (1):30-49.
    The paper reconstructs the life and activity of the author of a famous novel for boys as well as of a textbook of arithmetic and of essays on educational issues, who was also the sister of a famous economist. The bulk of the paper is dedicated to Alfred Dudley, a novel for boys about wealth, status, speculation, poverty, manual work, emigration and the role of virtue in making a decent society possible. Also the author’s educational views are discussed, highlighting (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. The 'Noncausal Causality' of Quantum Information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (45):1-7.
    The paper is concentrated on the special changes of the conception of causality from quantum mechanics to quantum information meaning as a background the revolution implemented by the former to classical physics and science after Max Born’s probabilistic reinterpretation of wave function. Those changes can be enumerated so: (1) quantum information describes the general case of the relation of two wave functions, and particularly, the causal amendment of a single one; (2) it keeps the physical description to be causal by (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 955