Results for 'mathematical cognition'

999 found
Order:
  1. Mathematical cognition and enculturation: introduction to the Synthese special issue.Markus Pantsar - 2020 - Synthese 197 (9):3647-3655.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  2. Mathematical Cognition: Brain and Cognitive Research and Its Implications for Education.Qi Dong, Hong-Chuan Zhang & Xin-lin Zhou - 2019 - Journal of Human Cognition 3 (1):25-40.
    Mathematical cognition is one of the most important cognitive functions of human beings. The latest brain and cognitive research have shown that mathematical cognition is a system with multiple components and subsystems. It has phylogenetic root, also is related to ontogenetic development and learning, relying on a large-scale cerebral network including parietal, frontal and temporal regions. Especially, the parietal cortex plays an important role during mathematical cognitive processes. This indicates that language and visuospatial functions are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Mathematical Cognition: A Case of Enculturation.Richard Menary - 2015 - Open Mind.
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  4. Extended mathematical cognition: external representations with non-derived content.Karina Vold & Dirk Schlimm - 2020 - Synthese 197 (9):3757-3777.
    Vehicle externalism maintains that the vehicles of our mental representations can be located outside of the head, that is, they need not be instantiated by neurons located inside the brain of the cogniser. But some disagree, insisting that ‘non-derived’, or ‘original’, content is the mark of the cognitive and that only biologically instantiated representational vehicles can have non-derived content, while the contents of all extra-neural representational vehicles are derived and thus lie outside the scope of the cognitive. In this paper (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  5. The cultural challenge in mathematical cognition.Andrea Bender, Dirk Schlimm, Stephen Crisomalis, Fiona M. Jordan, Karenleigh A. Overmann & Geoffrey B. Saxe - 2018 - Journal of Numerical Cognition 2 (4):448–463.
    In their recent paper on “Challenges in mathematical cognition”, Alcock and colleagues (Alcock et al. [2016]. Challenges in mathematical cognition: A collaboratively-derived research agenda. Journal of Numerical Cognition, 2, 20-41) defined a research agenda through 26 specific research questions. An important dimension of mathematical cognition almost completely absent from their discussion is the cultural constitution of mathematical cognition. Spanning work from a broad range of disciplines – including anthropology, archaeology, cognitive science, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Mathematical Wit and Mathematical Cognition.Andrew Aberdein - 2013 - Topics in Cognitive Science 5 (2):231-250.
    The published works of scientists often conceal the cognitive processes that led to their results. Scholars of mathematical practice must therefore seek out less obvious sources. This article analyzes a widely circulated mathematical joke, comprising a list of spurious proof types. An account is proposed in terms of argumentation schemes: stereotypical patterns of reasoning, which may be accompanied by critical questions itemizing possible lines of defeat. It is argued that humor is associated with risky forms of inference, which (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  7. Numerical cognition and mathematical realism.Helen De Cruz - 2016 - Philosophers' Imprint 16.
    Humans and other animals have an evolved ability to detect discrete magnitudes in their environment. Does this observation support evolutionary debunking arguments against mathematical realism, as has been recently argued by Clarke-Doane, or does it bolster mathematical realism, as authors such as Joyce and Sinnott-Armstrong have assumed? To find out, we need to pay closer attention to the features of evolved numerical cognition. I provide a detailed examination of the functional properties of evolved numerical cognition, and (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  8. Mathematics - an imagined tool for rational cognition.Boris Culina - manuscript
    Analysing several characteristic mathematical models: natural and real numbers, Euclidean geometry, group theory, and set theory, I argue that a mathematical model in its final form is a junction of a set of axioms and an internal partial interpretation of the corresponding language. It follows from the analysis that (i) mathematical objects do not exist in the external world: they are our internally imagined objects, some of which, at least approximately, we can realize or represent; (ii) (...) truths are not truths about the external world but specifications (formulations) of mathematical conceptions; (iii) mathematics is first and foremost our imagined tool by which, with certain assumptions about its applicability, we explore nature and synthesize our rational cognition of it. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  9. Animal Cognition, Species Invariantism, and Mathematical Realism.Helen De Cruz - 2019 - In Andrew Aberdein & Matthew Inglis (eds.), Advances in Experimental Philosophy of Logic and Mathematics. London: Bloomsbury Academic. pp. 39-61.
    What can we infer from numerical cognition about mathematical realism? In this paper, I will consider one aspect of numerical cognition that has received little attention in the literature: the remarkable similarities of numerical cognitive capacities across many animal species. This Invariantism in Numerical Cognition (INC) indicates that mathematics and morality are disanalogous in an important respect: proto-moral beliefs differ substantially between animal species, whereas proto-mathematical beliefs (at least in the animals studied) seem to show (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Cognitive and Computational Complexity: Considerations from Mathematical Problem Solving.Markus Pantsar - 2019 - Erkenntnis 86 (4):961-997.
    Following Marr’s famous three-level distinction between explanations in cognitive science, it is often accepted that focus on modeling cognitive tasks should be on the computational level rather than the algorithmic level. When it comes to mathematical problem solving, this approach suggests that the complexity of the task of solving a problem can be characterized by the computational complexity of that problem. In this paper, I argue that human cognizers use heuristic and didactic tools and thus engage in cognitive processes (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  11. Mathematics and Explanatory Generality: Nothing but Cognitive Salience.Juha Saatsi & Robert Knowles - 2021 - Erkenntnis 86 (5):1119-1137.
    We demonstrate how real progress can be made in the debate surrounding the enhanced indispensability argument. Drawing on a counterfactual theory of explanation, well-motivated independently of the debate, we provide a novel analysis of ‘explanatory generality’ and how mathematics is involved in its procurement. On our analysis, mathematics’ sole explanatory contribution to the procurement of explanatory generality is to make counterfactual information about physical dependencies easier to grasp and reason with for creatures like us. This gives precise content to key (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  12. Cognitive Skills Achievement in Mathematics of the Elementary Pre-Service Teachers Using Piaget’s Seven Logical Operations.Jaynelle G. Domingo, Edwin D. Ibañez, Gener Subia, Jupeth Pentang, Lorinda E. Pascual, Jennilyn C. Mina, Arlene V. Tomas & Minnie M. Liangco - 2021 - Turkish Journal of Computer and Mathematics Education 12 (4):435-440.
    This study determined the cognitive skills achievement in mathematics of elementary pre-service teachers as a basis for improving problem-solving and critical thinking which was analyzed using Piaget's seven logical operations namely: classification, seriation, logical multiplication, compensation, ratio and proportional thinking, probability thinking, and correlational thinking. This study utilized an adopted Test on Logical Operations (TLO) and descriptive research design to describe the cognitive skills achievement and to determine the affecting factors. Overall, elementary pre-service teachers performed with sufficient understanding in dealing (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  13. The Mathematical Facts Of Games Of Chance Between Exposure, Teaching, And Contribution To Cognitive Therapies: Principles Of An Optimal Mathematical Intervention For Responsible Gambling.Catalin Barboianu - 2013 - Romanian Journal of Experimental Applied Psychology 4 (3):25-40.
    On the question of whether gambling behavior can be changed as result of teaching gamblers the mathematics of gambling, past studies have yielded contradictory results, and a clear conclusion has not yet been drawn. In this paper, I bring some criticisms to the empirical studies that tended to answer no to this hypothesis, regarding the sampling and laboratory testing, and I argue that an optimal mathematical scholastic intervention with the objective of preventing problem gambling is possible, by providing the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14. Cognitive Skills in Basic Mathematics of College Freshmen in the Philippines.Analyn M. Gamit - 2022 - Journal of Applied Mathematics and Physics 10 (12):3616-3628.
    Many students consider mathematics as the most dreaded subject in their curriculum, so much so that the term “math phobia” or “math anxiety” is practically a part of clinical psychological literature. This symptom is widespread and students suffer mental disturbances when facing mathematical activity because understanding mathematics is a great task for them. This paper described the students’ cognitive skills performance in Basic Mathematics based on the following logical operations: Classification, Seriation, Logical Multiplication, Compensation, Ratio and Proportional Thinking, Probability (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Mathematics for Cognitive Science.Venkata Rayudu Posina - manuscript
    That the state-of-affairs of cognitive science is not good is brought into figural salience in "What happened to cognitive science?" (Núñez et al., 2019). We extend their objective description of 'what's wrong' to a prescription of 'how to correct'. Cognitive science, in its quest to elucidate 'how we know', embraces a long list of subjects, while ignoring Mathematics (Fig. 1a, Núñez et al., 2019). Mathematics is known for making the unknown to be known (cf. solving for unknowns). This acknowledgement naturally (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Early numerical cognition and mathematical processes.Markus Pantsar - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (2):285-304.
    In this paper I study the development of arithmetical cognition with the focus on metaphorical thinking. In an approach developing on Lakoff and Núñez, I propose one particular conceptual metaphor, the Process → Object Metaphor, as a key element in understanding the development of mathematical thinking.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  17. Effect of cognitive restructuring on junior secondary school mathematics text anxiety in Oshimili south of L.G.A of Delta State.A. N. Anyamene & G. U. Ogugua - 2019 - Hofa: African Journal of Multidisciplinary Research 4 (1):2019.
    The study investigated the effect of cognitive restructuring on junior secondary school mathematics test anxiety in Oshimili south L.G.A of Delta State. Two research questions and two hypotheses tested at 0.05 level of significance guided the study. Quasi-experimental research design was adopted for this study. The population for this study was a total of 1224 students. These comprised of all the JSS 2 students from Oshimili South Local Government Area of Delta State. Research sample consisted of 120 JSS 2 students (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. The fundamental cognitive approaches of mathematics.Salvador Daniel Escobedo Casillas - manuscript
    We propose a way to explain the diversification of branches of mathematics, distinguishing the different approaches by which mathematical objects can be studied. In our philosophy of mathematics, there is a base object, which is the abstract multiplicity that comes from our empirical experience. However, due to our human condition, the analysis of such multiplicity is covered by other empirical cognitive attitudes (approaches), diversifying the ways in which it can be conceived, and consequently giving rise to different mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. A fresh look at research strategies in computational cognitive science: The case of enculturated mathematical problem solving.Regina E. Fabry & Markus Pantsar - 2019 - Synthese 198 (4):3221-3263.
    Marr’s seminal distinction between computational, algorithmic, and implementational levels of analysis has inspired research in cognitive science for more than 30 years. According to a widely-used paradigm, the modelling of cognitive processes should mainly operate on the computational level and be targeted at the idealised competence, rather than the actual performance of cognisers in a specific domain. In this paper, we explore how this paradigm can be adopted and revised to understand mathematical problem solving. The computational-level approach applies methods (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  20. Mathematical symbols as epistemic actions.Johan De Smedt & Helen De Cruz - 2013 - Synthese 190 (1):3-19.
    Recent experimental evidence from developmental psychology and cognitive neuroscience indicates that humans are equipped with unlearned elementary mathematical skills. However, formal mathematics has properties that cannot be reduced to these elementary cognitive capacities. The question then arises how human beings cognitively deal with more advanced mathematical ideas. This paper draws on the extended mind thesis to suggest that mathematical symbols enable us to delegate some mathematical operations to the external environment. In this view, mathematical symbols (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  21. Plato’s Philosophy of Cognition by Mathematical Modelling.Roman S. Kljujkov & Sergey F. Kljujkov - 2014 - Dialogue and Universalism 24 (3):110-115.
    By the end of his life Plato had rearranged the theory of ideas into his teaching about ideal numbers, but no written records have been left. The Ideal mathematics of Plato is present in all his dialogues. It can be clearly grasped in relation to the effective use of mathematical modelling. Many problems of mathematical modelling were laid in the foundation of the method by cutting the three-level idealism of Plato to the single-level “ideism” of Aristotle. For a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Descriptive Complexity, Computational Tractability, and the Logical and Cognitive Foundations of Mathematics.Markus Pantsar - 2020 - Minds and Machines 31 (1):75-98.
    In computational complexity theory, decision problems are divided into complexity classes based on the amount of computational resources it takes for algorithms to solve them. In theoretical computer science, it is commonly accepted that only functions for solving problems in the complexity class P, solvable by a deterministic Turing machine in polynomial time, are considered to be tractable. In cognitive science and philosophy, this tractability result has been used to argue that only functions in P can feasibly work as computational (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  23.  78
    (General) Conceptual Substratum As A New Foundational Metamathematical Cognitive Mechanism In Artificial Mathematical Intelligence.Gomez-Ramirez Danny A. J. - manuscript
    We describe (essential features and an axiomatization of) a new metamathematical (cognitive) ability, i.e., functional conceptual substratum, used implicitly in the generation of several mathematical proofs and definitions, and playing a fundamental role in Artificial Mathematical Intelligence (or Cognitive-computational metamathematics). Furthermore, we present an initial (first-order) formalization of this mechanism together with its characterizing relation with classic notions like primitive positive definability and Diophantiveness. Additionally, we analyze the semantic variability of functional conceptual substratum when small syntactic modifications are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Mathematics embodied: Merleau-Ponty on geometry and algebra as fields of motor enaction.Jan Halák - 2022 - Synthese 200 (1):1-28.
    This paper aims to clarify Merleau-Ponty’s contribution to an embodied-enactive account of mathematical cognition. I first identify the main points of interest in the current discussions of embodied higher cognition and explain how they relate to Merleau-Ponty and his sources, in particular Husserl’s late works. Subsequently, I explain these convergences in greater detail by more specifically discussing the domains of geometry and algebra and by clarifying the role of gestalt psychology in Merleau-Ponty’s account. Beyond that, I explain (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Mathematical models of games of chance: Epistemological taxonomy and potential in problem-gambling research.Catalin Barboianu - 2015 - UNLV Gaming Research and Review Journal 19 (1):17-30.
    Games of chance are developed in their physical consumer-ready form on the basis of mathematical models, which stand as the premises of their existence and represent their physical processes. There is a prevalence of statistical and probabilistic models in the interest of all parties involved in the study of gambling – researchers, game producers and operators, and players – while functional models are of interest more to math-inclined players than problem-gambling researchers. In this paper I present a structural analysis (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  26. Hilbert Mathematics versus Gödel Mathematics. III. Hilbert Mathematics by Itself, and Gödel Mathematics versus the Physical World within It: both as Its Particular Cases.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (47):1-46.
    The paper discusses Hilbert mathematics, a kind of Pythagorean mathematics, to which the physical world is a particular case. The parameter of the “distance between finiteness and infinity” is crucial. Any nonzero finite value of it features the particular case in the frameworks of Hilbert mathematics where the physical world appears “ex nihilo” by virtue of an only mathematical necessity or quantum information conservation physically. One does not need the mythical Big Bang which serves to concentrate all the violations (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. A Cognitive Approach to Benacerraf's Dilemma.Luke Jerzykiewicz - 2009 - Dissertation, University of Western Ontario
    One of the important challenges in the philosophy of mathematics is to account for the semantics of sentences that express mathematical propositions while simultaneously explaining our access to their contents. This is Benacerraf’s Dilemma. In this dissertation, I argue that cognitive science furnishes new tools by means of which we can make progress on this problem. The foundation of the solution, I argue, must be an ontologically realist, albeit non-platonist, conception of mathematical reality. The semantic portion of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Mathematical Knowledge, the Analytic Method, and Naturalism.Fabio Sterpetti - 2018 - In Sorin Bangu (ed.), Naturalizing Logico-Mathematical Knowledge: Approaches From Psychology and Cognitive Science. New York: Routledge. pp. 268-293.
    This chapter tries to answer the following question: How should we conceive of the method of mathematics, if we take a naturalist stance? The problem arises since mathematical knowledge is regarded as the paradigm of certain knowledge, because mathematics is based on the axiomatic method. Moreover, natural science is deeply mathematized, and science is crucial for any naturalist perspective. But mathematics seems to provide a counterexample both to methodological and ontological naturalism. To face this problem, some authors tried to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29. Bayesian Cognitive Science. Routledge Encyclopaedia of Philosophy.Matteo Colombo - 2023 - Routledge Encyclopaedia of Philosophy.
    Bayesian cognitive science is a research programme that relies on modelling resources from Bayesian statistics for studying and understanding mind, brain, and behaviour. Conceiving of mental capacities as computing solutions to inductive problems, Bayesian cognitive scientists develop probabilistic models of mental capacities and evaluate their adequacy based on behavioural and neural data generated by humans (or other cognitive agents) performing a pertinent task. The overarching goal is to identify the mathematical principles, algorithmic procedures, and causal mechanisms that enable cognitive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Naturalising Mathematics? A Wittgensteinian Perspective.Jan Stam, Martin Stokhof & Michiel Van Lambalgen - 2022 - Philosophies 7 (4):85.
    There is a noticeable gap between results of cognitive neuroscientific research into basic mathematical abilities and philosophical and empirical investigations of mathematics as a distinct intellectual activity. The paper explores the relevance of a Wittgensteinian framework for dealing with this discrepancy.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31.  95
    Reflection of the mathematical dimension of gambling in iGaming online content: A qualitative analysis - Fourth technical report.Catalin Barboianu - 2024 - Philscience.
    In light of the observations and research design presented in the previous reports, the current technical report is focused on the relationship between the quality and specificity of the content of the gambling sites and the site’s SEO and marketing policy. This relationship is dependent upon the category of the gambling site and the difference in content quality, and the degree to which the mathematical dimension of gambling is reflected in this content is explained by this dependence.
    Download  
     
    Export citation  
     
    Bookmark  
  32. Irreducible Cognitive Phenomenology and the AHA! Experience.John Joseph Dorsch - 2016 - Phenomenology and Mind 10:108-121.
    Elijah Chudnoff’s case for irreducible cognitive phenomenology hinges on seeming to see the truth of a mathematical proposition (Chudnoff 2015). In the following, I develop an augmented version of Chudnoff’s case, not based on seeming to see, or intuition, but based on being in a state with presentational phenomenology of high-level content. In contrast to other cases for cognitive phenomenology, those based on Strawson’s case (Strawson 2011), I argue that the case presented here is able to withstand counterarguments, which (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  33. The connection between mathematics and philosophy on the discrete–structural plane of thinking: the discrete–structural model of the world.Eldar Amirov - 2017 - Гілея: Науковий Вісник 126 (11):266-270.
    The discrete–structural structure of the world is described. In comparison with the idea of Heraclitus about an indissoluble world, preference is given to the discrete world of Democritus. It is noted that if the discrete atoms of Democritus were simple and indivisible, the atoms of the modern world indicated in the article would possess, rather, a structural structure. The article proves the problem of how the mutual connection of mathematics and philosophy influences cognition, which creates a discrete–structural worldview. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Human Thought, Mathematics, and Physical Discovery.Gila Sher - 2023 - In Carl Posy & Yemima Ben-Menahem (eds.), Mathematical Knowledge, Objects and Applications: Essays in Memory of Mark Steiner. Berlin: Springer. pp. 301-325.
    In this paper I discuss Mark Steiner’s view of the contribution of mathematics to physics and take up some of the questions it raises. In particular, I take up the question of discovery and explore two aspects of this question – a metaphysical aspect and a related epistemic aspect. The metaphysical aspect concerns the formal structure of the physical world. Does the physical world have mathematical or formal features or constituents, and what is the nature of these constituents? The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Can mathematics explain the evolution of human language?Guenther Witzany - 2011 - Communicative and Integrative Biology 4 (5):516-520.
    Investigation into the sequence structure of the genetic code by means of an informatic approach is a real success story. The features of human language are also the object of investigation within the realm of formal language theories. They focus on the common rules of a universal grammar that lies behind all languages and determine generation of syntactic structures. This universal grammar is a depiction of material reality, i.e., the hidden logical order of things and its relations determined by natural (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  36.  94
    Mathematical problem-solving strategies among student teachers.Melanie Gurat - 2018 - Journal on Efficiency and Responsibility in Education and Science 11 (3):53-64.
    The main purpose of the study is to understand the mathematical problem-solving strategies among student teachers. This study used both quantitative and qualitative type of research. Aside from the semi-structured interviews, data were gathered through participant's actual mathematical problem-solving outputs and the videotaped interviews. Findings revealed that the problem-solving strategies among student teachers in the Problem-Solving subject are cognitive, metacognitive and other strategies. The cognitive strategies used by the student teachers are rehearsal, elaboration, and organization. The metacognitive strategies (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  37. Many-valued logics. A mathematical and computational introduction.Luis M. Augusto - 2020 - London: College Publications.
    2nd edition. Many-valued logics are those logics that have more than the two classical truth values, to wit, true and false; in fact, they can have from three to infinitely many truth values. This property, together with truth-functionality, provides a powerful formalism to reason in settings where classical logic—as well as other non-classical logics—is of no avail. Indeed, originally motivated by philosophical concerns, these logics soon proved relevant for a plethora of applications ranging from switching theory to cognitive modeling, and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  38. Ideality and Cognitive Development: Further Comments on Azeri’s “The Match of Ideals”.Chris Drain - 2020 - Social Epistemology Review and Reply Collective 9 (11):15-27.
    Siyaves Azeri (2020) quite well shows that arithmetical thinking emerges on the basis of specific social practices and material engagement (clay tokens for economic exchange practices beget number concepts, e.g.). But his discussion here is relegated mostly to Neolithic and Bronze Age practices. While surely such practices produced revolutions in the cognitive abilities of many humans, much of the cognitive architecture that allows normative conceptual thought was already in place long before this time. This response, then, is an attempt to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  39. Cognitive Computation sans Representation.Paul Schweizer - 2017 - In Thomas Powers (ed.), Philosophy and Computing: Essays in epistemology, philosophy of mind, logic, and ethics,. Cham, Switzerland: Springer. pp. 65-84.
    The Computational Theory of Mind (CTM) holds that cognitive processes are essentially computational, and hence computation provides the scientific key to explaining mentality. The Representational Theory of Mind (RTM) holds that representational content is the key feature in distinguishing mental from non-mental systems. I argue that there is a deep incompatibility between these two theoretical frameworks, and that the acceptance of CTM provides strong grounds for rejecting RTM. The focal point of the incompatibility is the fact that representational content is (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  40. Recalcitrant Disagreement in Mathematics: An “Endless and Depressing Controversy” in the History of Italian Algebraic Geometry.Silvia De Toffoli & Claudio Fontanari - 2023 - Global Philosophy 33 (38):1-29.
    If there is an area of discourse in which disagreement is virtually absent, it is mathematics. After all, mathematicians justify their claims with deductive proofs: arguments that entail their conclusions. But is mathematics really exceptional in this respect? Looking at the history and practice of mathematics, we soon realize that it is not. First, deductive arguments must start somewhere. How should we choose the starting points (i.e., the axioms)? Second, mathematicians, like the rest of us, are fallible. Their ability to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  41. Human reasoning and cognitive science.Keith Stenning & Michiel van Lambalgen - 2008 - Boston, USA: MIT Press.
    In the late summer of 1998, the authors, a cognitive scientist and a logician, started talking about the relevance of modern mathematical logic to the study of human reasoning, and we have been talking ever since. This book is an interim report of that conversation. It argues that results such as those on the Wason selection task, purportedly showing the irrelevance of formal logic to actual human reasoning, have been widely misinterpreted, mainly because the picture of logic current in (...)
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  42. Problem Solving and Situated Cognition.David Kirsh - 2009 - The Cambridge Handbook of Situated Cognition:264-306.
    In the course of daily life we solve problems often enough that there is a special term to characterize the activity and the right to expect a scientific theory to explain its dynamics. The classical view in psychology is that to solve a problem a subject must frame it by creating an internal representation of the problem’s structure, usually called a problem space. This space is an internally generable representation that is mathematically identical to a graph structure with nodes and (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  43. Mathematical realism and conceptual semantics.Luke Jerzykiewicz - 2012 - In Oleg Prosorov & Vladimir Orevkov (eds.), Philosophy, Mathematics, Linguistics: Aspects of Interaction. Euler International Mathematical Institute.
    The dominant approach to analyzing the meaning of natural language sentences that express mathematical knowl- edge relies on a referential, formal semantics. Below, I discuss an argument against this approach and in favour of an internalist, conceptual, intensional alternative. The proposed shift in analytic method offers several benefits, including a novel perspective on what is required to track mathematical content, and hence on the Benacerraf dilemma. The new perspective also promises to facilitate discussion between philosophers of mathematics and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Science of Knowing: Mathematics.Venkata Rayudu Posina - manuscript
    The 'Science of Knowing: Mathematics' textbook is the first book to put forward and substantiate the thesis that the mathematical understanding of mathematics, as exemplified in F. William Lawvere's Functorial Semantics, constitutes the science of knowing i.e. cognitive science. -/- This is a textbook, i.e. teaching material.
    Download  
     
    Export citation  
     
    Bookmark  
  45. Objectivity in Mathematics, Without Mathematical Objects†.Markus Pantsar - 2021 - Philosophia Mathematica 29 (3):318-352.
    I identify two reasons for believing in the objectivity of mathematical knowledge: apparent objectivity and applications in science. Focusing on arithmetic, I analyze platonism and cognitive nativism in terms of explaining these two reasons. After establishing that both theories run into difficulties, I present an alternative epistemological account that combines the theoretical frameworks of enculturation and cumulative cultural evolution. I show that this account can explain why arithmetical knowledge appears to be objective and has scientific applications. Finally, I will (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  46. Groundwork for a Fallibilist Account of Mathematics.Silvia De Toffoli - 2021 - Philosophical Quarterly 7 (4):823-844.
    According to the received view, genuine mathematical justification derives from proofs. In this article, I challenge this view. First, I sketch a notion of proof that cannot be reduced to deduction from the axioms but rather is tailored to human agents. Secondly, I identify a tension between the received view and mathematical practice. In some cases, cognitively diligent, well-functioning mathematicians go wrong. In these cases, it is plausible to think that proof sets the bar for justification too high. (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  47. The Cognitive Gap, Neural Darwinism & Linguistic Dualism —Russell, Husserl, Heidegger & Quine.Hermann G. W. Burchard - 2014 - Open Journal of Philosophy 4 (3):244-264.
    Guided by key insights of the four great philosophers mentioned in the title, here, in review of and expanding on our earlier work (Burchard, 2005, 2011), we present an exposition of the role played by language, & in the broader sense, λογοζ, the Logos, in how the CNS, the brain, is running the human being. Evolution by neural Darwinism has been forcing the linguistic nature of mind, enabling it to overcome & exploit the cognitive gap between an animal and its (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  48. Signs as a Theme in the Philosophy of Mathematical Practice.David Waszek - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer.
    Why study notations, diagrams, or more broadly the variety of nonverbal “representations” or “signs” that are used in mathematical practice? This chapter maps out recent work on the topic by distinguishing three main philosophical motivations for doing so. First, some work (like that on diagrammatic reasoning) studies signs to recover norms of informal or historical mathematical practices that would get lost if the particular signs that these practices rely on were translated away; work in this vein has the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Troubles with mathematical contents.Marco Facchin - forthcoming - Philosophical Psychology.
    To account for the explanatory role representations play in cognitive science, Egan’s deflationary account introduces a distinction between cognitive and mathematical contents. According to that account, only the latter are genuine explanatory posits of cognitive-scientific theories, as they represent the arguments and values cognitive devices need to represent to compute. Here, I argue that the deflationary account suffers from two important problems, whose roots trace back to the introduction of mathematical contents. First, I will argue that mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. The Language Essence of Rational Cognition with some Philosophical Consequences.Boris Culina - 2021 - Tesis (Lima) 14 (19):631-656.
    The essential role of language in rational cognition is analysed. The approach is functional: only the results of the connection between language, reality, and thinking are considered. Scientific language is analysed as an extension and improvement of everyday language. The analysis gives a uniform view of language and rational cognition. The consequences for the nature of ontology, truth, logic, thinking, scientific theories, and mathematics are derived.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 999