Results for ' classical logic'

946 found
Order:
  1. Classical Logic Is Connexive.Camillo Fiore - 2024 - Australasian Journal of Logic (2):91-99.
    Connexive logics are based on two ideas: that no statement entails or is entailed by its own negation (this is Aristotle’s thesis) and that no statement entails both something and the negation of this very thing (this is Boethius' thesis). Usually, connexive logics are contra-classical. In this note, I introduce a reading of the connexive theses that makes them compatible with classical logic. According to this reading, the theses in question do not talk about validity alone; rather, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Recapture Results and Classical Logic.Camillo Fiore & Lucas Rosenblatt - 2023 - Mind 132 (527):762–788.
    An old and well-known objection to non-classical logics is that they are too weak; in particular, they cannot prove a number of important mathematical results. A promising strategy to deal with this objection consists in proving so-called recapture results. Roughly, these results show that classical logic can be used in mathematics and other unproblematic contexts. However, the strategy faces some potential problems. First, typical recapture results are formulated in a purely logical language, and do not generalize nicely (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  3. Meta-Classical Non-Classical Logics.Eduardo Barrio, Camillo Fiore & Federico Pailos - forthcoming - Review of Symbolic Logic:1-26.
    Recently, it has been proposed to understand a logic as containing not only a validity canon for inferences but also a validity canon for metainferences of any finite level. Then, it has been shown that it is possible to construct infinite hierarchies of "increasingly classical" logics—that is, logics that are classical at the level of inferences and of increasingly higher metainferences—all of which admit a transparent truth predicate. In this paper, we extend this line of investigation by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. A Classical Logic of Existence and Essence.Sergio Galvan & Alessandro Giordani - 2020 - Logic and Logical Philosophy 29 (4):541-570.
    The purpose of this paper is to provide a new system of logic for existence and essence, in which the traditional distinctions between essential and accidental properties, abstract and concrete objects, and actually existent and possibly existent objects are described and related in a suitable way. In order to accomplish this task, a primitive relation of essential identity between different objects is introduced and connected to a first order existence property and a first order abstractness property. The basic idea (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. Embedding Classical Logic in S4.Sophie Nagler - 2019 - Dissertation, Munich Center for Mathematical Philosophy (Mcmp), Lmu Munich
    In this thesis, we will study the embedding of classical first-order logic in first-order S4, which is based on the translation originally introduced in Fitting (1970). The initial main part is dedicated to a detailed model-theoretic proof of the soundness of the embedding. This will follow the proof sketch in Fitting (1970). We will then outline a proof procedure for a proof-theoretic replication of the soundness result. Afterwards, a potential proof of faithfulness of the embedding, read in terms (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Normalisation for Bilateral Classical Logic with some Philosophical Remarks.Nils Kürbis - 2021 - Journal of Applied Logics 2 (8):531-556.
    Bilateralists hold that the meanings of the connectives are determined by rules of inference for their use in deductive reasoning with asserted and denied formulas. This paper presents two bilateral connectives comparable to Prior's tonk, for which, unlike for tonk, there are reduction steps for the removal of maximal formulas arising from introducing and eliminating formulas with those connectives as main operators. Adding either of them to bilateral classical logic results in an incoherent system. One way around this (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  7. The (Greatest) Fragment of Classical Logic that Respects the Variable-Sharing Principle (in the FMLA-FMLA Framework).Damian E. Szmuc - 2021 - Bulletin of the Section of Logic 50 (4):421-453.
    We examine the set of formula-to-formula valid inferences of Classical Logic, where the premise and the conclusion share at least a propositional variable in common. We review the fact, already proved in the literature, that such a system is identical to the first-degree entailment fragment of R. Epstein's Relatedness Logic, and that it is a non-transitive logic of the sort investigated by S. Frankowski and others. Furthermore, we provide a semantics and a calculus for this (...). The semantics is defined in terms of a \-matrix built on top of a 5-valued extension of the 3-element weak Kleene algebra, whereas the calculus is defined in terms of a Gentzen-style sequent system where the left and right negation rules are subject to linguistic constraints. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  8. Beyond Negation and Excluded Middle: An exploration to Embrace the Otherness Beyond Classical Logic System and into Neutrosophic Logic.Florentin Smarandache & Victor Christianto - 2023 - Prospects for Applied Mathematics and Data Analysis 2 (2):34-40.
    As part of our small contribution in dialogue toward better peace development and reconciliation studies, and following Toffler & Toffler’s War and Antiwar (1993), the present article delves into a realm of logic beyond the traditional confines of negation and the excluded middle principle, exploring the nuances of "Otherness" that transcend classical and Nagatomo logics. Departing from the foundational premises of classical Aristotelian logic systems, this exploration ventures into alternative realms of reasoning, specifically examining Neutrosophic (...) and Klein bottle logic (cf. Smarandache, 2005). The study challenges conventional boundaries and explores the implications of embracing paradoxes and self-reference in logic systems, aiming to redefine approaches to understanding truth and reasoning. The paper investigates how these alternative logics open avenues for philosophical inquiry, redefining entropy, and potentially influencing innovative perspectives in free energy systems. Through this exploration, it seeks to expand the discourse on logic, welcoming a broader spectrum of thought beyond established frameworks; and we also discuss shortly a number of possible implementations including in risk management and also Klein bottle entropy redefinition (Tang et al, 2018). (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Classical Logic and Neutrosophic Logic. Answers to K. Georgiev.Florentin Smarandache - 2016 - Neutrosophic Sets and Systems 13:79-83.
    In this paper, we make distinctions between Classical Logic (where the propositions are 100% true, or 100 false) and the Neutrosophic Logic (where one deals with partially true, partially indeterminate and partially false propositions) in order to respond to K. Georgiev’s criticism [1]. We recall that if an axiom is true in a classical logic system, it is not necessarily that the axiom be valid in a modern (fuzzy, intuitionistic fuzzy, neutrosophic etc.) logic system.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. Topics in the Proof Theory of Non-classical Logics. Philosophy and Applications.Fabio De Martin Polo - 2023 - Dissertation, Ruhr-Universität Bochum
    Chapter 1 constitutes an introduction to Gentzen calculi from two perspectives, logical and philosophical. It introduces the notion of generalisations of Gentzen sequent calculus and the discussion on properties that characterize good inferential systems. Among the variety of Gentzen-style sequent calculi, I divide them in two groups: syntactic and semantic generalisations. In the context of such a discussion, the inferentialist philosophy of the meaning of logical constants is introduced, and some potential objections – mainly concerning the choice of working with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Conservatively extending classical logic with transparent truth.David Ripley - 2012 - Review of Symbolic Logic 5 (2):354-378.
    This paper shows how to conservatively extend classical logic with a transparent truth predicate, in the face of the paradoxes that arise as a consequence. All classical inferences are preserved, and indeed extended to the full (truth—involving) vocabulary. However, not all classical metainferences are preserved; in particular, the resulting logical system is nontransitive. Some limits on this nontransitivity are adumbrated, and two proof systems are presented and shown to be sound and complete. (One proof system allows (...)
    Download  
     
    Export citation  
     
    Bookmark   121 citations  
  12. Normalisation and subformula property for a system of classical logic with Tarski’s rule.Nils Kürbis - 2021 - Archive for Mathematical Logic 61 (1):105-129.
    This paper considers a formalisation of classical logic using general introduction rules and general elimination rules. It proposes a definition of ‘maximal formula’, ‘segment’ and ‘maximal segment’ suitable to the system, and gives reduction procedures for them. It is then shown that deductions in the system convert into normal form, i.e. deductions that contain neither maximal formulas nor maximal segments, and that deductions in normal form satisfy the subformula property. Tarski’s Rule is treated as a general introduction rule (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  13. Judgement aggregation in non-classical logics.Daniele Porello - 2017 - Journal of Applied Non-Classical Logics 27 (1-2):106-139.
    This work contributes to the theory of judgement aggregation by discussing a number of significant non-classical logics. After adapting the standard framework of judgement aggregation to cope with non-classical logics, we discuss in particular results for the case of Intuitionistic Logic, the Lambek calculus, Linear Logic and Relevant Logics. The motivation for studying judgement aggregation in non-classical logics is that they offer a number of modelling choices to represent agents’ reasoning in aggregation problems. By studying (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  14. Non-classical Metatheory for Non-classical Logics.Andrew Bacon - 2013 - Journal of Philosophical Logic 42 (2):335-355.
    A number of authors have objected to the application of non-classical logic to problems in philosophy on the basis that these non-classical logics are usually characterised by a classical metatheory. In many cases the problem amounts to more than just a discrepancy; the very phenomena responsible for non-classicality occur in the field of semantics as much as they do elsewhere. The phenomena of higher order vagueness and the revenge liar are just two such examples. The aim (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  15. Reasoning with Imperatives Using Classical Logic.Joseph S. Fulda - 1995 - Sorites 3:7-11.
    As the journal is effectively defunct, I am uploading a full-text copy, but only of my abstract and article, and some journal front matter. -/- Note that the pagination in the PDF version differs from the official pagination because A4 and 8.5" x 11" differ. -/- Traditionally, imperatives have been handled with deontic logics, not the logic of propositions which bear truth values. Yet, an imperative is issued by the speaker to cause (stay) actions which change the state of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  16. Supervaluationism, Modal Logic, and Weakly Classical Logic.Joshua Schechter - 2024 - Journal of Philosophical Logic 53 (2):411-61.
    A consequence relation is strongly classical if it has all the theorems and entailments of classical logic as well as the usual meta-rules (such as Conditional Proof). A consequence relation is weakly classical if it has all the theorems and entailments of classical logic but lacks the usual meta-rules. The most familiar example of a weakly classical consequence relation comes from a simple supervaluational approach to modelling vague language. This approach is formally equivalent (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Correction regarding 'Normalisation and Subformula Property for a System of Classical Logic with Tarski's Rule'.Nils Kürbis - manuscript
    This note corrects an error in my paper 'Normalisation and Subformula Property for a System of Classical Logic with Tarski's Rule' (Archive for Mathematical Logic 61 (2022): 105-129, DOI 10.1007/s00153-021-00775-6): Theorem 2 is mistaken, and so is a corollary drawn from it as well as a corollary that was concluded by the same mistake. Luckily this does not affect the main result of the paper.
    Download  
     
    Export citation  
     
    Bookmark  
  18. On Three-Valued Presentations of Classical Logic.Bruno da Ré, Damian Szmuc, Emmanuel Chemla & Paul Égré - forthcoming - Review of Symbolic Logic:1-23.
    Given a three-valued definition of validity, which choice of three-valued truth tables for the connectives can ensure that the resulting logic coincides exactly with classical logic? We give an answer to this question for the five monotonic consequence relations $st$, $ss$, $tt$, $ss\cap tt$, and $ts$, when the connectives are negation, conjunction, and disjunction. For $ts$ and $ss\cap tt$ the answer is trivial (no scheme works), and for $ss$ and $tt$ it is straightforward (they are the collapsible (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. A non-classical logical foundation for naturalised realism.Emma Ruttkamp-Bloem, Giovanni Casini & Thomas Meyer - 2015 - In Pavel Arazim & Michal Dancak (eds.), Logica Yearbook 2014. College Publications. pp. 249-266.
    In this paper, by suggesting a formal representation of science based on recent advances in logic-based Artificial Intelligence (AI), we show how three serious concerns around the realisation of traditional scientific realism (the theory/observation distinction, over-determination of theories by data, and theory revision) can be overcome such that traditional realism is given a new guise as ‘naturalised’. We contend that such issues can be dealt with (in the context of scientific realism) by developing a formal representation of science based (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Conceptual structure of classical logic.John Corcoran - 1972 - Philosophy and Phenomenological Research 33 (1):25-47.
    One innovation in this paper is its identification, analysis, and description of a troubling ambiguity in the word ‘argument’. In one sense ‘argument’ denotes a premise-conclusion argument: a two-part system composed of a set of sentences—the premises—and a single sentence—the conclusion. In another sense it denotes a premise-conclusion-mediation argument—later called an argumentation: a three-part system composed of a set of sentences—the premises—a single sentence—the conclusion—and complex of sentences—the mediation. The latter is often intended to show that the conclusion follows from (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  21. Note on 'Normalisation for Bilateral Classical Logic with some Philosophical Remarks'.Nils Kürbis - 2021 - Journal of Applied Logics 7 (8):2259-2261.
    This brief note corrects an error in one of the reduction steps in my paper 'Normalisation for Bilateral Classical Logic with some Philosophical Remarks' published in the Journal of Applied Logics 8/2 (2021): 531-556.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  22. Theories of truth for countable languages which conform to classical logic.Seppo Heikkilä - forthcoming - Nonlinear Studies.
    Every countable language which conforms to classical logic is shown to have an extension which has a consistent definitional theory of truth. That extension has a consistent semantical theory of truth, if every sentence of the object language is valuated by its meaning either as true or as false. These theories contain both a truth predicate and a non-truth predicate. Theories are equivalent when sentences of the object lqanguage are valuated by their meanings.
    Download  
     
    Export citation  
     
    Bookmark  
  23. Computational logic. Vol. 1: Classical deductive computing with classical logic. 2nd ed.Luis M. Augusto - 2022 - London: College Publications.
    This is the 3rd edition. Although a number of new technological applications require classical deductive computation with non-classical logics, many key technologies still do well—or exclusively, for that matter—with classical logic. In this first volume, we elaborate on classical deductive computing with classical logic. The objective of the main text is to provide the reader with a thorough elaboration on both classical computing – a.k.a. formal languages and automata theory – and (...) deduction with the classical first-order predicate calculus with a view to computational implementations, namely in automated theorem proving and logic programming. The present third edition improves on the previous ones by providing an altogether more algorithmic approach: There is now a wholly new section on algorithms and there are in total fourteen clearly isolated algorithms designed in pseudo-code. Other improvements are, for instance, an emphasis on functions in Chapter 1 and more exercises with Turing machines. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Many-Valued And Fuzzy Logic Systems From The Viewpoint Of Classical Logic.Ekrem Sefa Gül - 2018 - Tasavvur - Tekirdag Theology Journal 4 (2):624 - 657.
    The thesis that the two-valued system of classical logic is insufficient to explanation the various intermediate situations in the entity, has led to the development of many-valued and fuzzy logic systems. These systems suggest that this limitation is incorrect. They oppose the law of excluded middle (tertium non datur) which is one of the basic principles of classical logic, and even principle of non-contradiction and argue that is not an obstacle for things both to exist (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Strong normalization of a symmetric lambda calculus for second-order classical logic.Yoriyuki Yamagata - 2002 - Archive for Mathematical Logic 41 (1):91-99.
    We extend Barbanera and Berardi's symmetric lambda calculus [2] to second-order classical propositional logic and prove its strong normalization.
    Download  
     
    Export citation  
     
    Bookmark  
  26. Supervaluationism and Classical Logic.Pablo Cobreros - 2011 - In Rick Nouwen, Robert van Rooij, Uli Sauerland & Hans-Christian Schmitz (eds.), Vagueness in Communication. Springer.
    This paper is concerned with the claim that supervaluationist consequence is not classical for a language including an operator for definiteness. Although there is some sense in which this claim is uncontroversial, there is a sense in which the claim must be qualified. In particular I defend Keefe's position according to which supervaluationism is classical except when the inference from phi to Dphi is involved. The paper provides a precise content to this claim showing that we might provide (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  27. On the notion of validity for the bilateral classical logic.Ukyo Suzuki & Yoriyuki Yamagata - manuscript
    This paper considers Rumfitt’s bilateral classical logic (BCL), which is proposed to counter Dummett’s challenge to classical logic. First, agreeing with several authors, we argue that Rumfitt’s notion of harmony, used to justify logical rules by a purely proof theoretical manner, is not sufficient to justify coordination rules in BCL purely proof-theoretically. For the central part of this paper, we propose a notion of proof-theoretical validity similar to Prawitz for BCL and proves that BCL is sound (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Bilateralist Detours: From Intuitionist to Classical Logic and Back.Nils Kürbis - 2017 - Logique Et Analyse 60 (239):301-316.
    There is widespread agreement that while on a Dummettian theory of meaning the justified logic is intuitionist, as its constants are governed by harmonious rules of inference, the situation is reversed on Huw Price's bilateralist account, where meanings are specified in terms of primitive speech acts assertion and denial. In bilateral logics, the rules for classical negation are in harmony. However, as it is possible to construct an intuitionist bilateral logic with harmonious rules, there is no formal (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29. Making Sense of Paraconsistent Logic: The Nature of Logic, Classical Logic and Paraconsistent Logic.Koji Tanaka - 2013 - In Francesco Berto, Edwin Mares, Koji Tanaka & Francesco Paoli (eds.), Paraconsistency: Logic and Applications. Dordrecht, Netherland: Springer. pp. 15--25.
    Max Cresswell and Hilary Putnam seem to hold the view, often shared by classical logicians, that paraconsistent logic has not been made sense of, despite its well-developed mathematics. In this paper, I examine the nature of logic in order to understand what it means to make sense of logic. I then show that, just as one can make sense of non-normal modal logics (as Cresswell demonstrates), we can make `sense' of paraconsistent logic. Finally, I turn (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  30. Some Characteristics of the Referential and Inferential Predication in Classical Logic.Nijaz Ibrulj - 2021 - The Logical Foresight 1 (1):1-27.
    In the article we consider the relationship of traditional provisions of basic logical concepts and confront them with new and modern approaches to the same concepts. Logic is characterized in different ways when it is associated with syllogistics (referential – semantical model of logic) or with symbolic logic (inferential – syntactical model of logic). This is not only a difference in the logical calculation of (1) concepts, (2) statements, and (3) predicates, but this difference also appears (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. A Hierarchy of Classical and Paraconsistent Logics.Eduardo Alejandro Barrio, Federico Pailos & Damian Szmuc - 2020 - Journal of Philosophical Logic 49 (1):93-120.
    In this article, we will present a number of technical results concerning Classical Logic, ST and related systems. Our main contribution consists in offering a novel identity criterion for logics in general and, therefore, for Classical Logic. In particular, we will firstly generalize the ST phenomenon, thereby obtaining a recursively defined hierarchy of strict-tolerant systems. Secondly, we will prove that the logics in this hierarchy are progressively more classical, although not entirely classical. We will (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  32. Formal logic: Classical problems and proofs.Luis M. Augusto - 2019 - London, UK: College Publications.
    Not focusing on the history of classical logic, this book provides discussions and quotes central passages on its origins and development, namely from a philosophical perspective. Not being a book in mathematical logic, it takes formal logic from an essentially mathematical perspective. Biased towards a computational approach, with SAT and VAL as its backbone, this is an introduction to logic that covers essential aspects of the three branches of logic, to wit, philosophical, mathematical, and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  33. Logical Entropy: Introduction to Classical and Quantum Logical Information theory.David Ellerman - 2018 - Entropy 20 (9):679.
    Logical information theory is the quantitative version of the logic of partitions just as logical probability theory is the quantitative version of the dual Boolean logic of subsets. The resulting notion of information is about distinctions, differences and distinguishability and is formalized using the distinctions of a partition. All the definitions of simple, joint, conditional and mutual entropy of Shannon information theory are derived by a uniform transformation from the corresponding definitions at the logical level. The purpose of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  34. On Classical and Quantum Logical Entropy.David Ellerman - manuscript
    The notion of a partition on a set is mathematically dual to the notion of a subset of a set, so there is a logic of partitions dual to Boole's logic of subsets (Boolean logic is usually mis-specified as "propositional" logic). The notion of an element of a subset has as its dual the notion of a distinction of a partition (a pair of elements in different blocks). Boole developed finite logical probability as the normalized counting (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35.  8
    Complementary Logics for Classical Propositional Languages.Achille C. Varzi - 1992 - Kriterion - Journal of Philosophy 1 (4):20-24.
    In previous work, I introduced a complete axiomatization of classical non-tautologies based essentially on Łukasiewicz’s rejection method. The present paper provides a new, Hilbert-type axiomatization (along with related systems to axiomatize classical contradictions, non-contradictions, contingencies and non-contingencies respectively). This new system is mathematically less elegant, but the format of the inferential rules and the structure of the completeness proof possess some intrinsic interest and suggests instructive comparisons with the logic of tautologies.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  36. G. Priest's An Introduction to Non-Classical Logic (2001). [REVIEW]Hans-Peter Leeb - 2003 - History and Philosophy of Logic 24:65-66.
    The review gives a short description of the content of the book and discusses the treatment of conditionals in it.
    Download  
     
    Export citation  
     
    Bookmark  
  37. One-step Modal Logics, Intuitionistic and Classical, Part 1.Harold T. Hodes - 2021 - Journal of Philosophical Logic 50 (5):837-872.
    This paper and its sequel “look under the hood” of the usual sorts of proof-theoretic systems for certain well-known intuitionistic and classical propositional modal logics. Section 1 is preliminary. Of most importance: a marked formula will be the result of prefixing a formula in a propositional modal language with a step-marker, for this paper either 0 or 1. Think of 1 as indicating the taking of “one step away from 0.” Deductions will be constructed using marked formulas. Section 2 (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. Against Classical Paraconsistent Metatheory.Koji Tanaka & Patrick Girard - 2023 - Analysis 83 (2):285-294.
    There was a time when 'logic' just meant classical logic. The climate is slowly changing and non-classical logic cannot be dismissed off-hand. However, a metatheory used to study the properties of non-classical logic is often classical. In this paper, we will argue that this practice of relying on classical metatheories is problematic. In particular, we will show that it is a bad practice because the metatheory that is used to study a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  39. One-Step Modal Logics, Intuitionistic and Classical, Part 2.Harold T. Hodes - 2021 - Journal of Philosophical Logic 50 (5):873-910.
    Part 1 [Hodes, 2021] “looked under the hood” of the familiar versions of the classical propositional modal logic K and its intuitionistic counterpart. This paper continues that project, addressing some familiar classical strengthenings of K and GL), and their intuitionistic counterparts. Section 9 associates two intuitionistic one-step proof-theoretic systems to each of the just mentioned intuitionistic logics, this by adding for each a new rule to those which generated IK in Part 1. For the systems associated with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Logic of paradoxes in classical set theories.Boris Čulina - 2013 - Synthese 190 (3):525-547.
    According to Cantor (Mathematische Annalen 21:545–586, 1883 ; Cantor’s letter to Dedekind, 1899 ) a set is any multitude which can be thought of as one (“jedes Viele, welches sich als Eines denken läßt”) without contradiction—a consistent multitude. Other multitudes are inconsistent or paradoxical. Set theoretical paradoxes have common root—lack of understanding why some multitudes are not sets. Why some multitudes of objects of thought cannot themselves be objects of thought? Moreover, it is a logical truth that such multitudes do (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Semantic Interpretation of the Classical / Intuitionist Logical Divide Through the Language of Scientific Theories.Antonino Drago - manuscript
    Double negations are easily recognised in both the so-called “negative literature” and the original texts of some important scientific theories. Often they are not equivalent to the corresponding affirmative propositions. In the case the law of double negation fails they belong to non-classical logic, as first, intuitionist logic. Through a comparative analysis of the theories including them the main features of a new kind of theoretical organization governed by intuitionist logic are obtained. Its arguing proceeds through (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Normality operators and Classical Recapture in Extensions of Kleene Logics.Ciuni Roberto & Massimiliano Carrara - forthcoming - Logic Journal of the IGPL.
    In this paper, we approach the problem of classical recapture for LP and K3 by using normality operators. These generalize the consistency and determinedness operators from Logics of Formal Inconsistency and Underterminedness, by expressing, in any many-valued logic, that a given formula has a classical truth value (0 or 1). In particular, in the rst part of the paper we introduce the logics LPe and Ke3 , which extends LP and K3 with normality operators, and we establish (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Dialectical Contradictions and Classical Formal Logic.Inoue Kazumi - 2014 - International Studies in the Philosophy of Science 28 (2):113-132.
    A dialectical contradiction can be appropriately described within the framework of classical formal logic. It is in harmony with the law of noncontradiction. According to our definition, two theories make up a dialectical contradiction if each of them is consistent and their union is inconsistent. It can happen that each of these two theories has an intended model. Plenty of examples are to be found in the history of science.
    Download  
     
    Export citation  
     
    Bookmark  
  44. An Introduction to Partition Logic.David Ellerman - 2014 - Logic Journal of the IGPL 22 (1):94-125.
    Classical logic is usually interpreted as the logic of propositions. But from Boole's original development up to modern categorical logic, there has always been the alternative interpretation of classical logic as the logic of subsets of any given (nonempty) universe set. Partitions on a universe set are dual to subsets of a universe set in the sense of the reverse-the-arrows category-theoretic duality--which is reflected in the duality between quotient objects and subobjects throughout algebra. (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  45. On an Intuitionistic Logic for Pragmatics.Gianluigi Bellin, Massimiliano Carrara & Daniele Chiffi - 2018 - Journal of Logic and Computation 50 (28):935–966..
    We reconsider the pragmatic interpretation of intuitionistic logic [21] regarded as a logic of assertions and their justi cations and its relations with classical logic. We recall an extension of this approach to a logic dealing with assertions and obligations, related by a notion of causal implication [14, 45]. We focus on the extension to co-intuitionistic logic, seen as a logic of hypotheses [8, 9, 13] and on polarized bi-intuitionistic logic as a (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  46. Exceptional Logic.Bruno Whittle - forthcoming - Review of Symbolic Logic:1-37.
    The aim of the paper is to argue that all—or almost all—logical rules have exceptions. In particular, it is argued that this is a moral that we should draw from the semantic paradoxes. The idea that we should respond to the paradoxes by revising logic in some way is familiar. But previous proposals advocate the replacement of classical logic with some alternative logic. That is, some alternative system of rules, where it is taken for granted that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  47. (1 other version)Towards a Feminist Logic: Val Plumwood’s Legacy and Beyond.Maureen Eckert & Charlie Donahue - 2020 - In Dominic Hyde (ed.), Noneist Explorations II: The Sylvan Jungle - Volume 3 (Synthese Library, 432). Dordrecht: pp. 424-448.
    Val Plumwood’s 1993 paper, “The politics of reason: towards a feminist logic” (hence- forth POR) attempted to set the stage for what she hoped would begin serious feminist exploration into formal logic – not merely its historical abuses, but, more importantly, its potential uses. This work offers us: (1) a case for there being feminist logic; and (2) a sketch of what it should resemble. The former goal of Plumwood’s paper encourages feminist theorists to reject anti-logic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. The Normalization Theorem for the First-Order Classical Natural Deduction with Disjunctive Syllogism.Seungrak Choi - 2021 - Korean Journal of Logic 2 (24):143-168.
    In the present paper, we prove the normalization theorem and the consistency of the first-order classical logic with disjunctive syllogism. First, we propose the natural deduction system SCD for classical propositional logic having rules for conjunction, implication, negation, and disjunction. The rules for disjunctive syllogism are regarded as the rules for disjunction. After we prove the normalization theorem and the consistency of SCD, we extend SCD to the system SPCD for the first-order classical logic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Challenging Logical Monism.Aurna Mukherjee - manuscript
    Logic is loosely regarded as a key factor that drives our decisions. However, logic is actually separated into different systems, such as intuitionistic logic and classical logic. These systems can be explained by different theories, such as logical monism and logical pluralism. This paper aims to challenge logical monism, which posits that only a single logical system adheres to the principles of validity. It explains this on the basis of different systems held as equally strong (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Knot and Tonk: Nasty Connectives on Many-Valued Truth-Tables for Classical Sentential Logic.Tim Button - 2016 - Analysis 76 (1):7-19.
    Prior’s Tonk is a famously horrible connective. It is defined by its inference rules. My aim in this article is to compare Tonk with some hitherto unnoticed nasty connectives, which are defined in semantic terms. I first use many-valued truth-tables for classical sentential logic to define a nasty connective, Knot. I then argue that we should refuse to add Knot to our language. And I show that this reverses the standard dialectic surrounding Tonk, and yields a novel solution (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
1 — 50 / 946