Results for ' first-order Peano Arithmetic PA'

947 found
Order:
  1. Three Dogmas of First-Order Logic and some Evidence-based Consequences for Constructive Mathematics of differentiating between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism.Bhupinder Singh Anand - manuscript
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then adopt what may (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2.  67
    Why there can be no mathematical or meta-mathematical proof of consistency for ZF.Bhupinder Singh Anand - manuscript
    In the first part of this investigation we highlight two, seemingly irreconcilable, beliefs that suggest an impending crisis in the teaching, research, and practice of—primarily state-supported—mathematics: (a) the belief, with increasing, essentially faith-based, conviction and authority amongst academics that first-order Set Theory can be treated as the lingua franca of mathematics, since its theorems—even if unfalsifiable—can be treated as ‘knowledge’ because they are finite proof sequences which are entailed finitarily by self-evidently Justified True Beliefs; and (b) the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. The Truth Assignments That Differentiate Human Reasoning From Mechanistic Reasoning: The Evidence-Based Argument for Lucas' Goedelian Thesis.Bhupinder Singh Anand - 2016 - Cognitive Systems Research 40:35-45.
    We consider the argument that Tarski's classic definitions permit an intelligence---whether human or mechanistic---to admit finitary evidence-based definitions of the satisfaction and truth of the atomic formulas of the first-order Peano Arithmetic PA over the domain N of the natural numbers in two, hitherto unsuspected and essentially different, ways: (1) in terms of classical algorithmic verifiabilty; and (2) in terms of finitary algorithmic computability. We then show that the two definitions correspond to two distinctly different assignments (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  4. (1 other version)The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences.Bhupinder Singh Anand - forthcoming
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. An Elementary, Pre-formal, Proof of FLT: Why is x^n+y^n=z^n solvable only for n<3?Bhupinder Singh Anand - manuscript
    Andrew Wiles' analytic proof of Fermat's Last Theorem FLT, which appeals to geometrical properties of real and complex numbers, leaves two questions unanswered: (i) What technique might Fermat have used that led him to, even if only briefly, believe he had `a truly marvellous demonstration' of FLT? (ii) Why is x^n+y^n=z^n solvable only for n<3? In this inter-disciplinary perspective, we offer insight into, and answers to, both queries; yielding a pre-formal proof of why FLT can be treated as a true (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Categoricity, Open-Ended Schemas and Peano Arithmetic.Adrian Ludușan - 2015 - Logos and Episteme 6 (3):313-332.
    One of the philosophical uses of Dedekind’s categoricity theorem for Peano Arithmetic is to provide support for semantic realism. To this end, the logical framework in which the proof of the theorem is conducted becomes highly significant. I examine different proposals regarding these logical frameworks and focus on the philosophical benefits of adopting open-ended schemas in contrast to second order logic as the logical medium of the proof. I investigate Pederson and Rossberg’s critique of the ontological advantages (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Arithmetic without the successor axiom.Andrew Boucher -
    Second-order Peano Arithmetic minus the Successor Axiom is developed from first principles through Quadratic Reciprocity and a proof of self-consistency. This paper combines 4 other papers of the author in a self-contained exposition.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. (1 other version)Objects are (not) ...Friedrich Wilhelm Grafe - 2024 - Archive.Org.
    My goal in this paper is, to tentatively sketch and try defend some observations regarding the ontological dignity of object references, as they may be used from within in a formalized language. -/- Hence I try to explore, what properties objects are presupposed to have, in order to enter the universe of discourse of an interpreted formalized language. -/- First I review Frege′s analysis of the logical structure of truth value definite sentences of scientific colloquial language, to draw (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Categorical Quantification.Constantin C. Brîncuş - 2024 - Bulletin of Symbolic Logic 30 (2):pp. 227-252.
    Due to Gӧdel’s incompleteness results, the categoricity of a sufficiently rich mathematical theory and the semantic completeness of its underlying logic are two mutually exclusive ideals. For first- and second-order logics we obtain one of them with the cost of losing the other. In addition, in both these logics the rules of deduction for their quantifiers are non-categorical. In this paper I examine two recent arguments –Warren (2020), Murzi and Topey (2021)– for the idea that the natural deduction (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  10. The Potential in Frege’s Theorem.Will Stafford - 2023 - Review of Symbolic Logic 16 (2):553-577.
    Is a logicist bound to the claim that as a matter of analytic truth there is an actual infinity of objects? If Hume’s Principle is analytic then in the standard setting the answer appears to be yes. Hodes’s work pointed to a way out by offering a modal picture in which only a potential infinity was posited. However, this project was abandoned due to apparent failures of cross-world predication. We re-explore this idea and discover that in the setting of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. “Truth-preserving and consequence-preserving deduction rules”,.John Corcoran - 2014 - Bulletin of Symbolic Logic 20 (1):130-1.
    A truth-preservation fallacy is using the concept of truth-preservation where some other concept is needed. For example, in certain contexts saying that consequences can be deduced from premises using truth-preserving deduction rules is a fallacy if it suggests that all truth-preserving rules are consequence-preserving. The arithmetic additive-associativity rule that yields 6 = (3 + (2 + 1)) from 6 = ((3 + 2) + 1) is truth-preserving but not consequence-preserving. As noted in James Gasser’s dissertation, Leibniz has been criticized (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Possible m-diagrams of models of arithmetic.Andrew Arana - 2005 - In Stephen Simpson (ed.), Reverse Mathematics 2001. Association for Symbolic Logic.
    In this paper I begin by extending two results of Solovay; the first characterizes the possible Turing degrees of models of True Arithmetic (TA), the complete first-order theory of the standard model of PA, while the second characterizes the possible Turing degrees of arbitrary completions of P. I extend these two results to characterize the possible Turing degrees of m-diagrams of models of TA and of arbitrary complete extensions of PA. I next give a construction showing (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Gödel mathematics versus Hilbert mathematics. I. The Gödel incompleteness (1931) statement: axiom or theorem?Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (9):1-56.
    The present first part about the eventual completeness of mathematics (called “Hilbert mathematics”) is concentrated on the Gödel incompleteness (1931) statement: if it is an axiom rather than a theorem inferable from the axioms of (Peano) arithmetic, (ZFC) set theory, and propositional logic, this would pioneer the pathway to Hilbert mathematics. One of the main arguments that it is an axiom consists in the direct contradiction of the axiom of induction in arithmetic and the axiom of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Logic, mathematics, physics: from a loose thread to the close link: Or what gravity is for both logic and mathematics rather than only for physics.Vasil Penchev - 2023 - Astrophysics, Cosmology and Gravitation Ejournal 2 (52):1-82.
    Gravitation is interpreted to be an “ontomathematical” force or interaction rather than an only physical one. That approach restores Newton’s original design of universal gravitation in the framework of “The Mathematical Principles of Natural Philosophy”, which allows for Einstein’s special and general relativity to be also reinterpreted ontomathematically. The entanglement theory of quantum gravitation is inherently involved also ontomathematically by virtue of the consideration of the qubit Hilbert space after entanglement as the Fourier counterpart of pseudo-Riemannian space. Gravitation can be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Trial and error mathematics: Dialectical systems and completions of theories.Luca San Mauro, Jacopo Amidei, Uri Andrews, Duccio Pianigiani & Andrea Sorbi - 2019 - Journal of Logic and Computation 1 (29):157-184.
    This paper is part of a project that is based on the notion of a dialectical system, introduced by Magari as a way of capturing trial and error mathematics. In Amidei et al. (2016, Rev. Symb. Logic, 9, 1–26) and Amidei et al. (2016, Rev. Symb. Logic, 9, 299–324), we investigated the expressive and computational power of dialectical systems, and we compared them to a new class of systems, that of quasi-dialectical systems, that enrich Magari’s systems with a natural mechanism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Fermat’s last theorem proved in Hilbert arithmetic. I. From the proof by induction to the viewpoint of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (7):1-57.
    In a previous paper, an elementary and thoroughly arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to Fermat himself though without being absolutely and precisely correct. The present paper elucidates the contemporary mathematical background, from which an inductive proof of FLT can be inferred since its proof for the case for “n (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Arithmetic is Necessary.Zachary Goodsell - 2024 - Journal of Philosophical Logic 53 (4).
    (Goodsell, Journal of Philosophical Logic, 51(1), 127-150 2022) establishes the noncontingency of sentences of first-order arithmetic, in a plausible higher-order modal logic. Here, the same result is derived using significantly weaker assumptions. Most notably, the assumption of rigid comprehension—that every property is coextensive with a modally rigid one—is weakened to the assumption that the Boolean algebra of properties under necessitation is countably complete. The results are generalized to extensions of the language of arithmetic, and are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. A defense of Isaacson’s thesis, or how to make sense of the boundaries of finite mathematics.Pablo Dopico - 2024 - Synthese 203 (2):1-22.
    Daniel Isaacson has advanced an epistemic notion of arithmetical truth according to which the latter is the set of truths that we grasp on the basis of our understanding of the structure of natural numbers alone. Isaacson’s thesis is then the claim that Peano Arithmetic (PA) is the theory of finite mathematics, in the sense that it proves all and only arithmetical truths thus understood. In this paper, we raise a challenge for the thesis and show how it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. What the Tortoise Said to Achilles: Lewis Carroll’s paradox in terms of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (22):1-32.
    Lewis Carroll, both logician and writer, suggested a logical paradox containing furthermore two connotations (connotations or metaphors are inherent in literature rather than in mathematics or logics). The paradox itself refers to implication demonstrating that an intermediate implication can be always inserted in an implication therefore postponing its ultimate conclusion for the next step and those insertions can be iteratively and indefinitely added ad lib, as if ad infinitum. Both connotations clear up links due to the shared formal structure with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Frege, Dedekind, and the Modern Epistemology of Arithmetic.Markus Pantsar - 2016 - Acta Analytica 31 (3):297-318.
    In early analytic philosophy, one of the most central questions concerned the status of arithmetical objects. Frege argued against the popular conception that we arrive at natural numbers with a psychological process of abstraction. Instead, he wanted to show that arithmetical truths can be derived from the truths of logic, thus eliminating all psychological components. Meanwhile, Dedekind and Peano developed axiomatic systems of arithmetic. The differences between the logicist and axiomatic approaches turned out to be philosophical as well (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. (1 other version)God and the Numbers.Paul Studtmann - 2023 - Journal of Philosophy 120 (12):641-655.
    According to Augustine, abstract objects are ideas in the mind of God. Because numbers are a type of abstract object, it would follow that numbers are ideas in the mind of God. Call such a view the “Augustinian View of Numbers” (AVN). In this paper, I present a formal theory for AVN. The theory stems from the symmetry conception of God as it appears in Studtmann (2021). I show that the theory in Studtmann’s paper can interpret the axioms of (...) Arithmetic minus the induction schema. This fact allows for the development of arithmetic in a natural way. The development eventuates in a theory that can interpret second-order arithmetic. The conception of God that emerges by the end of the discussion is a conception of an infinite, ineffable, self-cause that contains objects that not only serve as numbers but also encode information about each other. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Frege meets Belnap: Basic Law V in a Relevant Logic.Shay Logan & Francesca Boccuni - 2024 - In Andrew Tedder, Shawn Standefer & Igor Sedlar (eds.), New Directions in Relevant Logic. Springer. pp. 381-404.
    Abstractionism in the philosophy of mathematics aims at deriving large fragments of mathematics by combining abstraction principles (i.e. the abstract objects $\S e_1, \S e_2$, are identical if, and only if, an equivalence relation $Eq_\S$ holds between the entities $e_1, e_2$) with logic. Still, as highlighted in work on the semantics for relevant logics, there are different ways theories might be combined. In exactly what ways must logic and abstraction be combined in order to get interesting mathematics? In this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Gödel Mathematics Versus Hilbert Mathematics. II Logicism and Hilbert Mathematics, the Identification of Logic and Set Theory, and Gödel’s 'Completeness Paper' (1930).Vasil Penchev - 2023 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 15 (1):1-61.
    The previous Part I of the paper discusses the option of the Gödel incompleteness statement (1931: whether “Satz VI” or “Satz X”) to be an axiom due to the pair of the axiom of induction in arithmetic and the axiom of infinity in set theory after interpreting them as logical negations to each other. The present Part II considers the previous Gödel’s paper (1930) (and more precisely, the negation of “Satz VII”, or “the completeness theorem”) as a necessary condition (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. What is Mathematics: Gödel's Theorem and Around (Edition 2015).Karlis Podnieks - manuscript
    Introduction to mathematical logic. Part 2.Textbook for students in mathematical logic and foundations of mathematics. Platonism, Intuition, Formalism. Axiomatic set theory. Around the Continuum Problem. Axiom of Determinacy. Large Cardinal Axioms. Ackermann's Set Theory. First order arithmetic. Hilbert's 10th problem. Incompleteness theorems. Consequences. Connected results: double incompleteness theorem, unsolvability of reasoning, theorem on the size of proofs, diophantine incompleteness, Loeb's theorem, consistent universal statements are provable, Berry's paradox, incompleteness and Chaitin's theorem. Around Ramsey's theorem.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  25. The Gödel Incompleteness Theorems (1931) by the Axiom of Choice.Vasil Penchev - 2020 - Econometrics: Mathematical Methods and Programming eJournal (Elsevier: SSRN) 13 (39):1-4.
    Those incompleteness theorems mean the relation of (Peano) arithmetic and (ZFC) set theory, or philosophically, the relation of arithmetical finiteness and actual infinity. The same is managed in the framework of set theory by the axiom of choice (respectively, by the equivalent well-ordering "theorem'). One may discuss that incompleteness form the viewpoint of set theory by the axiom of choice rather than the usual viewpoint meant in the proof of theorems. The logical corollaries from that "nonstandard" viewpoint the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Theories with the Independence Property, Studia Logica 2010 95:379-405.Mlj van de Vel - 2010 - Studia Logica 95 (3):379-405.
    A first-order theory T has the Independence Property provided deduction of a statement of type (quantifiers) (P -> (P1 or P2 or .. or Pn)) in T implies that (quantifiers) (P -> Pi) can be deduced in T for some i, 1 <= i <= n). Variants of this property have been noticed for some time in logic programming and in linear programming. We show that a first-order theory has the Independence Property for the class of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Hilbert mathematics versus (or rather “without”) Gödel mathematics: V. Ontomathematics!Vasil Penchev - 2024 - Metaphysics eJournal (Elsevier: SSRN) 17 (10):1-57.
    The paper is the final, fifth part of a series of studies introducing the new conceptions of “Hilbert mathematics” and “ontomathematics”. The specific subject of the present investigation is the proper philosophical sense of both, including philosophy of mathematics and philosophy of physics not less than the traditional “first philosophy” (as far as ontomathematics is a conservative generalization of ontology as well as of Heidegger’s “fundamental ontology” though in a sense) and history of philosophy (deepening Heidegger’s destruction of it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Formalizing Euclid’s first axiom.John Corcoran - 2014 - Bulletin of Symbolic Logic 20 (3):404-405.
    Formalizing Euclid’s first axiom. Bulletin of Symbolic Logic. 20 (2014) 404–5. (Coauthor: Daniel Novotný) -/- Euclid [fl. 300 BCE] divides his basic principles into what came to be called ‘postulates’ and ‘axioms’—two words that are synonyms today but which are commonly used to translate Greek words meant by Euclid as contrasting terms. -/- Euclid’s postulates are specifically geometric: they concern geometric magnitudes, shapes, figures, etc.—nothing else. The first: “to draw a line from any point to any point”; the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29. String theory.John Corcoran, William Frank & Michael Maloney - 1974 - Journal of Symbolic Logic 39 (4):625-637.
    For each positive n , two alternative axiomatizations of the theory of strings over n alphabetic characters are presented. One class of axiomatizations derives from Tarski's system of the Wahrheitsbegriff and uses the n characters and concatenation as primitives. The other class involves using n character-prefixing operators as primitives and derives from Hermes' Semiotik. All underlying logics are second order. It is shown that, for each n, the two theories are definitionally equivalent [or synonymous in the sense of deBouvere]. (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  30. Quantum information as the information of infinite collections or series.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (14):1-8.
    The quantum information introduced by quantum mechanics is equivalent to a certain generalization of classical information: from finite to infinite series or collections. The quantity of information is the quantity of choices measured in the units of elementary choice. The “qubit”, can be interpreted as that generalization of “bit”, which is a choice among a continuum of alternatives. The axiom of choice is necessary for quantum information. The coherent state is transformed into a well-ordered series of results in time after (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. The Frontier of Time: The Concept of Quantum Information.Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (17):1-5.
    The concept of formal transcendentalism is utilized. The fundamental and definitive property of the totality suggests for “the totality to be all”, thus, its externality (unlike any other entity) is contained within it. This generates a fundamental (or philosophical) “doubling” of anything being referred to the totality, i.e. considered philosophically. Thus, that doubling as well as transcendentalism underlying it can be interpreted formally as an elementary choice such as a bit of information and a quantity corresponding to the number of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Hilbert's Metamathematical Problems and Their Solutions.Besim Karakadilar - 2008 - Dissertation, Boston University
    This dissertation examines several of the problems that Hilbert discovered in the foundations of mathematics, from a metalogical perspective. The problems manifest themselves in four different aspects of Hilbert’s views: (i) Hilbert’s axiomatic approach to the foundations of mathematics; (ii) His response to criticisms of set theory; (iii) His response to intuitionist criticisms of classical mathematics; (iv) Hilbert’s contribution to the specification of the role of logical inference in mathematical reasoning. This dissertation argues that Hilbert’s axiomatic approach was guided primarily (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Remarks on Wittgenstein, Gödel, Chaitin, Incompleteness, Impossiblity and the Psychological Basis of Science and Mathematics.Michael Richard Starks - 2019 - In Remarks on Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason in Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, da Costa, Godel, Searle, Rodych, Berto, Floyd, Moyal. Reality Press. pp. 24-38.
    It is commonly thought that such topics as Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason are disparate scientific physical or mathematical issues having little or nothing in common. I suggest that they are largely standard philosophical problems (i.e., language games) which were resolved by Wittgenstein over 80 years ago. -/- Wittgenstein also demonstrated the fatal error in regarding mathematics or language or our behavior in general as a unitary coherent logical ‘system,’ rather than as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. All science as rigorous science: the principle of constructive mathematizability of any theory.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (12):1-15.
    A principle, according to which any scientific theory can be mathematized, is investigated. Social science, liberal arts, history, and philosophy are meant first of all. That kind of theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Schemata: The concept of schema in the history of logic.John Corcoran - 2006 - Bulletin of Symbolic Logic 12 (2):219-240.
    The syllogistic figures and moods can be taken to be argument schemata as can the rules of the Stoic propositional logic. Sentence schemata have been used in axiomatizations of logic only since the landmark 1927 von Neumann paper [31]. Modern philosophers know the role of schemata in explications of the semantic conception of truth through Tarski’s 1933 Convention T [42]. Mathematical logicians recognize the role of schemata in first-order number theory where Peano’s second-order Induction Axiom is (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  36. Epsilon theorems in intermediate logics.Matthias Baaz & Richard Zach - 2022 - Journal of Symbolic Logic 87 (2):682-720.
    Any intermediate propositional logic can be extended to a calculus with epsilon- and tau-operators and critical formulas. For classical logic, this results in Hilbert’s $\varepsilon $ -calculus. The first and second $\varepsilon $ -theorems for classical logic establish conservativity of the $\varepsilon $ -calculus over its classical base logic. It is well known that the second $\varepsilon $ -theorem fails for the intuitionistic $\varepsilon $ -calculus, as prenexation is impossible. The paper investigates the effect of adding critical $\varepsilon $ (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  37. The Relationship of Arithmetic As Two Twin Peano Arithmetic(s) and Set Theory: A New Glance From the Theory of Information.Vasil Penchev - 2020 - Metaphilosophy eJournal (Elseviers: SSRN) 12 (10):1-33.
    The paper introduces and utilizes a few new concepts: “nonstandard Peano arithmetic”, “complementary Peano arithmetic”, “Hilbert arithmetic”. They identify the foundations of both mathematics and physics demonstrating the equivalence of the newly introduced Hilbert arithmetic and the separable complex Hilbert space of quantum mechanics in turn underlying physics and all the world. That new both mathematical and physical ground can be recognized as information complemented and generalized by quantum information. A few fundamental mathematical problems (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. Debunking Arguments: Mathematics, Logic, and Modal Security.Justin Clarke-Doane - 2017 - In Michael Ruse & Robert J. Richards (eds.), The Cambridge Handbook of Evolutionary Ethics. New York: Cambridge University Press.
    I discuss the structure of genealogical debunking arguments. I argue that they undermine our mathematical beliefs if they undermine our moral beliefs. The contrary appearance stems from a confusion of arithmetic truths with (first-order) logical truths, or from a confusion of reliability with justification. I conclude with a discussion of the cogency of debunking arguments, in light of the above. Their cogency depends on whether information can undermine all of our beliefs of a kind, F, without giving (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  39. Truth, Proof and Gödelian Arguments: A Defence of Tarskian Truth in Mathematics.Markus Pantsar - 2009 - Dissertation, University of Helsinki
    One of the most fundamental questions in the philosophy of mathematics concerns the relation between truth and formal proof. The position according to which the two concepts are the same is called deflationism, and the opposing viewpoint substantialism. In an important result of mathematical logic, Kurt Gödel proved in his first incompleteness theorem that all consistent formal systems containing arithmetic include sentences that can neither be proved nor disproved within that system. However, such undecidable Gödel sentences can be (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  40. Truth without standard models: some conceptual problems reloaded.Eduardo Barrio & Bruno Da Ré - 2017 - Journal of Applied Non-Classical Logics 28 (1):122-139.
    A theory of truth is usually demanded to be consistent, but -consistency is less frequently requested. Recently, Yatabe has argued in favour of -inconsistent first-order theories of truth, minimising their odd consequences. In view of this fact, in this paper, we present five arguments against -inconsistent theories of truth. In order to bring out this point, we will focus on two very well-known -inconsistent theories of truth: the classical theory of symmetric truth FS and the non-classical theory (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  41. Metaepistemology.Mikkel Gerken - 2018 - Routledge Encyclopedia of Philosophy.
    Metaepistemology may be partly characterized as the study of the nature, aims, methods and legitimacy of epistemology. Given such a characterization, most epistemological views and theories have an important metaepistemological aspect or, at least, a number of more or less explicit metaepistemological commitments. Metaepistemology is an important area of philosophy because it exemplifies that philosophy must serve as its own meta-discipline by continuously reflecting critically on its own methods and aims. Even though philosophical methodology may be regarded as a branch (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Kurt Gödel, paper on the incompleteness theorems (1931).Richard Zach - 2004 - In Ivor Grattan-Guinness (ed.), Landmark Writings in Mathematics. North-Holland. pp. 917-925.
    This chapter describes Kurt Gödel's paper on the incompleteness theorems. Gödel's incompleteness results are two of the most fundamental and important contributions to logic and the foundations of mathematics. It had been assumed that first-order number theory is complete in the sense that any sentence in the language of number theory would be either provable from the axioms or refutable. Gödel's first incompleteness theorem showed that this assumption was false: it states that there are sentences of number (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. The Yablo Paradox and Circularity.Eduardo Alejandro Barrio - 2012 - Análisis Filosófico 32 (1):7-20.
    In this paper, I start by describing and examining the main results about the option of formalizing the Yablo Paradox in arithmetic. As it is known, although it is natural to assume that there is a right representation of that paradox in first order arithmetic, there are some technical results that give rise to doubts about this possibility. Then, I present some arguments that have challenged that Yablo’s construction is non-circular. Just like that, Priest (1997) has (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  44. Metacognitive feelings, self-ascriptions and metal actions.Santiago Arango-Muñoz - 2014 - Philosophical Inquiries 2 (1):145-162.
    The main aim of this paper is to clarify the relation between epistemic feel- ings, mental action, and self-ascription. Acting mentally and/or thinking about one’s mental states are two possible outcomes of epistemic or metacognitive feelings. Our men- tal actions are often guided by our E-feelings, such as when we check what we just saw based on a feeling of visual uncertainty; but thought about our own perceptual states and capacities can also be triggered by the same E-feelings. The (...) section of the pa- per presents Dokic’s argument for the insufficiency of the “ascent routine” to account for non-transparent cases of self-ascription, as well as his account of E-feelings. The second section then presents a two-level model of metacognition that builds on Dokic’s account and my own view of the issue. The two-level model links E-feelings to a min- dreading capacity in order to account for non-transparent self-ascriptions. Finally, the third section develops a deeper characterization of the relation among E-feelings, mental action, and self-ascription of mental states based on epistemic rules. In the context of self-knowledge, these remarks suggest the existence of means of forming self-ascriptions other than the ascent routine. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  45. From the four-color theorem to a generalizing “four-letter theorem”: A sketch for “human proof” and the philosophical interpretation.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 12 (21):1-10.
    The “four-color” theorem seems to be generalizable as follows. The four-letter alphabet is sufficient to encode unambiguously any set of well-orderings including a geographical map or the “map” of any logic and thus that of all logics or the DNA plan of any alive being. Then the corresponding maximally generalizing conjecture would state: anything in the universe or mind can be encoded unambiguously by four letters. That admits to be formulated as a “four-letter theorem”, and thus one can search for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. First-order modal logic in the necessary framework of objects.Peter Fritz - 2016 - Canadian Journal of Philosophy 46 (4-5):584-609.
    I consider the first-order modal logic which counts as valid those sentences which are true on every interpretation of the non-logical constants. Based on the assumptions that it is necessary what individuals there are and that it is necessary which propositions are necessary, Timothy Williamson has tentatively suggested an argument for the claim that this logic is determined by a possible world structure consisting of an infinite set of individuals and an infinite set of worlds. He notes that (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  47. Iffication, Preiffication, Qualiffication, Reiffication, and Deiffication.John Corcoran - 2008 - Bulletin of Symbolic Logic 14 (4):435-6.
    Iffication, Preiffication, Qualiffication, Reiffication, and Deiffication. -/- Roughly, iffication is the speech-act in which—by appending a suitable if-clause—the speaker qualifies a previous statement. The clause following if is called the qualiffication. In many cases, the intention is to retract part of the previous statement—called the preiffication. I can retract part of “I will buy three” by appending “if I have money”. This initial study focuses on logical relations among propositional contents of speech-acts—not their full conversational implicatures, which will be treated (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. A First-Order Modal Theodicy: God, Evil, and Religious Determinism.Gesiel Borges da Silva & Fábio Bertato - 2019 - South American Journal of Logic 5 (1):49-80.
    Edward Nieznanski developed in 2007 and 2008 two different systems in formal logic which deal with the problem of evil. Particularly, his aim is to refute a version of the logical problem of evil associated with a form of religious determinism. In this paper, we revisit his first system to give a more suitable form to it, reformulating it in first-order modal logic. The new resulting system, called N1, has much of the original basic structure, and many (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  49. First-order swap structures semantics for some Logics of Formal Inconsistency.Marcelo E. Coniglio, Aldo Figallo-Orellano & Ana Claudia Golzio - 2020 - Journal of Logic and Computation 30 (6):1257-1290.
    The logics of formal inconsistency (LFIs, for short) are paraconsistent logics (that is, logics containing contradictory but non-trivial theories) having a consistency connective which allows to recover the ex falso quodlibet principle in a controlled way. The aim of this paper is considering a novel semantical approach to first-order LFIs based on Tarskian structures defined over swap structures, a special class of multialgebras. The proposed semantical framework generalizes previous aproaches to quantified LFIs presented in the literature. The case (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  50. Strong Normalization via Natural Ordinal.Daniel Durante Pereira Alves - 1999 - Dissertation,
    The main objective of this PhD Thesis is to present a method of obtaining strong normalization via natural ordinal, which is applicable to natural deduction systems and typed lambda calculus. The method includes (a) the definition of a numerical assignment that associates each derivation (or lambda term) to a natural number and (b) the proof that this assignment decreases with reductions of maximal formulas (or redex). Besides, because the numerical assignment used coincide with the length of a specific sequence of (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 947