Results for 'Euclidean geometry theorems'

969 found
Order:
  1. ARISTOTELIAN LOGIC AND EUCLIDEAN GEOMETRY.John Corcoran - 2014 - Bulletin of Symbolic Logic 20 (1):131-2.
    John Corcoran and George Boger. Aristotelian logic and Euclidean geometry. Bulletin of Symbolic Logic. 20 (2014) 131. -/- By an Aristotelian logic we mean any system of direct and indirect deductions, chains of reasoning linking conclusions to premises—complete syllogisms, to use Aristotle’s phrase—1) intended to show that their conclusions follow logically from their respective premises and 2) resembling those in Aristotle’s Prior Analytics. Such systems presuppose existence of cases where it is not obvious that the conclusion follows from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. NeutroGeometry & AntiGeometry are alternatives and generalizations of the Non-Euclidean Geometries (revisited).Florentin Smarandache - 2021 - Neutrosophic Sets and Systems 46 (1):456-477.
    In this paper we extend the NeutroAlgebra & AntiAlgebra to the geometric spaces, by founding the NeutroGeometry & AntiGeometry. While the Non-Euclidean Geometries resulted from the total negation of one specific axiom (Euclid’s Fifth Postulate), the AntiGeometry results from the total negation of any axiom or even of more axioms from any geometric axiomatic system (Euclid’s, Hilbert’s, etc.) and from any type of geometry such as (Euclidean, Projective, Finite, Affine, Differential, Algebraic, Complex, Discrete, Computational, Molecular, Convex, etc.) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Automated Theorem Proving and Its Prospects. [REVIEW]Desmond Fearnley-Sander - 1995 - PSYCHE: An Interdisciplinary Journal of Research On Consciousness 2.
    REVIEW OF: Automated Development of Fundamental Mathematical Theories by Art Quaife. (1992: Kluwer Academic Publishers) 271pp. Using the theorem prover OTTER Art Quaife has proved four hundred theorems of von Neumann-Bernays-Gödel set theory; twelve hundred theorems and definitions of elementary number theory; dozens of Euclidean geometry theorems; and Gödel's incompleteness theorems. It is an impressive achievement. To gauge its significance and to see what prospects it offers this review looks closely at the book and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Gödel mathematics versus Hilbert mathematics. I. The Gödel incompleteness (1931) statement: axiom or theorem?Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (9):1-56.
    The present first part about the eventual completeness of mathematics (called “Hilbert mathematics”) is concentrated on the Gödel incompleteness (1931) statement: if it is an axiom rather than a theorem inferable from the axioms of (Peano) arithmetic, (ZFC) set theory, and propositional logic, this would pioneer the pathway to Hilbert mathematics. One of the main arguments that it is an axiom consists in the direct contradiction of the axiom of induction in arithmetic and the axiom of infinity in set theory. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Real Examples of NeutroGeometry & AntiGeometry.Florentin Smarandache - 2023 - Neutrosophic Sets and Systems 55.
    For the classical Geometry, in a geometrical space, all items (concepts, axioms, theorems, etc.) are totally (100%) true. But, in the real world, many items are not totally true. The NeutroGeometry is a geometrical space that has some items that are only partially true (and partially indeterminate, and partially false), and no item that is totally false. The AntiGeometry is a geometrical space that has some item that are totally (100%) false. While the Non-Euclidean Geometries [hyperbolic and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. La Neutro-Geometría y la Anti-Geometría como Alternativas y Generalizaciones de las Geometrías no Euclidianas.Florentin Smarandache - 2022 - Neutrosophic Computing and Machine Learning 20 (1):91-104.
    In this paper we extend Neutro-Algebra and Anti-Algebra to geometric spaces, founding Neutro/Geometry and AntiGeometry. While Non-Euclidean Geometries resulted from the total negation of a specific axiom (Euclid's Fifth Postulate), AntiGeometry results from the total negation of any axiom or even more axioms of any geometric axiomatic system (Euclidean, Hilbert, etc. ) and of any type of geometry such as Geometry (Euclidean, Projective, Finite, Differential, Algebraic, Complex, Discrete, Computational, Molecular, Convex, etc.), and Neutro-Geometry (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Euclidean Geometry is a Priori.Boris Culina - manuscript
    An argument is given that Euclidean geometry is a priori in the same way that numbers are a priori, the result of modeling, not the world, but our activities in the world.
    Download  
     
    Export citation  
     
    Bookmark  
  8. Flexible intuitions of Euclidean geometry in an Amazonian indigene group.Pierre Pica, Véronique Izard, Elizabeth Spelke & Stanislas Dehaene - 2011 - Pnas 23.
    Kant argued that Euclidean geometry is synthesized on the basis of an a priori intuition of space. This proposal inspired much behavioral research probing whether spatial navigation in humans and animals conforms to the predictions of Euclidean geometry. However, Euclidean geometry also includes concepts that transcend the perceptible, such as objects that are infinitely small or infinitely large, or statements of necessity and impossibility. We tested the hypothesis that certain aspects of nonperceptible Euclidian (...) map onto intuitions of space that are present in all humans, even in the absence of formal mathematical education. Our tests probed intuitions of points, lines, and surfaces in participants from an indigene group in the Amazon, the Mundurucu, as well as adults and age-matched children controls from the United States and France and younger US children without education in geometry. The responses of Mundurucu adults and children converged with that of mathematically educated adults and children and revealed an intuitive understanding of essential properties of Euclidean geometry. For instance, on a surface described to them as perfectly planar, the Mundurucu's estimations of the internal angles of triangles added up to ∼180 degrees, and when asked explicitly, they stated that there exists one single parallel line to any given line through a given point. These intuitions were also partially in place in the group of younger US participants. We conclude that, during childhood, humans develop geometrical intuitions that spontaneously accord with the principles of Euclidean geometry, even in the absence of training in mathematics. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  9. Visual foundations of Euclidean Geometry.Véronique Izard, Pierre Pica & Elizabeth Spelke - 2022 - Cognitive Psychology 136 (August):101494.
    Geometry defines entities that can be physically realized in space, and our knowledge of abstract geometry may therefore stem from our representations of the physical world. Here, we focus on Euclidean geometry, the geometry historically regarded as “natural”. We examine whether humans possess representations describing visual forms in the same way as Euclidean geometry – i.e., in terms of their shape and size. One hundred and twelve participants from the U.S. (age 3–34 years), (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. After Non-Euclidean Geometry: Intuition, Truth and the Autonomy of Mathematics.Janet Folina - 2018 - Journal for the History of Analytical Philosophy 6 (3).
    The mathematical developments of the 19th century seemed to undermine Kant’s philosophy. Non-Euclidean geometries challenged Kant’s view that there is a spatial intuition rich enough to yield the truth of Euclidean geometry. Similarly, advancements in algebra challenged the view that temporal intuition provides a foundation for both it and arithmetic. Mathematics seemed increasingly detached from experience as well as its form; moreover, with advances in symbolic logic, mathematical inference also seemed independent of intuition. This paper considers various (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. An Elementary System of Axioms for Euclidean Geometry Based on Symmetry Principles.Boris Čulina - 2018 - Axiomathes 28 (2):155-180.
    In this article I develop an elementary system of axioms for Euclidean geometry. On one hand, the system is based on the symmetry principles which express our a priori ignorant approach to space: all places are the same to us, all directions are the same to us and all units of length we use to create geometric figures are the same to us. On the other hand, through the process of algebraic simplification, this system of axioms directly provides (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  12. (1 other version)Kant's Views on Non-Euclidean Geometry.Michael Cuffaro - 2012 - Proceedings of the Canadian Society for History and Philosophy of Mathematics 25:42-54.
    Kant's arguments for the synthetic a priori status of geometry are generally taken to have been refuted by the development of non-Euclidean geometries. Recently, however, some philosophers have argued that, on the contrary, the development of non-Euclidean geometry has confirmed Kant's views, for since a demonstration of the consistency of non-Euclidean geometry depends on a demonstration of its equi-consistency with Euclidean geometry, one need only show that the axioms of Euclidean (...) have 'intuitive content' in order to show that both Euclidean and non-Euclidean geometry are bodies of synthetic a priori truths. Michael Friedman has argued that this defence presumes a polyadic conception of logic that was foreign to Kant. According to Friedman, Kant held that geometrical reasoning itself relies essentially on intuition, and that this precludes the very possibility of non-Euclidean geometry. While Friedman's characterization of Kant's views on geometrical reasoning is correct, I argue that Friedman's conclusion that non-Euclidean geometries are logically impossible for Kant is not. I argue that Kant is best understood as a proto-constructivist and that modern constructive axiomatizations (unlike Hilbert-style axiomatizations) of both Euclidean and non-Euclidean geometry capture Kant's views on the essentially constructive nature of geometrical reasoning well. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. Four-Way Turiyam based Characterization of Non-Euclidean Geometry.Prem Kumar Singh - 2023 - Journal of Neutrosophic and Fuzzy Ststems 5 (2):69-80.
    Recently, a problem is addressed while dealing the data with Non-Euclidean Geometry and its characterization. The mathematician found negation of fifth postulates of Euclidean geometry easily and called as Non-Euclidean geometry. However Riemannian provided negation of second postulates also which still considered as Non-Euclidean. In this case the problem arises what will happen in case negation of other Euclid Postulates exists. Same time total total or partial negation of Euclid postulates fails as hybrid (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. On the relationship between geometric objects and figures in Euclidean geometry.Mario Bacelar Valente - 2021 - In Diagrammatic Representation and Inference. 12th International Conference, Diagrams 2021. pp. 71-78.
    In this paper, we will make explicit the relationship that exists between geometric objects and geometric figures in planar Euclidean geometry. That will enable us to determine basic features regarding the role of geometric figures and diagrams when used in the context of pure and applied planar Euclidean geometry, arising due to this relationship. By taking into account pure geometry, as developed in Euclid’s Elements, and practical geometry, we will establish a relation between geometric (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. A System of Axioms for Minkowski Spacetime.Lorenzo Cocco & Joshua Babic - 2020 - Journal of Philosophical Logic 50 (1):149-185.
    We present an elementary system of axioms for the geometry of Minkowski spacetime. It strikes a balance between a simple and streamlined set of axioms and the attempt to give a direct formalization in first-order logic of the standard account of Minkowski spacetime in Maudlin and Malament. It is intended for future use in the formalization of physical theories in Minkowski spacetime. The choice of primitives is in the spirit of Tarski : a predicate of betwenness and a four (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  16. The Kinds of Truth of Geometry Theorems.Michael Bulmer, Desmond Fearnley-Sander & Tim Stokes - 2001 - In Jürgen Jürgen Richter-Gebert & Dongming Wang (eds.), LNCS: Lecture Notes In Computer Science. Springer Verlag. pp. 129-142.
    Proof by refutation of a geometry theorem that is not universally true produces a Gröbner basis whose elements, called side polynomials, may be used to give inequations that can be added to the hypotheses to give a valid theorem. We show that (in a certain sense) all possible subsidiary conditions are implied by those obtained from the basis; that what we call the kind of truth of the theorem may be derived from the basis; and that the side polynomials (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Geometry as a Universal mental Construction.Véronique Izard, Pierre Pica, Danièle Hinchey, Stanislas Dehane & Elizabeth Spelke - 2011 - In Stanislas Dehaene & Elizabeth Brannon (eds.), Space, Time and Number in the Brain: Searching for the Foundations of Mathematical Thought. Oxford University Press.
    Geometry, etymologically the “science of measuring the Earth”, is a mathematical formalization of space. Just as formal concepts of number may be rooted in an evolutionary ancient system for perceiving numerical quantity, the fathers of geometry may have been inspired by their perception of space. Is the spatial content of formal Euclidean geometry universally present in the way humans perceive space, or is Euclidean geometry a mental construction, specific to those who have received appropriate (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  18. The Euclidean Mousetrap.Jason M. Costanzo - 2008 - Idealistic Studies 38 (3):209-220.
    In his doctoral dissertation On the Principle of Sufficient Reason, Arthur Schopenhauer there outlines a critique of Euclidean geometry on the basis of the changing nature of mathematics, and hence of demonstration, as a result of Kantian idealism. According to Schopenhauer, Euclid treats geometry synthetically, proceeding from the simple to the complex, from the known to the unknown, “synthesizing” later proofs on the basis of earlier ones. Such a method, although proving the case logically, nevertheless fails to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  19. What Frege Meant When He Said: Kant is Right about Geometry.Teri Merrick - 2006 - Philosophia Mathematica 14 (1):44-75.
    This paper argues that Frege's notoriously long commitment to Kant's thesis that Euclidean geometry is synthetic _a priori_ is best explained by realizing that Frege uses ‘intuition’ in two senses. Frege sometimes adopts the usage presented in Hermann Helmholtz's sign theory of perception. However, when using ‘intuition’ to denote the source of geometric knowledge, he is appealing to Hermann Cohen's use of Kantian terminology. We will see that Cohen reinterpreted Kantian notions, stripping them of any psychological connotation. Cohen's (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  20. Spatial Perception and Geometry in Kant and Helmholtz.Gary Hatfield - 1984 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1984:569 - 587.
    This paper examines Helmholtz's attempt to use empirical psychology to refute certain of Kant's epistemological positions. Particularly, Helmholtz believed that his work in the psychology of visual perception showed Kant's doctrine of the a priori character of spatial intuition to be in error. Some of Helmholtz's arguments are effective, but this effectiveness derives from his arguments to show the possibility of obtaining evidence that the structure of physical space is non-Euclidean, and these arguments do not depend on his theory (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Astronomy, Geometry, and Logic, Rev. 1c: An ontological proof of the natural principles that enable and sustain reality and mathematics.Michael Lucas Monterey & Michael Lucas-Monterey - manuscript
    The latest draft (posted 05/14/22) of this short, concise work of proof, theory, and metatheory provides summary meta-proofs and verification of the work and results presented in the Theory and Metatheory of Atemporal Primacy and Riemann, Metatheory, and Proof. In this version, several new and revised definitions of terms were added to subsection SS.1; and many corrected equations, theorems, metatheorems, proofs, and explanations are included in the main text. The body of the text is approximately 18 pages, with 3 (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22.  52
    The Nuances of Deprogramming Zeros.Parker Emmerson - 2024 - Journal of Liberated Mathematics.
    Description In this paper, we propose an advanced mathematical framework centered around the Energy Number Field (E), which fundamentally avoids the conventional concept of zero by introducing a neutral ele- ment, νE. Through this approach, we redefine core mathematical constructs, including limits, continuity, differentiation, integration, and series summation, ensuring they operate seamlessly within a zero-less paradigm. We address and redefine matrix operations, topology, metric spaces, and complex analysis, aligning them with the principles of E. Additionally, we explore non-mappable properties of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. (1 other version)David Hyder. The Determinate World: Kant and Helmholtz on the Physical Meaning of Geometry. viii + 229 pp., bibl., index. Berlin/New York: Walter de Gruyter, 2009. $105. [REVIEW]Gary Hatfield - 2012 - Isis 103 (4):769-770.
    David Hyder.The Determinate World: Kant and Helmholtz on the Physical Meaning of Geometry. viii + 229 pp., bibl., index. Berlin/New York: Walter de Gruyter, 2009.
    Download  
     
    Export citation  
     
    Bookmark  
  24. Inequality in the Universe, Imaginary Numbers and a Brief Solution to P=NP? Problem.Mesut Kavak - manuscript
    While I was working about some basic physical phenomena, I discovered some geometric relations that also interest mathematics. In this work, I applied the rules I have been proven to P=NP? problem over impossibility of perpendicularity in the universe. It also brings out extremely interesting results out like imaginary numbers which are known as real numbers currently. Also it seems that Euclidean Geometry is impossible. The actual geometry is Riemann Geometry and complex numbers are real.
    Download  
     
    Export citation  
     
    Bookmark  
  25. Berkeley and Proof in Geometry.Richard J. Brook - 2012 - Dialogue 51 (3):419-435.
    Berkeley in his Introduction to the Principles of Human knowledge uses geometrical examples to illustrate a way of generating “universal ideas,” which allegedly account for the existence of general terms. In doing proofs we might, for example, selectively attend to the triangular shape of a diagram. Presumably what we prove using just that property applies to all triangles.I contend, rather, that given Berkeley’s view of extension, no Euclidean triangles exist to attend to. Rather proof, as Berkeley would normally assume, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  26. Universal Agent Mixtures and the Geometry of Intelligence.Samuel Allen Alexander, David Quarel, Len Du & Marcus Hutter - 2023 - Aistats.
    Inspired by recent progress in multi-agent Reinforcement Learning (RL), in this work we examine the collective intelligent behaviour of theoretical universal agents by introducing a weighted mixture operation. Given a weighted set of agents, their weighted mixture is a new agent whose expected total reward in any environment is the corresponding weighted average of the original agents' expected total rewards in that environment. Thus, if RL agent intelligence is quantified in terms of performance across environments, the weighted mixture's intelligence is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Fermat's Least Time Principle Violates Ptolemy's Theorem.Radhakrishnamurty Padyala - manuscript
    Fermat’s Least Time Principle has a long history. World’s foremost academies of the day championed by their most prestigious philosophers competed for the glory and prestige that went with the solution of the refraction problem of light. The controversy, known as Descartes - Fermat controversy was due to the contradictory views held by Descartes and Fermat regarding the relative speeds of light in different media. Descartes with his mechanical philosophy insisted that every natural phenomenon must be explained by mechanical principles. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Leibniz's Calculus Proof of Snell's Laws Violates Ptolemy's Theorem. Radhakrishanamurty - manuscript
    Leibniz proposed the ‘Most Determined Path Principle’ in seventeenth century. According to it, ‘ease’ of travel is the end purpose of motion. Using this principle and his calculus method he demonstrated Snell’s Laws of reflection and refraction. This method shows that light follows extremal (local minimum or maximum) time path in going from one point to another, either directly along a straight line path or along a broken line path when it undergoes reflection or refraction at plane or spherical (concave (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. An Extension of Heron’s Formula to Tetrahedra, and the Projective Nature of Its Zeros.Havel Timothy - manuscript
    A natural extension of Heron's 2000 year old formula for the area of a triangle to the volume of a tetrahedron is presented. This gives the fourth power of the volume as a polynomial in six simple rational functions of the areas of its four faces and three medial parallelograms, which will be referred to herein as "interior faces." Geometrically, these rational functions are the areas of the triangles into which the exterior faces are divided by the points at which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Logic, mathematics, physics: from a loose thread to the close link: Or what gravity is for both logic and mathematics rather than only for physics.Vasil Penchev - 2023 - Astrophysics, Cosmology and Gravitation Ejournal 2 (52):1-82.
    Gravitation is interpreted to be an “ontomathematical” force or interaction rather than an only physical one. That approach restores Newton’s original design of universal gravitation in the framework of “The Mathematical Principles of Natural Philosophy”, which allows for Einstein’s special and general relativity to be also reinterpreted ontomathematically. The entanglement theory of quantum gravitation is inherently involved also ontomathematically by virtue of the consideration of the qubit Hilbert space after entanglement as the Fourier counterpart of pseudo-Riemannian space. Gravitation can be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. A hub-and-spoke model of geometric concepts.Mario Bacelar Valente - 2023 - Theoria : An International Journal for Theory, History and Fundations of Science 38 (1):25-44.
    The cognitive basis of geometry is still poorly understood, even the ‘simpler’ issue of what kind of representation of geometric objects we have. In this work, we set forward a tentative model of the neural representation of geometric objects for the case of the pure geometry of Euclid. To arrive at a coherent model, we found it necessary to consider earlier forms of geometry. We start by developing models of the neural representation of the geometric figures of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. A New Definition of A Priori Knowledge: In Search of a Modal Basis.Tuomas E. Tahko - 2008 - Metaphysica 9 (2):57-68.
    In this paper I will offer a novel understanding of a priori knowledge. My claim is that the sharp distinction that is usually made between a priori and a posteriori knowledge is groundless. It will be argued that a plausible understanding of a priori and a posteriori knowledge has to acknowledge that they are in a constant bootstrapping relationship. It is also crucial that we distinguish between a priori propositions that hold in the actual world and merely possible, non-actual a (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  33.  63
    Hypothesis and Convention in Poincaré’s Defense of Galilei Spacetime.Scott Walter - 2009 - In Michael Heidelberger & Gregor Schiemann (eds.), The Significance of the Hypothetical in Natural Science. De Gruyter. pp. 193-220.
    According to the conventionalist doctrine of space elaborated by the French philosopher-scientist Henri Poincaré in the 1890s, the geometry of physical space is a matter of definition, not of fact. Poincaré's Hertz-inspired view of the role of hypothesis in science guided his interpretation of the theory of relativity (1905), which he found to be in violation of the axiom of free mobility of invariable solids. In a quixotic effort to save the Euclidean geometry that relied on this (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  34. How Many Points are there in a Line Segment? – A new answer from Discrete-Cellular Space viewpoint.Victor Christianto & Florentin Smarandache - manuscript
    While it is known that Euclid’s five axioms include a proposition that a line consists at least of two points, modern geometry avoid consistently any discussion on the precise definition of point, line, etc. It is our aim to clarify one of notorious question in Euclidean geometry: how many points are there in a line segment? – from discrete-cellular space (DCS) viewpoint. In retrospect, it may offer an alternative of quantum gravity, i.e. by exploring discrete gravitational theories. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Achievements and fallacies in Hume's account of infinite divisibility.James Franklin - 1994 - Hume Studies 20 (1):85-101.
    Throughout history, almost all mathematicians, physicists and philosophers have been of the opinion that space and time are infinitely divisible. That is, it is usually believed that space and time do not consist of atoms, but that any piece of space and time of non-zero size, however small, can itself be divided into still smaller parts. This assumption is included in geometry, as in Euclid, and also in the Euclidean and non- Euclidean geometries used in modern physics. (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  36. What is the Value of Geometric Models to Understand Matter?Francoise Monnoyeur (ed.) - 2015 - palermo italy: review of Ontology.
    This article analyzes the value of geometric models to understand matter with the examples of the Platonic model for the primary four elements (fire, air, water, and earth) and the models of carbon atomic structures in the new science of crystallography. How the geometry of these models is built in order to discover the properties of matter is explained: movement and stability for the primary elements, and hardness, softness and elasticity for the carbon atoms. These geometric models appear to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. SAD computers and two versions of the Church–Turing thesis.Tim Button - 2009 - British Journal for the Philosophy of Science 60 (4):765-792.
    Recent work on hypercomputation has raised new objections against the Church–Turing Thesis. In this paper, I focus on the challenge posed by a particular kind of hypercomputer, namely, SAD computers. I first consider deterministic and probabilistic barriers to the physical possibility of SAD computation. These suggest several ways to defend a Physical version of the Church–Turing Thesis. I then argue against Hogarth's analogy between non-Turing computability and non-Euclidean geometry, showing that it is a non-sequitur. I conclude that the (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  38. Mathematics - an imagined tool for rational cognition.Boris Culina - manuscript
    Analysing several characteristic mathematical models: natural and real numbers, Euclidean geometry, group theory, and set theory, I argue that a mathematical model in its final form is a junction of a set of axioms and an internal partial interpretation of the corresponding language. It follows from the analysis that (i) mathematical objects do not exist in the external world: they are our internally imagined objects, some of which, at least approximately, we can realize or represent; (ii) mathematical truths (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  39. Reconstructing the Unity of Mathematics circa 1900.David J. Stump - 1997 - Perspectives on Science 5 (3):383-417.
    Standard histories of mathematics and of analytic philosophy contend that work on the foundations of mathematics was motivated by a crisis such as the discovery of paradoxes in set theory or the discovery of non-Euclidean geometries. Recent scholarship, however, casts doubt on the standard histories, opening the way for consideration of an alternative motive for the study of the foundations of mathematics—unification. Work on foundations has shown that diverse mathematical practices could be integrated into a single framework of axiomatic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  40. Collected Papers (on various scientific topics), Volume XIII.Florentin Smarandache - 2022 - Miami, FL, USA: Global Knowledge.
    This thirteenth volume of Collected Papers is an eclectic tome of 88 papers in various fields of sciences, such as astronomy, biology, calculus, economics, education and administration, game theory, geometry, graph theory, information fusion, decision making, instantaneous physics, quantum physics, neutrosophic logic and set, non-Euclidean geometry, number theory, paradoxes, philosophy of science, scientific research methods, statistics, and others, structured in 17 chapters (Neutrosophic Theory and Applications; Neutrosophic Algebra; Fuzzy Soft Sets; Neutrosophic Sets; Hypersoft Sets; Neutrosophic Semigroups; Neutrosophic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. REVIEW OF 1988. Saccheri, G. Euclides Vindicatus (1733), edited and translated by G. B. Halsted, 2nd ed. (1986), in Mathematical Reviews MR0862448. 88j:01013.John Corcoran - 1988 - MATHEMATICAL REVIEWS 88 (J):88j:01013.
    Girolamo Saccheri (1667--1733) was an Italian Jesuit priest, scholastic philosopher, and mathematician. He earned a permanent place in the history of mathematics by discovering and rigorously deducing an elaborate chain of consequences of an axiom-set for what is now known as hyperbolic (or Lobachevskian) plane geometry. Reviewer's remarks: (1) On two pages of this book Saccheri refers to his previous and equally original book Logica demonstrativa (Turin, 1697) to which 14 of the 16 pages of the editor's "Introduction" are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. The Media of Relativity.Jimena Canales - 2015 - Technology and Culture 56 (3):610-645.
    How are fundamental constants, such as c for the speed of light, related to particular technological environments? Our understanding of the constant c and Einstein’s relativistic cosmology depended on key experiences and lessons learned in connection to new forms of telecommunications, first used by the military and later adapted for commercial purposes. Many of Einstein’s contemporaries understood his theory of relativity by reference to telecommunications, some referring to it as “signal-theory” and “message theory.” Prominent physicists who contributed to it (Hans (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  43. Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics.Vladimir Kanovei, Mikhail G. Katz & Thomas Mormann - 2013 - Foundations of Science 18 (2):259-296.
    We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in functional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S , all definable sets of reals are (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  44. Strong dictatorship via ratio-scale measurable utilities: a simpler proof.Jacob M. Nebel - 2023 - Economic Theory Bulletin 11 (1):101-106.
    Tsui and Weymark (Economic Theory, 1997) have shown that the only continuous social welfare orderings on the whole Euclidean space which satisfy the weak Pareto principle and are invariant to individual-specific similarity transformations of utilities are strongly dictatorial. Their proof relies on functional equation arguments which are quite complex. This note provides a simpler proof of their theorem.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  45. Foundation of paralogical nonstandard analysis and its application to some famous problems of trigonometrical and orthogonal series. Part II.Jaykov Foukzon - manuscript
    Carleson’s celebrated theorem of 1965 [1] asserts the pointwise convergence of the partial Fourier sums of square integrable functions. The Fourier transform has a formulation on each of the Euclidean groups R , Z andΤ .Carleson’s original proof worked on Τ . Fefferman’s proof translates very easily to R . M´at´e [2] extended Carleson’s proof to Z . Each of the statements of the theorem can be stated in terms of a maximal Fourier multiplier theorem [5]. Inequalities for such (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Some Remarks on Wittgenstein’s Philosophy of Mathematics.Richard Startup - 2020 - Open Journal of Philosophy 10 (1):45-65.
    Drawing mainly from the Tractatus Logico-Philosophicus and his middle period writings, strategic issues and problems arising from Wittgenstein’s philosophy of mathematics are discussed. Topics have been so chosen as to assist mediation between the perspective of philosophers and that of mathematicians on their developing discipline. There is consideration of rules within arithmetic and geometry and Wittgenstein’s distinctive approach to number systems whether elementary or transfinite. Examples are presented to illuminate the relation between the meaning of an arithmetical generalisation or (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  47. The Philosophy of Perception : an explanation of Realism, Idealism and the Nature of Reality.Rochelle Forrester - unknown
    This paper investigates the nature of reality by looking at the philosophical debate between realism and idealism and at scientific investigations in quantum physics and at recent studies of animal senses, neurology and cognitive psychology. The concept of perceptual relativity is examined and this involves looking at sense perception in other animals and various examples of perceptual relativity in science. It will be concluded that the universe is observer dependent and that there is no reality independent of the observer, which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. (1 other version)Carnap's metrical conventionalism versus differential topology.Thomas Mormann - 2004 - Proc. 2004 Biennial Meeting of the PSA, vol. I, Contributed Papers 72 (5):814 - 825.
    Geometry was a main source of inspiration for Carnap’s conventionalism. Taking Poincaré as his witness Carnap asserted in his dissertation Der Raum (Carnap 1922) that the metrical structure of space is conventional while the underlying topological structure describes "objective" facts. With only minor modifications he stuck to this account throughout his life. The aim of this paper is to disprove Carnap's contention by invoking some classical theorems of differential topology. By this means his metrical conventionalism turns out to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  49. Symmetry, Invariance and Ontology in Physics and Statistics.Julio Michael Stern - 2011 - Symmetry 3 (3):611-635.
    This paper has three main objectives: (a) Discuss the formal analogy between some important symmetry-invariance arguments used in physics, probability and statistics. Specifically, we will focus on Noether’s theorem in physics, the maximum entropy principle in probability theory, and de Finetti-type theorems in Bayesian statistics; (b) Discuss the epistemological and ontological implications of these theorems, as they are interpreted in physics and statistics. Specifically, we will focus on the positivist (in physics) or subjective (in statistics) interpretations vs. objective (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  50.  50
    Formalizing Mechanical Analysis Using Sweeping Net Methods.Parker Emmerson - 2024 - Journal of Liberated Mathematics 1:12.
    We present a formal mechanical analysis using sweeping net methods to approximate surfacing singularities of saddle maps. By constructing densified sweeping subnets for individual vertices and integrating them, we create a comprehensive approximation of singularities. This approach utilizes geometric concepts, analytical methods, and theorems that demonstrate the robustness and stability of the nets under perturbations. Through detailed proofs and visualizations, we provide a new perspective on singularities and their approximations in analytic geometry.
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 969