Results for 'Objectivity of mathematics'

951 found
Order:
  1. The Ontogenesis of Mathematical Objects.Barry Smith - 1975 - Journal of the British Society for Phenomenology 6 (2):91-101.
    Mathematical objects are divided into (1) those which are autonomous, i.e., not dependent for their existence upon mathematicians’ conscious acts, and (2) intentional objects, which are so dependent. Platonist philosophy of mathematics argues that all objects belong to group (1), Brouwer’s intuitionism argues that all belong to group (2). Here we attempt to develop a dualist ontology of mathematics (implicit in the work of, e.g., Hilbert), exploiting the theories of Meinong, Husserl and Ingarden on the relations between autonomous (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  2. Objectivity in Mathematics, Without Mathematical Objects†.Markus Pantsar - 2021 - Philosophia Mathematica 29 (3):318-352.
    I identify two reasons for believing in the objectivity of mathematical knowledge: apparent objectivity and applications in science. Focusing on arithmetic, I analyze platonism and cognitive nativism in terms of explaining these two reasons. After establishing that both theories run into difficulties, I present an alternative epistemological account that combines the theoretical frameworks of enculturation and cumulative cultural evolution. I show that this account can explain why arithmetical knowledge appears to be objective and has scientific applications. Finally, I (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  3. An Aristotelian Realist Philosophy of Mathematics: Mathematics as the science of quantity and structure.James Franklin - 2014 - London and New York: Palgrave MacMillan.
    An Aristotelian Philosophy of Mathematics breaks the impasse between Platonist and nominalist views of mathematics. Neither a study of abstract objects nor a mere language or logic, mathematics is a science of real aspects of the world as much as biology is. For the first time, a philosophy of mathematics puts applied mathematics at the centre. Quantitative aspects of the world such as ratios of heights, and structural ones such as symmetry and continuity, are parts (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  4. The Fate of Mathematical Place: Objectivity and the Theory of Lived-Space from Husserl to Casey.Edward Slowik - 2010 - In Vesselin Petkov (ed.), Space, Time, and Spacetime: Physical and Philosophical Implications of Minkowski's Unification of Space and Time. Springer. pp. 291-312.
    This essay explores theories of place, or lived-space, as regards the role of objectivity and the problem of relativism. As will be argued, the neglect of mathematics and geometry by the lived-space theorists, which can be traced to the influence of the early phenomenologists, principally the later Husserl and Heidegger, has been a major contributing factor in the relativist dilemma that afflicts the lived-space movement. By incorporating various geometrical concepts within the analysis of place, it is demonstrated that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Philosophy of Mathematics.Alexander Paseau (ed.) - 2016 - New York: Routledge.
    Mathematics is everywhere and yet its objects are nowhere. There may be five apples on the table but the number five itself is not to be found in, on, beside or anywhere near the apples. So if not in space and time, where are numbers and other mathematical objects such as perfect circles and functions? And how do we humans discover facts about them, be it Pythagoras’ Theorem or Fermat’s Last Theorem? The metaphysical question of what numbers are and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Forms of Life of Mathematical Objects.Jedrzejewski Franck - 2020 - Rue Descartes 97 (1):115-130.
    What could be more inert than mathematical objects? Nothing distinguishes them from rocks and yet, if we examine them in their historical perspective, they don't actually seem to be as lifeless as they do at first. Conceived as they are by humans, they offer a glimpse of the breath that brings them to life. Caught in the web of a language, they cannot extricate themselves from the form that the tensive forces constraining them have given them. While they do not (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. “In Nature as in Geometry”: Du Châtelet and the Post-Newtonian Debate on the Physical Significance of Mathematical Objects.Aaron Wells - 2023 - In Wolfgang Lefèvre (ed.), Between Leibniz, Newton, and Kant: Philosophy and Science in the Eighteenth Century. Springer. pp. 69-98.
    Du Châtelet holds that mathematical representations play an explanatory role in natural science. Moreover, she writes that things proceed in nature as they do in geometry. How should we square these assertions with Du Châtelet’s idealism about mathematical objects, on which they are ‘fictions’ dependent on acts of abstraction? The question is especially pressing because some of her important interlocutors (Wolff, Maupertuis, and Voltaire) denied that mathematics informs us about the properties of material things. After situating Du Châtelet in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. ‘Let No-One Ignorant of Geometry…’: Mathematical Parallels for Understanding the Objectivity of Ethics.James Franklin - 2023 - Journal of Value Inquiry 57 (2):365-384.
    It may be a myth that Plato wrote over the entrance to the Academy “Let no-one ignorant of geometry enter here.” But it is a well-chosen motto for his view in the Republic that mathematical training is especially productive of understanding in abstract realms, notably ethics. That view is sound and we should return to it. Ethical theory has been bedevilled by the idea that ethics is fundamentally about actions (right and wrong, rights, duties, virtues, dilemmas and so on). That (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. What Can Our Best Scientific Theories Tell Us About The Modal Status of Mathematical Objects?Joe Morrison - 2023 - Erkenntnis 88 (4):1391-1408.
    Indispensability arguments are used as a way of working out what there is: our best science tells us what things there are. Some philosophers think that indispensability arguments can be used to show that we should be committed to the existence of mathematical objects (numbers, functions, sets). Do indispensability arguments also deliver conclusions about the modal properties of these mathematical entities? Colyvan (in Leng, Paseau, Potter (eds) Mathematical knowledge, OUP, Oxford, 109-122, 2007) and Hartry Field (Realism, mathematics and modality, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. The Epistemology of Mathematical Necessity.Catherine Legg - 2018 - In Peter Chapman, Gem Stapleton, Amirouche Moktefi, Sarah Perez-Kriz & Francesco Bellucci (eds.), Diagrammatic Representation and Inference10th International Conference, Diagrams 2018, Edinburgh, UK, June 18-22, 2018, Proceedings. Cham, Switzerland: Springer-Verlag. pp. 810-813.
    It seems possible to know that a mathematical claim is necessarily true by inspecting a diagrammatic proof. Yet how does this work, given that human perception seems to just (as Hume assumed) ‘show us particular objects in front of us’? I draw on Peirce’s account of perception to answer this question. Peirce considered mathematics as experimental a science as physics. Drawing on an example, I highlight the existence of a primitive constraint or blocking function in our thinking which we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Rule-following and the objectivity of proof.Cesare Cozzo - 2004 - In Annalisa Coliva & Eva Picardi (eds.), Wittgenstein Today. Il poligrafo. pp. 185--200.
    Ideas on meaning, rules and mathematical proofs abound in Wittgenstein’s writings. The undeniable fact that they are present together, sometimes intertwined in the same passage of Philosophical Investigations or Remarks on the Foundations of Mathematics, does not show, however, that the connection between these ideas is necessary or inextricable. The possibility remains, and ought to be checked, that they can be plausibly and consistently separated. I am going to examine two views detectable in Wittgenstein’s works: one about proofs, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Hyperintensional Foundations of Mathematical Platonism.David Elohim - manuscript
    This paper aims to provide hyperintensional foundations for mathematical platonism. I examine Hale and Wright's (2009) objections to the merits and need, in the defense of mathematical platonism and its epistemology, of the thesis of Necessitism. In response to Hale and Wright's objections to the role of epistemic and metaphysical modalities in providing justification for both the truth of abstraction principles and the success of mathematical predicate reference, I examine the Necessitist commitments of the abundant conception of properties endorsed by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Tools for Thought: The Case of Mathematics.Valeria Giardino - 2018 - Endeavour 2 (42):172-179.
    The objective of this article is to take into account the functioning of representational cognitive tools, and in particular of notations and visualizations in mathematics. In order to explain their functioning, formulas in algebra and logic and diagrams in topology will be presented as case studies and the notion of manipulative imagination as proposed in previous work will be discussed. To better characterize the analysis, the notions of material anchor and representational affordance will be introduced.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  14. Du Châtelet’s Philosophy of Mathematics.Aaron Wells - forthcoming - In Fatema Amijee (ed.), The Bloomsbury Handbook of Du Châtelet. Bloomsbury.
    I begin by outlining Du Châtelet’s ontology of mathematical objects: she is an idealist, and mathematical objects are fictions dependent on acts of abstraction. Next, I consider how this idealism can be reconciled with her endorsement of necessary truths in mathematics, which are grounded in essences that we do not create. Finally, I discuss how mathematics and physics relate within Du Châtelet’s idealism. Because the primary objects of physics are partly grounded in the same kinds of acts as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. PERCEPTIONS OF MATHEMATICS’ STUDENT TEACHERS IN THE IMPLEMENTATION OF GAMIFICATION IN SECONDARY SCHOOL AT NASUGBU, BATANGAS.Angel Joie G. Feleo, Jowenie A. Mangarin & Mary Ann N. Cahayon - 2024 - Get International Research Journal 2 (2):22-46.
    This study delved into the perceptions of Mathematics’ student teachers regarding the implementation of gamification in secondary schools at Nasugbu, Batangas. This research investigates the rising global trend of implementing gamification in education, particularly in Mathematics teaching, to address contemporary learner needs by examining student teachers' use of gamified activities, their design factors, encountered challenges, and perceived benefits. Purposive sampling was utilized in a multiple-case study approach to select ten (10) secondary school Mathematics’ student teachers engaged in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Knowledge of Abstract Objects in Physics and Mathematics.Michael J. Shaffer - 2017 - Acta Analytica 32 (4):397-409.
    In this paper a parallel is drawn between the problem of epistemic access to abstract objects in mathematics and the problem of epistemic access to idealized systems in the physical sciences. On this basis it is argued that some recent and more traditional approaches to solving these problems are problematic.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  17. Aristotelianism in the Philosophy of Mathematics.James Franklin - 2011 - Studia Neoaristotelica 8 (1):3-15.
    Modern philosophy of mathematics has been dominated by Platonism and nominalism, to the neglect of the Aristotelian realist option. Aristotelianism holds that mathematics studies certain real properties of the world – mathematics is neither about a disembodied world of “abstract objects”, as Platonism holds, nor it is merely a language of science, as nominalism holds. Aristotle’s theory that mathematics is the “science of quantity” is a good account of at least elementary mathematics: the ratio of (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  18. Mathematics as a science of non-abstract reality: Aristotelian realist philosophies of mathematics.James Franklin - 2022 - Foundations of Science 27 (2):327-344.
    There is a wide range of realist but non-Platonist philosophies of mathematics—naturalist or Aristotelian realisms. Held by Aristotle and Mill, they played little part in twentieth century philosophy of mathematics but have been revived recently. They assimilate mathematics to the rest of science. They hold that mathematics is the science of X, where X is some observable feature of the (physical or other non-abstract) world. Choices for X include quantity, structure, pattern, complexity, relations. The article lays (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  19. A metalinguistic and computational approach to the problem of mathematical omniscience.Zeynep Soysal - 2022 - Philosophy and Phenomenological Research 106 (2):455-474.
    In this paper, I defend the metalinguistic solution to the problem of mathematical omniscience for the possible-worlds account of propositions by combining it with a computational model of knowledge and belief. The metalinguistic solution states that the objects of belief and ignorance in mathematics are relations between mathematical sentences and what they express. The most pressing problem for the metalinguistic strategy is that it still ascribes too much mathematical knowledge under the standard possible-worlds model of knowledge and belief on (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  20. How Can Mathematical Objects Be Real but Mind-Dependent?Hazhir Roshangar - 2022 - In Herbert Hrachovec & Jakub Mácha (eds.), Platonism. Contributions of the 43rd International Wittgenstein Symposium. ALWS. pp. 159-161.
    Taking mathematics as a language based on empirical experience, I argue for an account of mathematics in which its objects are abstracta that describe and communicate the structure of reality based on some of our ancestral interactions with their environment. I argue that mathematics as a language is mostly invented. Nonetheless, in being a general description of reality it cannot be said that it is fictional; and as an intersubjective reality, mathematical objects can exist independent of any (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. The fundamental cognitive approaches of mathematics.Salvador Daniel Escobedo Casillas - manuscript
    We propose a way to explain the diversification of branches of mathematics, distinguishing the different approaches by which mathematical objects can be studied. In our philosophy of mathematics, there is a base object, which is the abstract multiplicity that comes from our empirical experience. However, due to our human condition, the analysis of such multiplicity is covered by other empirical cognitive attitudes (approaches), diversifying the ways in which it can be conceived, and consequently giving rise to different mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Fundamentality, Effectiveness, and Objectivity of Gauge Symmetries.Aldo Filomeno - 2016 - International Studies in the Philosophy of Science 30 (1):19-37.
    Much recent philosophy of physics has investigated the process of symmetry breaking. Here, I critically assess the alleged symmetry restoration at the fundamental scale. I draw attention to the contingency that gauge symmetries exhibit, that is, the fact that they have been chosen from an infinite space of possibilities. I appeal to this feature of group theory to argue that any metaphysical account of fundamental laws that expects symmetry restoration up to the fundamental level is not fully satisfactory. This is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  23. Can Mathematical Objects Be Causally Efficacious?Seungbae Park - 2018 - Inquiry: An Interdisciplinary Journal of Philosophy 62 (3):247–255.
    Callard (2007) argues that it is metaphysically possible that a mathematical object, although abstract, causally affects the brain. I raise the following objections. First, a successful defence of mathematical realism requires not merely the metaphysical possibility but rather the actuality that a mathematical object affects the brain. Second, mathematical realists need to confront a set of three pertinent issues: why a mathematical object does not affect other concrete objects and other mathematical objects, what counts as a mathematical object, and how (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  24. The "Unreasonable" Effectiveness of Mathematics: The Foundational Approach of the Theoretic Alternatives.Catalin Barboianu - 2015 - Revista de Filosofie 62 (1):58-71.
    The attempts of theoretically solving the famous puzzle-dictum of physicist Eugene Wigner regarding the “unreasonable” effectiveness of mathematics as a problem of analytical philosophy, started at the end of the 19th century, are yet far from coming out with an acceptable theoretical solution. The theories developed for explaining the empirical “miracle” of applied mathematics vary in nature, foundation and solution, from denying the existence of a genuine problem to structural theories with an advanced level of mathematical formalism. Despite (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Mathematics, isomorphism, and the identity of objects.Graham White - 2021 - Journal of Knowledge Structures and Systems 2 (2):56-58.
    We compare the medieval projects of commentaries and disputations with the modern projects of formal ontology and of mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  26. Natorp's mathematical philosophy of science.Thomas Mormann - 2022 - Studia Kantiana 20 (2):65 - 82.
    This paper deals with Natorp’s version of the Marburg mathematical philosophy of science characterized by the following three features: The core of Natorp’s mathematical philosophy of science is contained in his “knowledge equation” that may be considered as a mathematical model of the “transcendental method” conceived by Natorp as the essence of the Marburg Neo-Kantianism. For Natorp, the object of knowledge was an infinite task. This can be elucidated in two different ways: Carnap, in the Aufbau, contended that this endeavor (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Pancasila's Critique of Paul Ernest's Philosophy of Mathematics Education.Syahrullah Asyari, Hamzah Upu, Muhammad Darwis M., Baso Intang Sappaile & Ikhbariaty Kautsar Qadry - 2024 - Global Journal of Arts Humanities and Social Sciences 4 (2):122-134.
    Indonesia has recently faced problems in various aspects of life. The results of a social media survey in Indonesia in early 2021 that the biggest threat to the Pancasila ideology is communism and other western ideologies. Communism has a dark history in the life of the Indonesian people. It shows the problem of thinking and philosophical views of the Indonesian people. This research is textbook research that aims to analyze philosophy books, namely mathematics education philosophy textbooks written with a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Aristotle’s prohibition rule on kind-crossing and the definition of mathematics as a science of quantities.Paola Cantù - 2010 - Synthese 174 (2):225-235.
    The article evaluates the Domain Postulate of the Classical Model of Science and the related Aristotelian prohibition rule on kind-crossing as interpretative tools in the history of the development of mathematics into a general science of quantities. Special reference is made to Proclus’ commentary to Euclid’s first book of Elements , to the sixteenth century translations of Euclid’s work into Latin and to the works of Stevin, Wallis, Viète and Descartes. The prohibition rule on kind-crossing formulated by Aristotle in (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  29. Rules to Infinity: The Normative Role of Mathematics in Scientific Explanation.Mark Povich - 2024 - Oxford University Press USA.
    [EDIT: This book will be published open access. Production is taking longer than expected but I will post the link to the whole book, hopefully by October.] One central aim of science is to provide explanations of natural phenomena. What role(s) does mathematics play in achieving this aim? How does mathematics contribute to the explanatory power of science? Rules to Infinity defends the thesis, common though perhaps inchoate among many members of the Vienna Circle, that mathematics contributes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. ONE AND THE MULTIPLE ON THE PHILOSOPHY OF MATHEMATICS - ALEXIS KARPOUZOS.Alexis Karpouzos - 2025 - Comsic Spirit 1:6.
    The relationship between the One and the Multiple in mystic philosophy is a profound and central theme that explores the nature of existence, the cosmos, and the divine. This theme is present in various mystical traditions, including those of the East and West, and it addresses the paradoxical coexistence of the unity and multiplicity of all things. -/- In mystic philosophy, the **One** often represents the ultimate reality, the source from which all things emanate and to which all things return. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  31. Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics.Vladimir Kanovei, Mikhail G. Katz & Thomas Mormann - 2013 - Foundations of Science 18 (2):259-296.
    We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in functional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S , all definable sets of reals are (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  32. The "Artificial Mathematician" Objection: Exploring the (Im)possibility of Automating Mathematical Understanding.Sven Delarivière & Bart Van Kerkhove - 2017 - In B. Sriraman (ed.), Humanizing Mathematics and its Philosophy. Birkhäuser. pp. 173-198.
    Reuben Hersh confided to us that, about forty years ago, the late Paul Cohen predicted to him that at some unspecified point in the future, mathematicians would be replaced by computers. Rather than focus on computers replacing mathematicians, however, our aim is to consider the (im)possibility of human mathematicians being joined by “artificial mathematicians” in the proving practice—not just as a method of inquiry but as a fellow inquirer.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  33. David Armstrong on the Metaphysics of Mathematics.Thomas Donaldson - 2020 - Dialectica 74 (4):113-136.
    This paper has two components. The first, longer component (sec. 1-6) is a critical exposition of Armstrong’s views about the metaphysics of mathematics, as they are presented in Truth and Truthmakers and Sketch for a Systematic Metaphysics. In particular, I discuss Armstrong’s views about the nature of the cardinal numbers, and his account of how modal truths are made true. In the second component of the paper (sec. 7), which is shorter and more tentative, I sketch an alternative account (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Prophethood and the Some Objections of Disbelievers.Abdullah Namlı - 2018 - Tasavvur - Tekirdag Theology Journal 4 (2):470 - 504.
    In the Quran, as well as the belief in tawhid -which means the oneness of Allah in terms of divinity, omnipotency and creating-, belief in the prophets and in the afterlife also have an important place. He who believes in the prophet must also believe in what he conveys. And he who does not believe in the prophet is not accepted within the religion. People need prophets. Finding Allah only through reason can’t save man from responsibility. After finding Allah by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Mathematical Metaphors in Natorp’s Neo-Kantian Epistemology and Philosophy of Science.Thomas Mormann - 2005 - In Falk Seeger, Johannes Lenard & Michael H. G. Hoffmann (eds.), Activity and Sign. Grounding Mathematical Education. Springer.
    A basic thesis of Neokantian epistemology and philosophy of science contends that the knowing subject and the object to be known are only abstractions. What really exists, is the relation between both. For the elucidation of this “knowledge relation ("Erkenntnisrelation") the Neokantians of the Marburg school used a variety of mathematical metaphors. In this con-tribution I reconsider some of these metaphors proposed by Paul Natorp, who was one of the leading members of the Marburg school. It is shown that Natorp's (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  36. (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017 - Dissertation, Arché, University of St Andrews
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  37. Stewart Shapiro’s Philosophy of Mathematics[REVIEW]Harold Hodes - 2002 - Philosophy and Phenomenological Research 65 (2):467–475.
    Two slogans define structuralism: contemporary mathematics studies structures; mathematical objects are places in those structures. Shapiro’s version of structuralism posits abstract objects of three sorts. A system is “a collection of objects with certain relations” between these objects. “An extended family is a system of people with blood and marital relationships.” A baseball defense, e.g., the Yankee’s defense in the first game of the 1999 World Series, is a also a system, “a collection of people with on-field spatial and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  38. The Creative Universe: The Failure of Mathematical Reductionism in Physics (An Essay).Michael Epperson - 2021 - Institute of Art and Ideas News.
    In their seeking of simplicity, scientists fall into the error of Whitehead's "fallacy of misplaced concreteness." They mistake their abstract concepts describing reality for reality itself--the map for the territory. This leads to dogmatic overstatements, paradoxes, and mysteries such as the deep incompatibility of our two most fundamental physical theories--quantum mechanics and general relativity. To avoid such errors, we should evoke Whitehead's conception of the universe as a universe-in-process, where physical relations perpetually beget new physical relations. Today, the most promising (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Can mathematics explain the evolution of human language?Guenther Witzany - 2011 - Communicative and Integrative Biology 4 (5):516-520.
    Investigation into the sequence structure of the genetic code by means of an informatic approach is a real success story. The features of human language are also the object of investigation within the realm of formal language theories. They focus on the common rules of a universal grammar that lies behind all languages and determine generation of syntactic structures. This universal grammar is a depiction of material reality, i.e., the hidden logical order of things and its relations determined by natural (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  40. Mathematics embodied: Merleau-Ponty on geometry and algebra as fields of motor enaction.Jan Halák - 2022 - Synthese 200 (1):1-28.
    This paper aims to clarify Merleau-Ponty’s contribution to an embodied-enactive account of mathematical cognition. I first identify the main points of interest in the current discussions of embodied higher cognition and explain how they relate to Merleau-Ponty and his sources, in particular Husserl’s late works. Subsequently, I explain these convergences in greater detail by more specifically discussing the domains of geometry and algebra and by clarifying the role of gestalt psychology in Merleau-Ponty’s account. Beyond that, I explain how, for Merleau-Ponty, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Wittgenstein on Mathematical Advances and Semantical Mutation.André Porto - 2023 - Philósophos.
    The objective of this article is to try to elucidate Wittgenstein’s ex-travagant thesis that each and every mathematical advancement involves some “semantical mutation”, i.e., some alteration of the very meanings of the terms involved. To do that we will argue in favor of the idea of a “modal incompati-bility” between the concepts involved, as they were prior to the advancement, and what they become after the new result was obtained. We will also argue that the adoption of this thesis profoundly (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42.  63
    The Ontology of Mathematics.Ilexa Yardley - 2024 - Medium.Com/the-Circular-Theory.
    Zero and One is Circumference and Diameter (Literally and Figuratively) (Abstract and Concrete) (Unity and Duality) (Unity and Duplicity).
    Download  
     
    Export citation  
     
    Bookmark  
  43. Objectivity in Ethics and Mathematics.Justin Clarke-Doane - 2015 - Proceedings of the Aristotelian Society: The Virtual Issue 3.
    How do axioms, or first principles, in ethics compare to those in mathematics? In this companion piece to G.C. Field's 1931 "On the Role of Definition in Ethics", I argue that there are similarities between the cases. However, these are premised on an assumption which can be questioned, and which highlights the peculiarity of normative inquiry.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  44. Fictionalism and Mathematical Objectivity.Iulian D. Toader - 2012 - In Mircea Dumitru, Mircea Flonta & Valentin Muresan (eds.), Metaphysics and Science. Dedicated to professor Ilie Pârvu. Universty of Bucharest Press. pp. 137-158.
    This paper, written in Romanian, compares fictionalism, nominalism, and neo-Meinongianism as responses to the problem of objectivity in mathematics, and then motivates a fictionalist view of objectivity as invariance.
    Download  
     
    Export citation  
     
    Bookmark  
  45. From Maximal Intersubjectivity to Objectivity: An Argument from the Development of Arithmetical Cognition.Markus Pantsar - 2022 - Topoi 42 (1):271-281.
    One main challenge of non-platonist philosophy of mathematics is to account for the apparent objectivity of mathematical knowledge. Cole and Feferman have proposed accounts that aim to explain objectivity through the intersubjectivity of mathematical knowledge. In this paper, focusing on arithmetic, I will argue that these accounts as such cannot explain the apparent objectivity of mathematical knowledge. However, with support from recent progress in the empirical study of the development of arithmetical cognition, a stronger argument can (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  46. On the Error of Treating Functions as Objects.Karen Green - 2016 - Analysis and Metaphysics 15:20–35.
    In his late fragment, ‘Sources of Knowledge of Mathematics and Natural Sciences’ Frege laments the tendency to confuse functions with objects and says, ‘It is here that the tendency of language by its use of the definite article to stamp as an object what is a function and hence a non-object, proves itself to be the source of inaccurate and misleading expressions and also of errors of thought. Probably most of the impurities that contaminate the logical source of knowledge (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. A Case Study of Students’ Lost Learning in Mathematics on Post-Remote Learning.Emmanuel S. Saga, Marilyn S. Orongan & Hyacinth C. Abarca - 2023 - International Journal of Multidisciplinary Educational Research and Innovation 1 (3):109-120.
    The objective of this case study concentrated on examining the learning gap, going through some components of the transformation process, and coming up with some ways for aiding students who were experiencing lost learning. A qualitative research design was utilized by the researchers to understand and solve the cases related to Mathematics learning difficulties. Creswell (2008) asserts that qualitative research can be used to discover and comprehend the significance that certain people or groups assign to social or human issues. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Early numerical cognition and mathematical processes.Markus Pantsar - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (2):285-304.
    In this paper I study the development of arithmetical cognition with the focus on metaphorical thinking. In an approach developing on Lakoff and Núñez, I propose one particular conceptual metaphor, the Process → Object Metaphor, as a key element in understanding the development of mathematical thinking.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  49. Awareness of Abstract Objects.Elijah Chudnoff - 2012 - Noûs 47 (4):706-726.
    Awareness is a two-place determinable relation some determinates of which are seeing, hearing, etc. Abstract objects are items such as universals and functions, which contrast with concrete objects such as solids and liquids. It is uncontroversial that we are sometimes aware of concrete objects. In this paper I explore the more controversial topic of awareness of abstract objects. I distinguish two questions. First, the Existence Question: are there any experiences that make their subjects aware of abstract objects? Second, the Grounding (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  50. Mathematics - an imagined tool for rational cognition.Boris Culina - manuscript
    Analysing several characteristic mathematical models: natural and real numbers, Euclidean geometry, group theory, and set theory, I argue that a mathematical model in its final form is a junction of a set of axioms and an internal partial interpretation of the corresponding language. It follows from the analysis that (i) mathematical objects do not exist in the external world: they are our internally imagined objects, some of which, at least approximately, we can realize or represent; (ii) mathematical truths are not (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
1 — 50 / 951