Results for 'Sequent calculus'

225 found
Order:
  1. A Cut-Free Sequent Calculus for Defeasible Erotetic Inferences.Jared Millson - 2019 - Studia Logica (6):1-34.
    In recent years, the e ffort to formalize erotetic inferences (i.e., inferences to and from questions) has become a central concern for those working in erotetic logic. However, few have sought to formulate a proof theory for these inferences. To fill this lacuna, we construct a calculus for (classes of) sequents that are sound and complete for two species of erotetic inferences studied by Inferential Erotetic Logic (IEL): erotetic evocation and regular erotetic implication. While an attempt has been made (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  2. A Nonmonotonic Sequent Calculus for Inferentialist Expressivists.Ulf Hlobil - 2016 - In Pavel Arazim & Michal Dančák (eds.), The Logica Yearbook 2015. College Publications. pp. 87-105.
    I am presenting a sequent calculus that extends a nonmonotonic consequence relation over an atomic language to a logically complex language. The system is in line with two guiding philosophical ideas: (i) logical inferentialism and (ii) logical expressivism. The extension defined by the sequent rules is conservative. The conditional tracks the consequence relation and negation tracks incoherence. Besides the ordinary propositional connectives, the sequent calculus introduces a new kind of modal operator that marks implications that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  3. A Simple Logical Matrix and Sequent Calculus for Parry’s Logic of Analytic Implication.Damian E. Szmuc - 2021 - Studia Logica 109 (4):791-828.
    We provide a logical matrix semantics and a Gentzen-style sequent calculus for the first-degree entailments valid in W. T. Parry’s logic of Analytic Implication. We achieve the former by introducing a logical matrix closely related to that inducing paracomplete weak Kleene logic, and the latter by presenting a calculus where the initial sequents and the left and right rules for negation are subject to linguistic constraints.
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  4. Stoic Sequent Logic and Proof Theory.Susanne Bobzien - 2019 - History and Philosophy of Logic 40 (3):234-265.
    This paper contends that Stoic logic (i.e. Stoic analysis) deserves more attention from contemporary logicians. It sets out how, compared with contemporary propositional calculi, Stoic analysis is closest to methods of backward proof search for Gentzen-inspired substructural sequent logics, as they have been developed in logic programming and structural proof theory, and produces its proof search calculus in tree form. It shows how multiple similarities to Gentzen sequent systems combine with intriguing dissimilarities that may enrich contemporary discussion. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  5.  54
    Syntactic Interpolation for Tense Logics and Bi-Intuitionistic Logic Via Nested Sequents.Tim Lyon, Alwen Tiu, Rajeev Gore & Ranald Clouston - 2020 - In Maribel Fernandez & Anca Muscholl (eds.), 28th EACSL Annual Conference on Computer Science Logic (CSL 2020). Dagstuhl, Germany: pp. 1-16.
    We provide a direct method for proving Craig interpolation for a range of modal and intuitionistic logics, including those containing a "converse" modality. We demonstrate this method for classical tense logic, its extensions with path axioms, and for bi-intuitionistic logic. These logics do not have straightforward formalisations in the traditional Gentzen-style sequent calculus, but have all been shown to have cut-free nested sequent calculi. The proof of the interpolation theorem uses these calculi and is purely syntactic, without (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  6.  93
    Dual Systems of Sequents and Tableaux for Many-Valued Logics.Matthias Baaz, Christian G. Fermüller & Richard Zach - 1993 - Bulletin of the EATCS 51:192-197.
    The aim of this paper is to emphasize the fact that for all finitely-many-valued logics there is a completely systematic relation between sequent calculi and tableau systems. More importantly, we show that for both of these systems there are al- ways two dual proof sytems (not just only two ways to interpret the calculi). This phenomenon may easily escape one’s attention since in the classical (two-valued) case the two systems coincide. (In two-valued logic the assignment of a truth value (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  7.  82
    A Gentzen Calculus for Nothing but the Truth.Stefan Wintein & Reinhard Muskens - 2016 - Journal of Philosophical Logic 45 (4):451-465.
    In their paper Nothing but the Truth Andreas Pietz and Umberto Rivieccio present Exactly True Logic, an interesting variation upon the four-valued logic for first-degree entailment FDE that was given by Belnap and Dunn in the 1970s. Pietz & Rivieccio provide this logic with a Hilbert-style axiomatisation and write that finding a nice sequent calculus for the logic will presumably not be easy. But a sequent calculus can be given and in this paper we will show (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  8.  57
    A Calculus for Belnap's Logic in Which Each Proof Consists of Two Trees.Stefan Wintein & Reinhard Muskens - 2012 - Logique Et Analyse 220:643-656.
    In this paper we introduce a Gentzen calculus for (a functionally complete variant of) Belnap's logic in which establishing the provability of a sequent in general requires \emph{two} proof trees, one establishing that whenever all premises are true some conclusion is true and one that guarantees the falsity of at least one premise if all conclusions are false. The calculus can also be put to use in proving that one statement \emph{necessarily approximates} another, where necessary approximation is (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  9. The Epsilon Calculus and Herbrand Complexity.Georg Moser & Richard Zach - 2006 - Studia Logica 82 (1):133-155.
    Hilbert's ε-calculus is based on an extension of the language of predicate logic by a term-forming operator εx. Two fundamental results about the ε-calculus, the first and second epsilon theorem, play a rôle similar to that which the cut-elimination theorem plays in sequent calculus. In particular, Herbrand's Theorem is a consequence of the epsilon theorems. The paper investigates the epsilon theorems and the complexity of the elimination procedure underlying their proof, as well as the length of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  10.  10
    Nested Sequents for Intuitionistic Modal Logics Via Structural Refinement.Tim Lyon - 2021 - In Anupam Das & Sara Negri (eds.), Automated Reasoning with Analytic Tableaux and Related Methods: TABLEAUX 2021. 93413 Cham, Germany: pp. 409-427.
    We employ a recently developed methodology -- called "structural refinement" -- to extract nested sequent systems for a sizable class of intuitionistic modal logics from their respective labelled sequent systems. This method can be seen as a means by which labelled sequent systems can be transformed into nested sequent systems through the introduction of propagation rules and the elimination of structural rules, followed by a notational translation. The nested systems we obtain incorporate propagation rules that are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11.  87
    Proof Theory of Finite-Valued Logics.Richard Zach - 1993 - Dissertation, Technische Universität Wien
    The proof theory of many-valued systems has not been investigated to an extent comparable to the work done on axiomatizatbility of many-valued logics. Proof theory requires appropriate formalisms, such as sequent calculus, natural deduction, and tableaux for classical (and intuitionistic) logic. One particular method for systematically obtaining calculi for all finite-valued logics was invented independently by several researchers, with slight variations in design and presentation. The main aim of this report is to develop the proof theory of finite-valued (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  12.  15
    Proof Theory and Semantics for a Theory of Definite Descriptions.Nils Kürbis - 2021 - In Anupam Das & Sara Negri (eds.), TABLEAUX 2021, LNAI 12842.
    This paper presents a sequent calculus and a dual domain semantics for a theory of definite descriptions in which these expressions are formalised in the context of complete sentences by a binary quantifier I. I forms a formula from two formulas. Ix[F, G] means ‘The F is G’. This approach has the advantage of incorporating scope distinctions directly into the notation. Cut elimination is proved for a system of classical positive free logic with I and it is shown (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13.  6
    A Binary Quantifier for Definite Descriptions for Cut Free Free Logics.Nils Kürbis - forthcoming - Studia Logica:1-21.
    This paper presents rules in sequent calculus for a binary quantifier I to formalise definite descriptions: Ix[F, G] means ‘The F is G’. The rules are suitable to be added to a system of positive free logic. The paper extends the proof of a cut elimination theorem for this system by Indrzejczak by proving the cases for the rules of I. There are also brief comparisons of the present approach to the more common one that formalises definite descriptions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Logic for Exact Entailment.Kit Fine & Mark Jago - 2018 - Review of Symbolic Logic:1-21.
    An exact truthmaker for A is a state which, as well as guaranteeing A’s truth, is wholly relevant to it. States with parts irrelevant to whether A is true do not count as exact truthmakers for A. Giving semantics in this way produces a very unusual consequence relation, on which conjunctions do not entail their conjuncts. This feature makes the resulting logic highly unusual. In this paper, we set out formal semantics for exact truthmaking and characterise the resulting notion of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  15. Paradoxes and Failures of Cut.David Ripley - 2013 - Australasian Journal of Philosophy 91 (1):139 - 164.
    This paper presents and motivates a new philosophical and logical approach to truth and semantic paradox. It begins from an inferentialist, and particularly bilateralist, theory of meaning---one which takes meaning to be constituted by assertibility and deniability conditions---and shows how the usual multiple-conclusion sequent calculus for classical logic can be given an inferentialist motivation, leaving classical model theory as of only derivative importance. The paper then uses this theory of meaning to present and motivate a logical system---ST---that conservatively (...)
    Download  
     
    Export citation  
     
    Bookmark   100 citations  
  16.  78
    Elimination of Cuts in First-Order Finite-Valued Logics.Matthias Baaz, Christian G. Fermüller & Richard Zach - 1993 - Journal of Information Processing and Cybernetics EIK 29 (6):333-355.
    A uniform construction for sequent calculi for finite-valued first-order logics with distribution quantifiers is exhibited. Completeness, cut-elimination and midsequent theorems are established. As an application, an analog of Herbrand’s theorem for the four-valued knowledge-representation logic of Belnap and Ginsberg is presented. It is indicated how this theorem can be used for reasoning about knowledge bases with incomplete and inconsistent information.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  17.  62
    A Paraconsistent Route to Semantic Closure.Eduardo Alejandro Barrio, Federico Matias Pailos & Damian Enrique Szmuc - 2017 - Logic Journal of the IGPL 25 (4):387-407.
    In this paper, we present a non-trivial and expressively complete paraconsistent naïve theory of truth, as a step in the route towards semantic closure. We achieve this goal by expressing self-reference with a weak procedure, that uses equivalences between expressions of the language, as opposed to a strong procedure, that uses identities. Finally, we make some remarks regarding the sense in which the theory of truth discussed has a property closely related to functional completeness, and we present a sound and (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  18. Natural Deduction for the Sheffer Stroke and Peirce’s Arrow (and Any Other Truth-Functional Connective).Richard Zach - 2016 - Journal of Philosophical Logic 45 (2):183-197.
    Methods available for the axiomatization of arbitrary finite-valued logics can be applied to obtain sound and complete intelim rules for all truth-functional connectives of classical logic including the Sheffer stroke and Peirce’s arrow. The restriction to a single conclusion in standard systems of natural deduction requires the introduction of additional rules to make the resulting systems complete; these rules are nevertheless still simple and correspond straightforwardly to the classical absurdity rule. Omitting these rules results in systems for intuitionistic versions of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  19.  38
    From Hilbert Proofs to Consecutions and Back.Tore Fjetland Øgaard - 2021 - Australasian Journal of Logic 18 (2):51-72.
    Restall set forth a "consecution" calculus in his "An Introduction to Substructural Logics." This is a natural deduction type sequent calculus where the structural rules play an important role. This paper looks at different ways of extending Restall's calculus. It is shown that Restall's weak soundness and completeness result with regards to a Hilbert calculus can be extended to a strong one so as to encompass what Restall calls proofs from assumptions. It is also shown (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. Against Harmony.Ian Rumfitt - forthcoming - In Bob Hale, Crispin Wright & Alexander Miller (eds.), The Blackwell Companion to the Philosophy of Language. Blackwell.
    Many prominent writers on the philosophy of logic, including Michael Dummett, Dag Prawitz, Neil Tennant, have held that the introduction and elimination rules of a logical connective must be ‘in harmony ’ if the connective is to possess a sense. This Harmony Thesis has been used to justify the choice of logic: in particular, supposed violations of it by the classical rules for negation have been the basis for arguments for switching from classical to intuitionistic logic. The Thesis has also (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. Intensional Models for the Theory of Types.Reinhard Muskens - 2007 - Journal of Symbolic Logic 72 (1):98-118.
    In this paper we define intensional models for the classical theory of types, thus arriving at an intensional type logic ITL. Intensional models generalize Henkin's general models and have a natural definition. As a class they do not validate the axiom of Extensionality. We give a cut-free sequent calculus for type theory and show completeness of this calculus with respect to the class of intensional models via a model existence theorem. After this we turn our attention to (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  22.  85
    Takeuti's Proof Theory in the Context of the Kyoto School.Andrew Arana - 2019 - Jahrbuch Für Philosophie Das Tetsugaku-Ronso 46:1-17.
    Gaisi Takeuti (1926–2017) is one of the most distinguished logicians in proof theory after Hilbert and Gentzen. He extensively extended Hilbert's program in the sense that he formulated Gentzen's sequent calculus, conjectured that cut-elimination holds for it (Takeuti's conjecture), and obtained several stunning results in the 1950–60s towards the solution of his conjecture. Though he has been known chiefly as a great mathematician, he wrote many papers in English and Japanese where he expressed his philosophical thoughts. In particular, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  23. From Display to Labelled Proofs for Tense Logics.Agata Ciabattoni, Tim Lyon & Revantha Ramanayake - 2018 - In Anil Nerode & Sergei Artemov (eds.), Logical Foundations of Computer Science. Springer International Publishing. pp. 120 - 139.
    We introduce an effective translation from proofs in the display calculus to proofs in the labelled calculus in the context of tense logics. We identify the labelled calculus proofs in the image of this translation as those built from labelled sequents whose underlying directed graph possesses certain properties. For the basic normal tense logic Kt, the image is shown to be the set of all proofs in the labelled calculus G3Kt.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  24. A Resource-Sensitive Logic of Agency.Daniele Porello & Nicolas Troquard - 2014 - In Ios Press (ed.), Proceedings of the 21st European Conference on Artificial Intelligence (ECAI'14), Prague, Czech Republic. 2014. pp. 723-728.
    We study a fragment of Intuitionistic Linear Logic combined with non-normal modal operators. Focusing on the minimal modal logic, we provide a Gentzen-style sequent calculus as well as a semantics in terms of Kripke resource models. We show that the proof theory is sound and complete with respect to the class of minimal Kripke resource models. We also show that the sequent calculus allows cut elimination. We put the logical framework to use by instantiating it as (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  25. Non-Normal Modalities in Variants of Linear Logic.D. Porello & N. Troquard - 2015 - Journal of Applied Non-Classical Logics 25 (3):229-255.
    This article presents modal versions of resource-conscious logics. We concentrate on extensions of variants of linear logic with one minimal non-normal modality. In earlier work, where we investigated agency in multi-agent systems, we have shown that the results scale up to logics with multiple non-minimal modalities. Here, we start with the language of propositional intuitionistic linear logic without the additive disjunction, to which we add a modality. We provide an interpretation of this language on a class of Kripke resource models (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  26. Some Investigations on mbC and mCi.Marcelo E. Coniglio & Tarcísio G. Rodrígues - 2014 - In Cezar A. Mortari (ed.), Tópicos de lógicas não clássicas. NEL/UFSC. pp. 11-70.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  27. Completeness of a First-Order Temporal Logic with Time-Gaps.Matthias Baaz, Alexander Leitsch & Richard Zach - 1996 - Theoretical Computer Science 160 (1-2):241-270.
    The first-order temporal logics with □ and ○ of time structures isomorphic to ω (discrete linear time) and trees of ω-segments (linear time with branching gaps) and some of its fragments are compared: the first is not recursively axiomatizable. For the second, a cut-free complete sequent calculus is given, and from this, a resolution system is derived by the method of Maslov.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  28. Expanding the Universe of Universal Logic.James Trafford - 2014 - Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 29 (3):325-343.
    In [5], Béziau provides a means by which Gentzen’s sequent calculus can be combined with the general semantic theory of bivaluations. In doing so, according to Béziau, it is possible to construe the abstract “core” of logics in general, where logical syntax and semantics are “two sides of the same coin”. The central suggestion there is that, by way of a modification of the notion of maximal consistency, it is possible to prove the soundness and completeness for any (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29.  11
    Display to Labeled Proofs and Back Again for Tense Logics.Agata Ciabattoni, Tim Lyon, Revantha Ramanayake & Alwen Tiu - 2021 - ACM Transactions on Computational Logic 22 (3):1-31.
    We introduce translations between display calculus proofs and labeled calculus proofs in the context of tense logics. First, we show that every derivation in the display calculus for the minimal tense logic Kt extended with general path axioms can be effectively transformed into a derivation in the corresponding labeled calculus. Concerning the converse translation, we show that for Kt extended with path axioms, every derivation in the corresponding labeled calculus can be put into a special (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  30. Labeled Calculi and Finite-Valued Logics.Matthias Baaz, Christian G. Fermüller, Gernot Salzer & Richard Zach - 1998 - Studia Logica 61 (1):7-33.
    A general class of labeled sequent calculi is investigated, and necessary and sufficient conditions are given for when such a calculus is sound and complete for a finite -valued logic if the labels are interpreted as sets of truth values. Furthermore, it is shown that any finite -valued logic can be given an axiomatization by such a labeled calculus using arbitrary "systems of signs," i.e., of sets of truth values, as labels. The number of labels needed is (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  31. Sets, Logic, Computation: An Open Introduction to Metalogic.Richard Zach - 2021 - Open Logic Project.
    An introductory textbook on metalogic. It covers naive set theory, first-order logic, sequent calculus and natural deduction, the completeness, compactness, and Löwenheim-Skolem theorems, Turing machines, and the undecidability of the halting problem and of first-order logic. The audience is undergraduate students with some background in formal logic.
    Download  
     
    Export citation  
     
    Bookmark  
  32. The Display Problem Revisited.Tyke Nunez - 2010 - In Michal Peliš Vit Punčochàr (ed.), Logica Handbook 2010. College Publications. pp. 143-156.
    In this essay I give a complete join semi-lattice of possible display-equivalence schemes for Display Logic, using the standard connectives, and leaving fixed only the schemes governing the star. In addition to proving the completeness of this list, I offer a discussion of the basic properties of these schemes.
    Download  
     
    Export citation  
     
    Bookmark  
  33. The Metaphysical Commitments of Logic.Thomas Brouwer - 2013 - Dissertation, University of Leeds
    This thesis is about the metaphysics of logic. I argue against a view I refer to as ‘logical realism’. This is the view that the logical constants represent a particular kind of metaphysical structure, which I dub ‘logico-metaphysical structure’. I argue instead for a more metaphysically lightweight view of logic which I dub ‘logical expressivism’. -/- In the first part of this thesis (Chapters I and II) I argue against a number of arguments that Theodore Sider has given for logical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34.  73
    On Deriving Nested Calculi for Intuitionistic Logics From Semantic Systems.Tim Lyon - 2020 - In Sergei Artemov & Anil Nerode (eds.), Logical Foundations of Computer Science. Cham: pp. 177-194.
    This paper shows how to derive nested calculi from labelled calculi for propositional intuitionistic logic and first-order intuitionistic logic with constant domains, thus connecting the general results for labelled calculi with the more refined formalism of nested sequents. The extraction of nested calculi from labelled calculi obtains via considerations pertaining to the elimination of structural rules in labelled derivations. Each aspect of the extraction process is motivated and detailed, showing that each nested calculus inherits favorable proof-theoretic properties from its (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  35.  49
    VALIDITY: A Learning Game Approach to Mathematical Logic.Steven James Bartlett - 1973, 1974, 2014 - Hartford, CT: Lebon Press.
    The first learning game to be developed to help students to develop and hone skills in constructing proofs in both the propositional and first-order predicate calculi. It comprises an autotelic (self-motivating) learning approach to assist students in developing skills and strategies of proof in the propositional and predicate calculus. The text of VALIDITY consists of a general introduction that describes earlier studies made of autotelic learning games, paying particular attention to work done at the Law School of Yale University, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  36.  12
    Refining Labelled Systems for Modal and Constructive Logics with Applications.Tim Lyon - 2021 - Dissertation, Technischen Universität Wien
    This thesis introduces the "method of structural refinement", which serves as a means of transforming the relational semantics of a modal and/or constructive logic into an 'economical' proof system by connecting two proof-theoretic paradigms: labelled and nested sequent calculi. The formalism of labelled sequents has been successful in that cut-free calculi in possession of desirable proof-theoretic properties can be automatically generated for large classes of logics. Despite these qualities, labelled systems make use of a complicated syntax that explicitly incorporates (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37.  74
    The (Greatest) Fragment of Classical Logic That Respects the Variable-Sharing Principle (in the Fmla-Fmla Framework).Damian E. Szmuc - forthcoming - Bulletin of the Section of Logic.
    We examine the set of formula-to-formula valid inferences of Classical Logic, where the premise and the conclusion share at least a propositional variable in common. We review the fact, already proved in the literature, that such a system is identical to the first-degree entailment fragment of R. Epstein's Relatedness Logic, and that it is a non-transitive logic of the sort investigated by S. Frankowski and others. Furthermore, we provide a semantics and a calculus for this logic. The semantics is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Proofnets for S5: Sequents and Circuits for Modal Logic.Greg Restall - 2007 - In C. Dimitracopoulos, L. Newelski & D. Normann (eds.), Logic Colloquium 2005. Cambridge: Cambridge University Press. pp. 151-172.
    In this paper I introduce a sequent system for the propositional modal logic S5. Derivations of valid sequents in the system are shown to correspond to proofs in a novel natural deduction system of circuit proofs (reminiscient of proofnets in linear logic, or multiple-conclusion calculi for classical logic). -/- The sequent derivations and proofnets are both simple extensions of sequents and proofnets for classical propositional logic, in which the new machinery—to take account of the modal vocabulary—is directly motivated (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  39. A Perspective on Modal Sequent Logic.Stephen Blamey & Lloyd Humberstone - 1991 - Publications of the Research Institute for Mathematical Sciences 27 (5):763-782.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  40. The Narrative Calculus.Antti Kauppinen - 2015 - Oxford Studies in Normative Ethics 5.
    This paper examines systematically which features of a life story (or history) make it good for the subject herself - not aesthetically or morally good, but prudentially good. The tentative narrative calculus presented claims that the prudential narrative value of an event is a function of the extent to which it contributes to her concurrent and non-concurrent goals, the value of those goals, and the degree to which success in reaching the goals is deserved in virtue of exercising agency. (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   9 citations  
  41. Is Leibnizian Calculus Embeddable in First Order Logic?Piotr Błaszczyk, Vladimir Kanovei, Karin U. Katz, Mikhail G. Katz, Taras Kudryk, Thomas Mormann & David Sherry - 2017 - Foundations of Science 22 (4):73 - 88.
    To explore the extent of embeddability of Leibnizian infinitesimal calculus in first-order logic (FOL) and modern frameworks, we propose to set aside ontological issues and focus on pro- cedural questions. This would enable an account of Leibnizian procedures in a framework limited to FOL with a small number of additional ingredients such as the relation of infinite proximity. If, as we argue here, first order logic is indeed suitable for developing modern proxies for the inferential moves found in Leibnizian (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  42. Polynomial Ring Calculus for Modal Logics: A New Semantics and Proof Method for Modalities: Polynomial Ring Calculus for Modal Logics.Juan C. Agudelo - 2011 - Review of Symbolic Logic 4 (1):150-170.
    A new proof style adequate for modal logics is defined from the polynomial ring calculus. The new semantics not only expresses truth conditions of modal formulas by means of polynomials, but also permits to perform deductions through polynomial handling. This paper also investigates relationships among the PRC here defined, the algebraic semantics for modal logics, equational logics, the Dijkstra???Scholten equational-proof style, and rewriting systems. The method proposed is throughly exemplified for S 5, and can be easily extended to other (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  43. A Tableau Calculus for Partial Functions.Manfred Kerber Michael Kohlhase - unknown
    Even though it is not very often admitted, partial functions do play a significant role in many practical applications of deduction systems. Kleene has already given a semantic account of partial functions using a three-valued logic decades ago, but there has not been a satisfactory mechanization. Recent years have seen a thorough investigation of the framework of many-valued truth-functional logics. However, strong Kleene logic, where quantification is restricted and therefore not truthfunctional, does not fit the framework directly. We solve this (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   2 citations  
  44. Differential Calculus Based on the Double Contradiction.Kazuhiko Kotani - 2016 - Open Journal of Philosophy 6 (4):420-427.
    The derivative is a basic concept of differential calculus. However, if we calculate the derivative as change in distance over change in time, the result at any instant is 0/0, which seems meaningless. Hence, Newton and Leibniz used the limit to determine the derivative. Their method is valid in practice, but it is not easy to intuitively accept. Thus, this article describes the novel method of differential calculus based on the double contradiction, which is easier to accept intuitively. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. A Survey of Geometric Algebra and Geometric Calculus.Alan Macdonald - 2017 - Advances in Applied Clifford Algebras 27:853-891.
    The paper is an introduction to geometric algebra and geometric calculus for those with a knowledge of undergraduate mathematics. No knowledge of physics is required. The section Further Study lists many papers available on the web.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  46. Static and Dynamic Vector Semantics for Lambda Calculus Models of Natural Language.Mehrnoosh Sadrzadeh & Reinhard Muskens - 2018 - Journal of Language Modelling 6 (2):319-351.
    Vector models of language are based on the contextual aspects of language, the distributions of words and how they co-occur in text. Truth conditional models focus on the logical aspects of language, compositional properties of words and how they compose to form sentences. In the truth conditional approach, the denotation of a sentence determines its truth conditions, which can be taken to be a truth value, a set of possible worlds, a context change potential, or similar. In the vector models, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  47. Deleuze on Leibniz : Difference, Continuity, and the Calculus.Daniel W. Smith - 2005 - In Current Continental Theory and Modern Philosophy. Northwestern University Press.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  48. A Speech Act Calculus. A Pragmatised Natural Deduction Calculus and its Meta-Theory.Moritz Cordes & Friedrich Reinmuth - manuscript
    Building on the work of Peter Hinst and Geo Siegwart, we develop a pragmatised natural deduction calculus, i.e. a natural deduction calculus that incorporates illocutionary operators at the formal level, and prove its adequacy. In contrast to other linear calculi of natural deduction, derivations in this calculus are sequences of object-language sentences which do not require graphical or other means of commentary in order to keep track of assumptions or to indicate subproofs. (Translation of our German paper (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. From Logical Calculus to Logical Formality—What Kant Did with Euler’s Circles.Huaping Lu-Adler - 2017 - In Corey W. Dyck & Falk Wunderlich (eds.), Kant and His German Contemporaries : Volume 1, Logic, Mind, Epistemology, Science and Ethics. Cambridge: Cambridge University Press. pp. 35-55.
    John Venn has the “uneasy suspicion” that the stagnation in mathematical logic between J. H. Lambert and George Boole was due to Kant’s “disastrous effect on logical method,” namely the “strictest preservation [of logic] from mathematical encroachment.” Kant’s actual position is more nuanced, however. In this chapter, I tease out the nuances by examining his use of Leonhard Euler’s circles and comparing it with Euler’s own use. I do so in light of the developments in logical calculus from G. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. The Quantified Argument Calculus and Natural Logic.Hanoch Ben-Yami - forthcoming - Dialectica.
    The formalisation of Natural Language arguments in a formal language close to it in syntax has been a central aim of Moss’s Natural Logic. I examine how the Quantified Argument Calculus (Quarc) can handle the inferences Moss has considered. I show that they can be incorporated in existing versions of Quarc or in straightforward extensions of it, all within sound and complete systems. Moreover, Quarc is closer in some respects to Natural Language than are Moss’s systems – for instance, (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 225