When discussing Logical Pluralism several critics argue that such an open-minded position is untenable. The key to this conclusion is that, given a number of widely accepted assumptions, the pluralist view collapses into Logical Monism. In this paper we show that the arguments usually employed to arrive at this conclusion do not work. The main reason for this is the existence of certain substructural logics which have the same set of valid inferences as Classical Logic—although they are, in (...) a clear sense, non-identical to it. We argue that this phenomenon can be generalized, given the existence of logics which coincide with Classical Logic regarding a number of metainferential levels—although they are, again, clearly different systems. We claim this highlights the need to arrive at a more refined version of the Collapse Argument, which we discuss at the end of the paper. (shrink)
Building on recent work, I present sequent systems for the non-classical logics LP, K3, and FDE with two main virtues. First, derivations closely resemble those in standard Gentzen-style systems. Second, the systems can be obtained by reformulating a classical system using nonstandard sequent structure and simply removing certain structural rules (relatives of exchange and contraction). I clarify two senses in which these logics count as “substructural.”.
Paraconsistent logics are logical systems that reject the classical principle, usually dubbed Explosion, that a contradiction implies everything. However, the received view about paraconsistency focuses only the inferential version of Explosion, which is concerned with formulae, thereby overlooking other possible accounts. In this paper, we propose to focus, additionally, on a meta-inferential version of Explosion, i.e. which is concerned with inferences or sequents. In doing so, we will offer a new characterization of paraconsistency by means of which a logic (...) is paraconsistent if it invalidates either the inferential or the meta-inferential notion of Explosion. We show the non-triviality of this criterion by discussing a number of logics. On the one hand, logics which validate and invalidate both versions of Explosion, such as classical logic and Asenjo–Priest’s 3-valued logic LP. On the other hand, logics which validate one version of Explosion but not the other, such as the substructural logics TS and ST, introduced by Malinowski and Cobreros, Egré, Ripley and van Rooij, which are obtained via Malinowski’s and Frankowski’s q- and p-matrices, respectively. (shrink)
This paper contends that Stoic logic (i.e. Stoic analysis) deserves more attention from contemporary logicians. It sets out how, compared with contemporary propositional calculi, Stoic analysis is closest to methods of backward proof search for Gentzen-inspired substructural sequent logics, as they have been developed in logic programming and structural proof theory, and produces its proof search calculus in tree form. It shows how multiple similarities to Gentzen sequent systems combine with intriguing dissimilarities that may enrich contemporary discussion. (...) Much of Stoic logic appears surprisingly modern: a recursively formulated syntax with some truth-functional propositional operators; analogues to cut rules, axiom schemata and Gentzen’s negation-introduction rules; an implicit variable-sharing principle and deliberate rejection of Thinning and avoidance of paradoxes of implication. These latter features mark the system out as a relevance logic, where the absence of duals for its left and right introduction rules puts it in the vicinity of McCall’s connexive logic. Methodologically, the choice of meticulously formulated meta-logical rules in lieu of axiom and inference schemata absorbs some structural rules and results in an economical, precise and elegant system that values decidability over completeness. (shrink)
We show that logic has more to offer to ontologists than standard first order and modal operators. We first describe some operators of linear logic which we believe are particularly suitable for ontological modeling, and suggest how to interpret them within an ontological framework. After showing how they can coexist with those of classical logic, we analyze three notions of artifact from the literature to conclude that these linear operators allow for reducing the ontological commitment needed for (...) their formalization, and even simplify their logical formulation. (shrink)
We introduce a number of logics to reason about collective propositional attitudes that are defined by means of the majority rule. It is well known that majoritarian aggregation is subject to irrationality, as the results in social choice theory and judgment aggregation show. The proposed logics for modelling collective attitudes are based on a substructural propositional logic that allows for circumventing inconsistent outcomes. Individual and collective propositional attitudes, such as beliefs, desires, obligations, are then modelled by means of (...) minimal modalities to ensure a number of basic principles. In this way, a viable consistent modelling of collective attitudes is obtained. (shrink)
A graph-theoretic account of fibring of logics is developed, capitalizing on the interleaving characteristics of fibring at the linguistic, semantic and proof levels. Fibring of two signatures is seen as a multi-graph (m-graph) where the nodes and the m-edges include the sorts and the constructors of the signatures at hand. Fibring of two models is a multi-graph (m-graph) where the nodes and the m-edges are the values and the operations in the models, respectively. Fibring of two deductive systems is an (...) m-graph whose nodes are language expressions and the m-edges represent the inference rules of the two original systems. The sobriety of the approach is confirmed by proving that all the fibring notions are universal constructions. This graph-theoretic view is general enough to accommodate very different fibrings of propositional based logics encompassing logics with non-deterministic semantics, logics with an algebraic semantics, logics with partial semantics and substructural logics, among others. Soundness and weak completeness are proved to be preserved under very general conditions. Strong completeness is also shown to be preserved under tighter conditions. In this setting, the collapsing problem appearing in several combinations of logic systems can be avoided. (shrink)
A graph-theoretic account of logics is explored based on the general notion of m-graph (that is, a graph where each edge can have a finite sequence of nodes as source). Signatures, interpretation structures and deduction systems are seen as m-graphs. After defining a category freely generated by a m-graph, formulas and expressions in general can be seen as morphisms. Moreover, derivations involving rule instantiation are also morphisms. Soundness and completeness theorems are proved. As a consequence of the generality of the (...) approach our results apply to very different logics encompassing, among others, substructural logics as well as logics with nondeterministic semantics, and subsume all logics endowed with an algebraic semantics. (shrink)
This article presents modal versions of resource-conscious logics. We concentrate on extensions of variants of linear logic with one minimal non-normal modality. In earlier work, where we investigated agency in multi-agent systems, we have shown that the results scale up to logics with multiple non-minimal modalities. Here, we start with the language of propositional intuitionistic linear logic without the additive disjunction, to which we add a modality. We provide an interpretation of this language on a class of Kripke (...) resource models extended with a neighbourhood function: modal Kripke resource models. We propose a Hilbert-style axiomatisation and a Gentzen-style sequent calculus. We show that the proof theories are sound and complete with respect to the class of modal Kripke resource models. We show that the sequent calculus admits cut elimination and that proof-search is in PSPACE. We then show how to extend the results when non-commutative connectives are added to the language. Finally, we put the l.. (shrink)
Any theory of truth must find a way around Curry’s paradox, and there are well-known ways to do so. This paper concerns an apparently analogous paradox, about validity rather than truth, which JC Beall and Julien Murzi call the v-Curry. They argue that there are reasons to want a common solution to it and the standard Curry paradox, and that this rules out the solutions to the latter offered by most “naive truth theorists.” To this end they recommend a radical (...) solution to both paradoxes, involving a substructurallogic, in particular, one without structural contraction. In this paper I argue that substructuralism is unnecessary. Diagnosing the “v-Curry” is complicated because of a multiplicity of readings of the principles it relies on. But these principles are not analogous to the principles of naive truth, and taken together, there is no reading of them that should have much appeal to anyone who has absorbed the morals of both the ordinary Curry paradox and the second incompleteness theorem. (shrink)
Beall and Murzi :143–165, 2013) introduce an object-linguistic predicate for naïve validity, governed by intuitive principles that are inconsistent with the classical structural rules. As a consequence, they suggest that revisionary approaches to semantic paradox must be substructural. In response to Beall and Murzi, Field :1–19, 2017) has argued that naïve validity principles do not admit of a coherent reading and that, for this reason, a non-classical solution to the semantic paradoxes need not be substructural. The aim of (...) this paper is to respond to Field’s objections and to point to a coherent notion of validity which underwrites a coherent reading of Beall and Murzi’s principles: grounded validity. The notion, first introduced by Nicolai and Rossi, is a generalisation of Kripke’s notion of grounded truth, and yields an irreflexive logic. While we do not advocate the adoption of a substructurallogic, we take the notion of naïve validity to be a legitimate semantic notion that points to genuine expressive limitations of fully structural revisionary approaches. (shrink)
In substructural logics, structural principles may hold in some fragments of a consequence relation without holding globally. I look at this phenomenon in my preferred substructurallogic, in which Weakening and Cut fail but which is supra-intuitionistic. I introduce object language operators that keep track of the admissibility of Weakening and of intuitionistic implications. I end with some ideas about local transitivity.
Some theorists have developed formal approaches to truth that depend on counterexamples to the structural rules of contraction. Here, we study such approaches, with an eye to helping them respond to a certain kind of objection. We define a contractive relative of each noncontractive relation, for use in responding to the objection in question, and we explore one example: the contractive relative of multiplicative-additive affine logic with transparent truth, or MAALT. -/- .
In some recent articles, Cobreros, Egré, Ripley, & van Rooij have defended the idea that abandoning transitivity may lead to a solution to the trouble caused by semantic paradoxes. For that purpose, they develop the Strict-Tolerant approach, which leads them to entertain a nontransitive theory of truth, where the structural rule of Cut is not generally valid. However, that Cut fails in general in the target theory of truth does not mean that there are not certain safe instances of Cut (...) involving semantic notions. In this article we intend to meet the challenge of answering how to regain all the safe instances of Cut, in the language of the theory, making essential use of a unary recovery operator. To fulfill this goal, we will work within the so-called Goodship Project, which suggests that in order to have nontrivial naïve theories it is sufficient to formulate the corresponding self-referential sentences with suitable biconditionals. Nevertheless, a secondary aim of this article is to propose a novel way to carry this project out, showing that the biconditionals in question can be totally classical. In the context of this article, these biconditionals will be essentially used in expressing the self-referential sentences and, thus, as a collateral result of our work we will prove that none of the recoveries expected of the target theory can be nontrivially achieved if self-reference is expressed through identities. (shrink)
The impossibility results in judgement aggregation show a clash between fair aggregation procedures and rational collective outcomes. In this paper, we are interested in analysing the notion of rational outcome by proposing a proof-theoretical understanding of collective rationality. In particular, we use the analysis of proofs and inferences provided by linear logic in order to define a fine-grained notion of group reasoning that allows for studying collective rationality with respect to a number of logics. We analyse the well-known paradoxes (...) in judgement aggregation and we pinpoint the reasoning steps that trigger the inconsistencies. Moreover, we extend the map of possibility and impossibility results in judgement aggregation by discussing the case of substructural logics. In particular, we show that there exist fragments of linear logic for which general possibility results can be obtained. (shrink)
Restall set forth a "consecution" calculus in his "An Introduction to Substructural Logics." This is a natural deduction type sequent calculus where the structural rules play an important role. This paper looks at different ways of extending Restall's calculus. It is shown that Restall's weak soundness and completeness result with regards to a Hilbert calculus can be extended to a strong one so as to encompass what Restall calls proofs from assumptions. It is also shown how to extend the (...) calculus so as to validate the metainferential rule of reasoning by cases, as well as certain theory-dependent rules. (shrink)
Substructural approaches to paradoxes have attracted much attention from the philosophical community in the last decade. In this paper we focus on two substructural logics, named ST and TS, along with two structural cousins, LP and K3. It is well known that LP and K3 are duals in the sense that an inference is valid in one logic just in case the contrapositive is valid in the other logic. As a consequence of this duality, theories based (...) on either logic are tightly connected since many of the arguments for and objections against one theory reappear in the other theory in dual form. The target of the paper is making explicit in exactly what way, if any, ST and TS are dual to one another. The connection will allow us to gain a more fine-grained understanding of these logics and of the theories based on them. In particular, we will obtain new insights on two questions concerning ST which are being intensively discussed in the current literature: whether ST preserves classical logic and whether it is LP in sheep’s clothing. Explaining in what way ST and TS are duals requires comparing these logics at a metainferential level. We provide to this end a uniform proof theory to decide on valid metainferences for each of the four logics. This proof procedure allows us to show in a very simple way how different properties of inferences (unsatisfiability, supersatisfiability and antivalidity) that behave in very different ways for each logic can be captured in terms of the validity of a metainference. (shrink)
I present a version of Kit Fine's stratified semantics for the logic RWQ and define a natural family of related structures called RW hyperdoctrines. After proving that RWQ is sound with respect to RW hyperdoctrines, we show how to construct, for each stratified model, a hyperdoctrine that verifies precisely the same sentences. Completeness of RWQ for hyperdoctrinal semantics then follows from completeness for stratified semantics, which is proved in an appendix. By examining the base category of RW hyperdoctrines, we (...) find reason to be worried about the ontology of stratified models. (shrink)
The paper studies a cluster of systems for fully disquotational truth based on the restriction of initial sequents. Unlike well-known alternative approaches, such systems display both a simple and intuitive model theory and remarkable proof-theoretic properties. We start by showing that, due to a strong form of invertibility of the truth rules, cut is eliminable in the systems via a standard strategy supplemented by a suitable measure of the number of applications of truth rules to formulas in derivations. Next, we (...) notice that cut remains eliminable when suitable arithmetical axioms are added to the system. Finally, we establish a direct link between cut-free derivability in infinitary formulations of the systems considered and fixed-point semantics. Noticeably, unlike what happens with other background logics, such links are established without imposing any restriction to the premisses of the truth rules. (shrink)
For semantic inferentialists, the basic semantic concept is validity. An inferentialist theory of meaning should offer an account of the meaning of "valid." If one tries to add a validity predicate to one's object language, however, one runs into problems like the v-Curry paradox. In previous work, I presented a validity predicate for a non-transitive logic that can adequately capture its own meta-inferences. Unfortunately, in that system, one cannot show of any inference that it is invalid. Here I extend (...) the system so that it can capture invalidities. (shrink)
The aim of this article is to discuss the extent to which certain substructural logics are related through the phenomenon of duality. Roughly speaking, metainferences are inferences between collect...
In this paper we discuss the extent to which the very existence of substructural logics puts the Tarskian conception of logical systems in jeopardy. In order to do this, we highlight the importance of the presence of different levels of entailment in a given logic, looking not only at inferences between collections of formulae but also at inferences between collections of inferences—and more. We discuss appropriate refinements or modifications of the usual Tarskian identity criterion for logical systems, and (...) propose an alternative of our own. After that, we consider a number of objections to our account and evaluate a substantially different approach to the same problem. (shrink)
Nontransitive responses to the validity Curry paradox face a dilemma that was recently formulated by Barrio, Rosenblatt and Tajer. It seems that, in the nontransitive logic ST enriched with a validity predicate, either you cannot prove that all derivable metarules preserve validity, or you can prove that instances of Cut that are not admissible in the logic preserve validity. I respond on behalf of the nontransitive approach. The paper argues, first, that we should reject the detachment principle for (...) naive validity. Secondly, I show how to add a validity predicate to ST while avoiding the dilemma. (shrink)
The perhaps most important criticism of the nontransitive approach to semantic paradoxes is that it cannot truthfully express exactly which metarules preserve validity. I argue that this criticism overlooks that the admissibility of metarules cannot be expressed in any logic that allows us to formulate validity-Curry sentences and that is formulated in a classical metalanguage. Hence, the criticism applies to all approaches that do their metatheory in classical logic. If we do the metatheory of nontransitive logics in a (...) nontransitive logic, however, there is no reason to think that the argument behind the criticism goes through. In general, asking a logic to express its own admissible metarules may not be a good idea. (shrink)
In this paper the class of Fidel-structures for the paraconsistent logic mbC is studied from the point of view of Model Theory and Category Theory. The basic point is that Fidel-structures for mbC (or mbC-structures) can be seen as first-order structures over the signature of Boolean algebras expanded by two binary predicate symbols N (for negation) and O (for the consistency connective) satisfying certain Horn sentences. This perspective allows us to consider notions and results from Model Theory in order (...) to analyze the class of mbC-structures. Thus, substructures, union of chains, direct products, direct limits, congruences and quotient structures can be analyzed under this perspective. In particular, a Birkhoff-like representation theorem for mbC-structures as subdirect poducts in terms of subdirectly irreducible mbC-structures is obtained by adapting a general result for first-order structures due to Caicedo. Moreover, a characterization of all the subdirectly irreducible mbC-structures is also given. An alternative decomposition theorem is obtained by using the notions of weak substructure and weak isomorphism considered by Fidel for Cn-structures. (shrink)
We argue that the extant evidence for Stoic logic provides all the elements required for a variable-free theory of multiple generality, including a number of remarkably modern features that straddle logic and semantics, such as the understanding of one- and two-place predicates as functions, the canonical formulation of universals as quantified conditionals, a straightforward relation between elements of propositional and first-order logic, and the roles of anaphora and rigid order in the regimented sentences that express multiply general (...) propositions. We consider and reinterpret some ancient texts that have been neglected in the context of Stoic universal and existential propositions and offer new explanations of some puzzling features in Stoic logic. Our results confirm that Stoic logic surpasses Aristotle’s with regard to multiple generality, and are a reminder that focusing on multiple generality through the lens of Frege-inspired variable-binding quantifier theory may hamper our understanding and appreciation of pre-Fregean theories of multiple generality. (shrink)
In this article, I outline a logic of design of a system as a specific kind of conceptual logic of the design of the model of a system, that is, the blueprint that provides information about the system to be created. In section two, I introduce the method of levels of abstraction as a modelling tool borrowed from computer science. In section three, I use this method to clarify two main conceptual logics of information inherited from modernity: Kant’s (...) transcendental logic of conditions of possibility of a system, and Hegel’s dialectical logic of conditions of in/stability of a system. Both conceptual logics of information analyse structural properties of given systems. Strictly speaking, neither is a conceptual logic of information about the conditions of feasibility of a system, that is, neither is a logic of information as a logic of design. So, in section four, I outline this third conceptual logic of information and then interpret the conceptual logic of design as a logic of requirements, by introducing the relation of “sufficientisation”. In the conclusion, I argue that the logic of requirements is exactly what we need in order to make sense of, and buttress, a constructionist approach to knowledge. (shrink)
A natural suggestion and increasingly popular account of how to revise our logical beliefs treats revision of logic analogously to the revision of scientific theories. I investigate this approach and argue that simple applications of abductive methodology to logic result in revision-cycles, developing a detailed case study of an actual dispute with this property. This is problematic if we take abductive methodology to provide justification for revising our logical framework. I then generalize the case study, pointing to similarities (...) with more recent and popular heterodox logics such as naïve logics of truth. I use this discussion to motivate a constraint—logical partisanhood—on the uses of such methodology: roughly: both the proposed alternative and our actual background logic must be able to agree that moving to the alternative logic is no worse than staying put. (shrink)
A logic is called 'paraconsistent' if it rejects the rule called 'ex contradictione quodlibet', according to which any conclusion follows from inconsistent premises. While logicians have proposed many technically developed paraconsistent logical systems and contemporary philosophers like Graham Priest have advanced the view that some contradictions can be true, and advocated a paraconsistent logic to deal with them, until recent times these systems have been little understood by philosophers. This book presents a comprehensive overview on paraconsistent logical systems (...) to change this situation. The book includes almost every major author currently working in the field. The papers are on the cutting edge of the literature some of which discuss current debates and others present important new ideas. The editors have avoided papers about technical details of paraconsistent logic, but instead concentrated upon works that discuss more 'big picture' ideas. Different treatments of paradoxes takes centre stage in many of the papers, but also there are several papers on how to interpret paraconistent logic and some on how it can be applied to philosophy of mathematics, the philosophy of language, and metaphysics. (shrink)
Philosophy of biology is often said to have emerged in the last third of the twentieth century. Prior to this time, it has been alleged that the only authors who engaged philosophically with the life sciences were either logical empiricists who sought to impose the explanatory ideals of the physical sciences onto biology, or vitalists who invoked mystical agencies in an attempt to ward off the threat of physicochemical reduction. These schools paid little attention to actual biological science, and as (...) a result philosophy of biology languished in a state of futility for much of the twentieth century. The situation, we are told, only began to change in the late 1960s and early 1970s, when a new generation of researchers began to focus on problems internal to biology, leading to the consolidation of the discipline. In this paper we challenge this widely accepted narrative of the history of philosophy of biology. We do so by arguing that the most important tradition within early twentieth-century philosophy of biology was neither logical empiricism nor vitalism, but the organicist movement that flourished between the First and Second World Wars. We show that the organicist corpus is thematically and methodologically continuous with the contemporary literature in order to discredit the view that early work in the philosophy of biology was unproductive, and we emphasize the desirability of integrating the historical and contemporary conversations into a single, unified discourse. (shrink)
We present a framework for epistemic logic, modeling the logical aspects of System 1 and System 2 cognitive processes, as per dual process theories of reasoning. The framework combines non-normal worlds semantics with the techniques of Dynamic Epistemic Logic. It models non-logically-omniscient, but moderately rational agents: their System 1 makes fast sense of incoming information by integrating it on the basis of their background knowledge and beliefs. Their System 2 allows them to slowly, step-wise unpack some of the (...) logical consequences of such knowledge and beliefs, by paying a cognitive cost. The framework is applied to three instances of limited rationality, widely discussed in cognitive psychology: Stereotypical Thinking, the Framing Effect, and the Anchoring Effect. (shrink)
What is a logical constant? The question is addressed in the tradition of Tarski's definition of logical operations as operations which are invariant under permutation. The paper introduces a general setting in which invariance criteria for logical operations can be compared and argues for invariance under potential isomorphism as the most natural characterization of logical operations.
Logic arguably plays a role in the normativity of reasoning. In particular, there are plausible norms of belief/disbelief whose antecedents are constituted by claims about what follows from what. But is logic also relevant to the normativity of agnostic attitudes? The question here is whether logical entailment also puts constraints on what kinds of things one can suspend judgment about. In this paper I address that question and I give a positive answer to it. In particular, I advance (...) two logical norms of agnosticism, where the first one allows us to assess situations in which the subject is agnostic about the conclusion of a valid argument and the second one allows us to assess situations in which the subject is agnostic about one of the premises of a valid argument. (shrink)
In spite of its significance for everyday and philosophical discourse, the explanatory connective has not received much treatment in the philosophy of logic. The present paper develops a logic for based on systematic connections between and the truth-functional connectives.
There has been a recent surge of work on deontic modality within philosophy of language. This work has put the deontic logic tradition in contact with natural language semantics, resulting in significant increase in sophistication on both ends. This chapter surveys the main motivations, achievements, and prospects of this work.
Gaining information can be modelled as a narrowing of epistemic space . Intuitively, becoming informed that such-and-such is the case rules out certain scenarios or would-be possibilities. Chalmers’s account of epistemic space treats it as a space of a priori possibility and so has trouble in dealing with the information which we intuitively feel can be gained from logical inference. I propose a more inclusive notion of epistemic space, based on Priest’s notion of open worlds yet which contains only those (...) epistemic scenarios which are not obviously impossible. Whether something is obvious is not always a determinate matter and so the resulting picture is of an epistemic space with fuzzy boundaries. (shrink)
In this paper I will develop a view about the semantics of imperatives, which I term Modal Noncognitivism, on which imperatives might be said to have truth conditions (dispositionally, anyway), but on which it does not make sense to see them as expressing propositions (hence does not make sense to ascribe to them truth or falsity). This view stands against “Cognitivist” accounts of the semantics of imperatives, on which imperatives are claimed to express propositions, which are then enlisted in explanations (...) of the relevant logico-semantic phenomena. It also stands against the major competitors to Cognitivist accounts—all of which are non-truth-conditional and, as a result, fail to provide satisfying explanations of the fundamental semantic characteristics of imperatives (or so I argue). The view of imperatives I defend here improves on various treatments of imperatives on the market in giving an empirically and theoretically adequate account of their semantics and logic. It yields explanations of a wide range of semantic and logical phenomena about imperatives—explanations that are, I argue, at least as satisfying as the sorts of explanations of semantic and logical phenomena familiar from truth-conditional semantics. But it accomplishes this while defending the notion—which is, I argue, substantially correct—that imperatives could not have propositions, or truth conditions, as their meanings. (shrink)
Logical information theory is the quantitative version of the logic of partitions just as logical probability theory is the quantitative version of the dual Boolean logic of subsets. The resulting notion of information is about distinctions, differences and distinguishability and is formalized using the distinctions of a partition. All the definitions of simple, joint, conditional and mutual entropy of Shannon information theory are derived by a uniform transformation from the corresponding definitions at the logical level. The purpose of (...) this paper is to give the direct generalization to quantum logical information theory that similarly focuses on the pairs of eigenstates distinguished by an observable, i.e., qudits of an observable. The fundamental theorem for quantum logical entropy and measurement establishes a direct quantitative connection between the increase in quantum logical entropy due to a projective measurement and the eigenstates that are distinguished by the measurement. Both the classical and quantum versions of logical entropy have simple interpretations as “two-draw” probabilities for distinctions. The conclusion is that quantum logical entropy is the simple and natural notion of information for quantum information theory focusing on the distinguishing of quantum states. (shrink)
We investigate an enrichment of the propositional modal language L with a "universal" modality ■ having semantics x ⊧ ■φ iff ∀y(y ⊧ φ), and a countable set of "names" - a special kind of propositional variables ranging over singleton sets of worlds. The obtained language ℒ $_{c}$ proves to have a great expressive power. It is equivalent with respect to modal definability to another enrichment ℒ(⍯) of ℒ, where ⍯ is an additional modality with the semantics x ⊧ ⍯φ (...) iff Vy(y ≠ x → y ⊧ φ). Model-theoretic characterizations of modal definability in these languages are obtained. Further we consider deductive systems in ℒ $_{c}$ . Strong completeness of the normal ℒ $_{c}$ logics is proved with respect to models in which all worlds are named. Every ℒ $_{c}$ -logic axiomatized by formulae containing only names (but not propositional variables) is proved to be strongly frame-complete. Problems concerning transfer of properties ([in]completeness, filtration, finite model property etc.) from ℒ to ℒ $_{c}$ are discussed. Finally, further perspectives for names in multimodal environment are briefly sketched. (shrink)
This book has three main parts. The first, longer, part is a reprint of the author's Deviant Logic, which initially appeared as a book by itself in 1974. The second and third parts include reprints of five papers originally published between 1973 and 1980. Three of them focus on the nature and justification of deductive reasoning, which are also a major concern of Deviant Logic. The other two are on fuzzy logic, and make up for a major (...) omission of Deviant Logic. (shrink)
The result of combining classical quantificational logic with modal logic proves necessitism – the claim that necessarily everything is necessarily identical to something. This problem is reflected in the purely quantificational theory by theorems such as ∃x t=x; it is a theorem, for example, that something is identical to Timothy Williamson. The standard way to avoid these consequences is to weaken the theory of quantification to a certain kind of free logic. However, it has often been noted (...) that in order to specify the truth conditions of certain sentences involving constants or variables that don’t denote, one has to apparently quantify over things that are not identical to anything. In this paper I defend a contingentist, non-Meinongian metaphysics within a positive free logic. I argue that although certain names and free variables do not actually refer to anything, in each case there might have been something they actually refer to, allowing one to interpret the contingentist claims without quantifying over mere possibilia. (shrink)
This book treats ancient logic: the logic that originated in Greece by Aristotle and the Stoics, mainly in the hundred year period beginning about 350 BCE. Ancient logic was never completely ignored by modern logic from its Boolean origin in the middle 1800s: it was prominent in Boole’s writings and it was mentioned by Frege and by Hilbert. Nevertheless, the first century of mathematical logic did not take it seriously enough to study the ancient (...) class='Hi'>logic texts. A renaissance in ancient logic studies occurred in the early 1950s with the publication of the landmark Aristotle’s Syllogistic by Jan Łukasiewicz, Oxford UP 1951, 2nd ed. 1957. Despite its title, it treats the logic of the Stoics as well as that of Aristotle. Łukasiewicz was a distinguished mathematical logician. He had created many-valued logic and the parenthesis-free prefix notation known as Polish notation. He co-authored with Alfred Tarski’s an important paper on metatheory of propositional logic and he was one of Tarski’s the three main teachers at the University of Warsaw. Łukasiewicz’s stature was just short of that of the giants: Aristotle, Boole, Frege, Tarski and Gödel. No mathematical logician of his caliber had ever before quoted the actual teachings of ancient logicians. -/- Not only did Łukasiewicz inject fresh hypotheses, new concepts, and imaginative modern perspectives into the field, his enormous prestige and that of the Warsaw School of Logic reflected on the whole field of ancient logic studies. Suddenly, this previously somewhat dormant and obscure field became active and gained in respectability and importance in the eyes of logicians, mathematicians, linguists, analytic philosophers, and historians. Next to Aristotle himself and perhaps the Stoic logician Chrysippus, Łukasiewicz is the most prominent figure in ancient logic studies. A huge literature traces its origins to Łukasiewicz. -/- This Ancient Logic and Its Modern Interpretations, is based on the 1973 Buffalo Symposium on Modernist Interpretations of Ancient Logic, the first conference devoted entirely to critical assessment of the state of ancient logic studies. (shrink)
We explore the view that Frege's puzzle is a source of straightforward counterexamples to Leibniz's law. Taking this seriously requires us to revise the classical logic of quantifiers and identity; we work out the options, in the context of higher-order logic. The logics we arrive at provide the resources for a straightforward semantics of attitude reports that is consistent with the Millian thesis that the meaning of a name is just the thing it stands for. We provide models (...) to show that some of these logics are non-degenerate. (shrink)
Recent work in formal semantics suggests that the language system includes not only a structure building device, as standardly assumed, but also a natural deductive system which can determine when expressions have trivial truth‐conditions (e.g., are logically true/false) and mark them as unacceptable. This hypothesis, called the ‘logicality of language’, accounts for many acceptability patterns, including systematic restrictions on the distribution of quantifiers. To deal with apparent counter‐examples consisting of acceptable tautologies and contradictions, the logicality of language is often paired (...) with an additional assumption according to which logical forms are radically underspecified: i.e., the language system can see functional terms but is ‘blind’ to open class terms to the extent that different tokens of the same term are treated as if independent. This conception of logical form has profound implications: it suggests an extreme version of the modularity of language, and can only be paired with non‐classical—indeed quite exotic—kinds of deductive systems. The aim of this paper is to show that we can pair the logicality of language with a different and ultimately more traditional account of logical form. This framework accounts for the basic acceptability patterns which motivated the logicality of language, can explain why some tautologies and contradictions are acceptable, and makes better predictions in key cases. As a result, we can pursue versions of the logicality of language in frameworks compatible with the view that the language system is not radically modular vis‐á‐vis its open class terms and employs a deductive system that is basically classical. (shrink)
One logic or many? I say—many. Or rather, I say there is one logic for each way of specifying the class of all possible circumstances, or models, i.e., all ways of interpreting a given language. But because there is no unique way of doing this, I say there is no unique logic except in a relative sense. Indeed, given any two competing logical theories T1 and T2 (in the same language) one could always consider their common core, (...) T, and settle on that theory. So, given any language L, one could settle on the minimal logic T0 corresponding to the common core shared by all competitors. That would be a way of resisting relativism, as long as one is willing to redraw the bounds of logic accordingly. However, such a minimal theory T0 may be empty if the syntax of L contains no special ingredients the interpretation of which is independent of the specification of the relevant L-models. And generally—I argue—this is indeed the case. (shrink)
Many philosophers take purportedly logical cases of ground ) to be obvious cases, and indeed such cases have been used to motivate the existence of and importance of ground. I argue against this. I do so by motivating two kinds of semantic determination relations. Intuitions of logical ground track these semantic relations. Moreover, our knowledge of semantics for first order logic can explain why we have such intuitions. And, I argue, neither semantic relation can be a species of ground (...) even on a quite broad conception of what ground is. Hence, without a positive argument for taking so-called ‘logical ground’ to be something distinct from a semantic determination relation, we should cease treating logical cases as cases of ground. (shrink)
This original research hypothesises that the most fundamental building blocks of logical descriptions of cognitive, or knowledge, agents’ descriptions are expressible based on their conceptions (of the world). This article conceptually and logically analyses agents’ conceptions in order to offer a constructivist- based logical model for terminological knowledge. The most significant characteristic of [terminological] knowing is that there are strong interrelationships between terminological knowledge and the individualistic constructed, and to-be-constructed, models of knowledge. Correspondingly, I conceptually and logically analyse conception expressions (...) based on terminological knowledge, and I show how terminological knowledge may reasonably be assumed to be constructed based on the agents’ conceptions of the world. The focus of my model is on terminological knowledge structures, which may find applications in such diverse fields as the Semantic Web and educational/learning systems. (shrink)
Recent work in formal semantics suggests that the language system includes not only a structure building device, as standardly assumed, but also a natural deductive system which can determine when expressions have trivial truth-conditions (e.g., are logically true/false) and mark them as unacceptable. This hypothesis, called the `logicality of language', accounts for many acceptability patterns, including systematic restrictions on the distribution of quantifiers. To deal with apparent counter-examples consisting of acceptable tautologies and contradictions, the logicality of language is often paired (...) with an additional assumption according to which logical forms are radically underspecified: i.e., the language system can see functional terms but is `blind' to open class terms to the extent that different tokens of the same term are treated as if independent. This conception of logical form has profound implications: it suggests an extreme version of the modularity of language, and can only be paired with non-classical---indeed quite exotic---kinds of deductive systems. The aim of this paper is to show that we can pair the logicality of language with a different and ultimately more traditional account of logical form. This framework accounts for the basic acceptability patterns which motivated the logicality of language, can explain why some tautologies and contradictions are acceptable, and makes better predictions in key cases. As a result, we can pursue versions of the logicality of language in frameworks compatible with the view that the language system is not radically modular vis-a-vis its open class terms and employs a deductive system that is basically classical. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.