Results for 'math, geometry, Islamic, tiles, Penrose tiles, mathematics, puzzles, philosophy'

960 found
Order:
  1. The Heart is a Dustboard.Jenny L. Nielsen - 2010 - Sosland Journal 2010 (2010).
    Download  
     
    Export citation  
     
    Bookmark  
  2. REVIEW OF 1988. Saccheri, G. Euclides Vindicatus (1733), edited and translated by G. B. Halsted, 2nd ed. (1986), in Mathematical Reviews MR0862448. 88j:01013.John Corcoran - 1988 - MATHEMATICAL REVIEWS 88 (J):88j:01013.
    Girolamo Saccheri (1667--1733) was an Italian Jesuit priest, scholastic philosopher, and mathematician. He earned a permanent place in the history of mathematics by discovering and rigorously deducing an elaborate chain of consequences of an axiom-set for what is now known as hyperbolic (or Lobachevskian) plane geometry. Reviewer's remarks: (1) On two pages of this book Saccheri refers to his previous and equally original book Logica demonstrativa (Turin, 1697) to which 14 of the 16 pages of the editor's "Introduction" are devoted. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Review of The Art of the Infinite by R. Kaplan, E. Kaplan 324p(2003).Michael Starks - 2016 - In Suicidal Utopian Delusions in the 21st Century: Philosophy, Human Nature and the Collapse of Civilization-- Articles and Reviews 2006-2017 2nd Edition Feb 2018. Las Vegas, USA: Reality Press. pp. 619.
    This book tries to present math to the millions and does a pretty good job. It is simple and sometimes witty but often the literary allusions intrude and the text bogs down in pages of relentless math--lovely if you like it and horrid if you don´t. If you already know alot of math you will still probably find the discussions of general math, geometry, projective geometry, and infinite series to be a nice refresher. If you don´t know any and don´t (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Math by Pure Thinking: R First and the Divergence of Measures in Hegel's Philosophy of Mathematics.Ralph M. Kaufmann & Christopher Yeomans - 2017 - European Journal of Philosophy 25 (4):985-1020.
    We attribute three major insights to Hegel: first, an understanding of the real numbers as the paradigmatic kind of number ; second, a recognition that a quantitative relation has three elements, which is embedded in his conception of measure; and third, a recognition of the phenomenon of divergence of measures such as in second-order or continuous phase transitions in which correlation length diverges. For ease of exposition, we will refer to these three insights as the R First Theory, Tripartite Relations, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Maths, Logic and Language.Tetsuaki Iwamoto - 2018 - Geneva: Logic Forum.
    A work on the philosophy of mathematics (2017) -/- ‘Number’, such a simple idea, and yet it fascinated and absorbed the greatest proportion of human geniuses over centuries, not to mention the likes of Pythagoras, Euclid, Newton, Leibniz, Descartes and countless maths giants like Euler, Gauss and Hilbert, etc.. Einstein thought of pure maths as the poetry of logical ideas, the exactitude of which, although independent of experience, strangely seems to benefit the study of the objects of reality. And, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. “In Nature as in Geometry”: Du Châtelet and the Post-Newtonian Debate on the Physical Significance of Mathematical Objects.Aaron Wells - 2023 - In Wolfgang Lefèvre (ed.), Between Leibniz, Newton, and Kant: Philosophy and Science in the Eighteenth Century. Springer. pp. 69-98.
    Du Châtelet holds that mathematical representations play an explanatory role in natural science. Moreover, she writes that things proceed in nature as they do in geometry. How should we square these assertions with Du Châtelet’s idealism about mathematical objects, on which they are ‘fictions’ dependent on acts of abstraction? The question is especially pressing because some of her important interlocutors (Wolff, Maupertuis, and Voltaire) denied that mathematics informs us about the properties of material things. After situating Du Châtelet in this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Mathematics embodied: Merleau-Ponty on geometry and algebra as fields of motor enaction.Jan Halák - 2022 - Synthese 200 (1):1-28.
    This paper aims to clarify Merleau-Ponty’s contribution to an embodied-enactive account of mathematical cognition. I first identify the main points of interest in the current discussions of embodied higher cognition and explain how they relate to Merleau-Ponty and his sources, in particular Husserl’s late works. Subsequently, I explain these convergences in greater detail by more specifically discussing the domains of geometry and algebra and by clarifying the role of gestalt psychology in Merleau-Ponty’s account. Beyond that, I explain how, for Merleau-Ponty, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Natural Philosophy, Deduction, and Geometry in the Hobbes-Boyle Debate.Marcus P. Adams - 2017 - Hobbes Studies 30 (1):83-107.
    This paper examines Hobbes’s criticisms of Robert Boyle’s air-pump experiments in light of Hobbes’s account in _De Corpore_ and _De Homine_ of the relationship of natural philosophy to geometry. I argue that Hobbes’s criticisms rely upon his understanding of what counts as “true physics.” Instead of seeing Hobbes as defending natural philosophy as “a causal enterprise … [that] as such, secured total and irrevocable assent,” 1 I argue that, in his disagreement with Boyle, Hobbes relied upon his understanding (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  9. (1 other version)Recalcitrant Disagreement in Mathematics: An “Endless and Depressing Controversy” in the History of Italian Algebraic Geometry.Silvia De Toffoli & Claudio Fontanari - 2023 - Global Philosophy 33 (38):1-29.
    If there is an area of discourse in which disagreement is virtually absent, it is mathematics. After all, mathematicians justify their claims with deductive proofs: arguments that entail their conclusions. But is mathematics really exceptional in this respect? Looking at the history and practice of mathematics, we soon realize that it is not. First, deductive arguments must start somewhere. How should we choose the starting points (i.e., the axioms)? Second, mathematicians, like the rest of us, are fallible. Their ability to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  10. After Non-Euclidean Geometry: Intuition, Truth and the Autonomy of Mathematics.Janet Folina - 2018 - Journal for the History of Analytical Philosophy 6 (3).
    The mathematical developments of the 19th century seemed to undermine Kant’s philosophy. Non-Euclidean geometries challenged Kant’s view that there is a spatial intuition rich enough to yield the truth of Euclidean geometry. Similarly, advancements in algebra challenged the view that temporal intuition provides a foundation for both it and arithmetic. Mathematics seemed increasingly detached from experience as well as its form; moreover, with advances in symbolic logic, mathematical inference also seemed independent of intuition. This paper considers various philosophical responses (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Some Remarks on Wittgenstein’s Philosophy of Mathematics.Richard Startup - 2020 - Open Journal of Philosophy 10 (1):45-65.
    Drawing mainly from the Tractatus Logico-Philosophicus and his middle period writings, strategic issues and problems arising from Wittgenstein’s philosophy of mathematics are discussed. Topics have been so chosen as to assist mediation between the perspective of philosophers and that of mathematicians on their developing discipline. There is consideration of rules within arithmetic and geometry and Wittgenstein’s distinctive approach to number systems whether elementary or transfinite. Examples are presented to illuminate the relation between the meaning of an arithmetical generalisation or (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  12. Hobbes on Natural Philosophy as "True Physics" and Mixed Mathematics.Marcus P. Adams - 2016 - Studies in History and Philosophy of Science Part A 56 (C):43-51.
    I offer an alternative account of the relationship of Hobbesian geometry to natural philosophy by arguing that mixed mathematics provided Hobbes with a model for thinking about it. In mixed mathematics, one may borrow causal principles from one science and use them in another science without there being a deductive relationship between those two sciences. Natural philosophy for Hobbes is mixed because an explanation may combine observations from experience (the ‘that’) with causal principles from geometry (the ‘why’). My (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  13. ONE AND THE MULTIPLE ON THE PHILOSOPHY OF MATHEMATICS - ALEXIS KARPOUZOS.Alexis Karpouzos - 2025 - Comsic Spirit 1:6.
    The relationship between the One and the Multiple in mystic philosophy is a profound and central theme that explores the nature of existence, the cosmos, and the divine. This theme is present in various mystical traditions, including those of the East and West, and it addresses the paradoxical coexistence of the unity and multiplicity of all things. -/- In mystic philosophy, the **One** often represents the ultimate reality, the source from which all things emanate and to which all (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14. (1 other version)Non-locality of the phenomenon of consciousness according to Roger Penrose.Rubén Herce - 2016 - Dialogo 3 (2):127-134.
    Roger Penrose is known for his proposals, in collaboration with Stuart Hameroff, for quantum action in the brain. These proposals, which are still recent, have a prior, less known basis, which will be studied in the following work. First, the paper situates the framework from which a mathematical physicist like Penrose proposes to speak about consciousness. Then it shows how he understands the possible relationships between computation and consciousness and what criticism from other authors he endorses, to conclude (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Schizo‐Math.Simon Duffy - 2004 - Angelaki 9 (3):199 – 215.
    In the paper “Math Anxiety,” Aden Evens explores the manner by means of which concepts are implicated in the problematic Idea according to the philosophy of Gilles Deleuze. The example that Evens draws from Difference and Repetition in order to demonstrate this relation is a mathematics problem, the elements of which are the differentials of the differential calculus. What I would like to offer in the present paper is an historical account of the mathematical problematic that Deleuze deploys in (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  16. (1 other version)Quantum Physics: an overview of a weird world: A primer on the conceptual foundations of quantum physics.Marco Masi - 2019 - Indy Edition.
    This is the first book in a two-volume series. The present volume introduces the basics of the conceptual foundations of quantum physics. It appeared first as a series of video lectures on the online learning platform Udemy.]There is probably no science that is as confusing as quantum theory. There's so much misleading information on the subject that for most people it is very difficult to separate science facts from pseudoscience. The goal of this book is to make you able to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Husserl, Intentionality and Mathematics: Geometry and Category Theory.Arturo Romero Contreras - 2022 - In Boi Luciano & Lobo Carlos (eds.), When Form Becomes Substance. Power of Gestures, Diagrammatical Intuition and Phenomenology of Space. Birkhäuser. pp. 327-358.
    The following text is divided in four parts. The first presents the inner relation between the phenomenological concept of intentionality and space in a general mathematical sense. Following this train of though the second part brie_ly characterizes the use of the geometrical concept of manifold (Mannigfaltigkeit) in Husserl’s work. In the third part we present some examples of the use of the concept in Husserl’s analyses of space, time and intersubjectivity, pointing out some dif_iculties in his endeavor. In the fourth (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Benefits of using critical thinking in high education.Abduljaleel Alwali - 2011 - Https://Library.Iated.Org/View/ALWALI2011BEN.
    Some people believe that critical thinking is not a modern science, but its roots are old and deeply rooted in the history of philosophy. Its roots date back to Aristotle, the inventor of logic and who was called the first teacher by virtue of this invention. Aristotle was impressed by the language of mathematics and wanted to invent a language to logic similar to the language of Mathematics. What encouraged Aristotle to do so is that Math language is quite (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Husserl, Intentionality and Mathematics: Geometry and Category Theory.Romero Arturo - 2022 - In Boi Luciano & Lobo Carlos (eds.), When Form Becomes Substance. Power of Gestures, Diagrammatical Intuition and Phenomenology of Space. Birkhäuser. pp. 327-358.
    The following text is divided in four parts. The first presents the inner relation between the phenomenological concept of intentionality and space in a general mathematical sense. Following this train of though the second part brie_ly characterizes the use of the geometrical concept of manifold (Mannigfaltigkeit) in Husserl’s work. In the third part we present some examples of the use of the concept in Husserl’s analyses of space, time and intersubjectivity, pointing out some dif_iculties in his endeavor. In the fourth (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Revalidation of the Developed Learning Material in Analytic Geometry and Trigonometry in IDEA Format.Joan Saavedra, Victorina Palanas & Jeruel Canceran - 2023 - Jpair Multidisciplinary Research 53 (1):91-108.
    Elective mathematics has been an extra mathematics subject for pilot students of Eduardo Barretto Sr. National High School for quite some time now. Through this, many alumni testified how this helped them understand senior high school and college math. However, the teachers have also been struggling with the resources for specific areas of mathematics, such as Business Math, Statistics, Analytic Geometry, Trigonometry, and Calculus. When the pandemic hit the Philippines, contextualized learning material aligned with the Most Essential Learning Competencies (MELC) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. The math is not the territory: navigating the free energy principle.Mel Andrews - 2021 - Biology and Philosophy 36 (3):1-19.
    Much has been written about the free energy principle (FEP), and much misunderstood. The principle has traditionally been put forth as a theory of brain function or biological self-organisation. Critiques of the framework have focused on its lack of empirical support and a failure to generate concrete, falsifiable predictions. I take both positive and negative evaluations of the FEP thus far to have been largely in error, and appeal to a robust literature on scientific modelling to rectify the situation. A (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  22. Nietzsche’s Philosophy of Mathematics.Eric Steinhart - 1999 - International Studies in Philosophy 31 (3):19-27.
    Nietzsche has a surprisingly significant and strikingly positive assessment of mathematics. I discuss Nietzsche's theory of the origin of mathematical practice in the division of the continuum of force, his theory of numbers, his conception of the finite and the infinite, and the relations between Nietzschean mathematics and formalism and intuitionism. I talk about the relations between math, illusion, life, and the will to truth. I distinguish life and world affirming mathematical practice from its ascetic perversion. For Nietzsche, math is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  23. Articulating Space in Terms of Transformation Groups: Helmholtz and Cassirer.Francesca Biagioli - 2018 - Journal for the History of Analytical Philosophy 6 (3).
    Hermann von Helmholtz’s geometrical papers have been typically deemed to provide an implicitly group-theoretical analysis of space, as articulated later by Felix Klein, Sophus Lie, and Henri Poincaré. However, there is less agreement as to what properties exactly in such a view would pertain to space, as opposed to abstract mathematical structures, on the one hand, and empirical contents, on the other. According to Moritz Schlick, the puzzle can be resolved only by clearly distinguishing the empirical qualities of spatial perception (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  24. Euclidean Geometry is a Priori.Boris Culina - manuscript
    An argument is given that Euclidean geometry is a priori in the same way that numbers are a priori, the result of modeling, not the world, but our activities in the world.
    Download  
     
    Export citation  
     
    Bookmark  
  25. Mathematical Forms and Forms of Mathematics: Leaving the Shores of Extensional Mathematics.Jean-Pierre Marquis - 2013 - Synthese 190 (12):2141-2164.
    In this paper, I introduce the idea that some important parts of contemporary pure mathematics are moving away from what I call the extensional point of view. More specifically, these fields are based on criteria of identity that are not extensional. After presenting a few cases, I concentrate on homotopy theory where the situation is particularly clear. Moreover, homotopy types are arguably fundamental entities of geometry, thus of a large portion of mathematics, and potentially to all mathematics, at least according (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  26. Mathematical Deduction by Induction.Christy Ailman - 2013 - Gratia Eruditionis:4-12.
    In attempt to provide an answer to the question of origin of deductive proofs, I argue that Aristotle’s philosophy of math is more accurate opposed to a Platonic philosophy of math, given the evidence of how mathematics began. Aristotle says that mathematical knowledge is a posteriori, known through induction; but once knowledge has become unqualified it can grow into deduction. Two pieces of recent scholarship on Greek mathematics propose new ways of thinking about how mathematics began in the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. The Epistemology of Geometry I: the Problem of Exactness.Anne Newstead & Franklin James - 2010 - Proceedings of the Australasian Society for Cognitive Science 2009.
    We show how an epistemology informed by cognitive science promises to shed light on an ancient problem in the philosophy of mathematics: the problem of exactness. The problem of exactness arises because geometrical knowledge is thought to concern perfect geometrical forms, whereas the embodiment of such forms in the natural world may be imperfect. There thus arises an apparent mismatch between mathematical concepts and physical reality. We propose that the problem can be solved by emphasizing the ways in which (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  28. MATH HAS ONLY ONE LANGUAGE.Albert Efimov - manuscript
    Sber Science Award 2023 winner in the “Digital Universe” category, full member of the Russian Academy of Sciences, Doctor of Physics and Mathematics, Head of the Chair of Computational Technology and Modeling of the Department of Computational Mathematics and Cybernetics of Moscow State University, Director of the Marchuk Institute for Computational Mathematics of the Russian Academy of Sciences Evgeny Evgenyevich Tyrtyshnikov dedicated his lecture entitled “Dimension: Is it a curse or a blessing?” to methods of presentation of multi-dimensional data based (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Gödel mathematics versus Hilbert mathematics. I. The Gödel incompleteness (1931) statement: axiom or theorem?Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (9):1-56.
    The present first part about the eventual completeness of mathematics (called “Hilbert mathematics”) is concentrated on the Gödel incompleteness (1931) statement: if it is an axiom rather than a theorem inferable from the axioms of (Peano) arithmetic, (ZFC) set theory, and propositional logic, this would pioneer the pathway to Hilbert mathematics. One of the main arguments that it is an axiom consists in the direct contradiction of the axiom of induction in arithmetic and the axiom of infinity in set theory. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Non-mathematical dimensions of randomness: Implications for problem gambling.Catalin Barboianu - 2024 - Journal of Gambling Issues 36.
    Randomness, a core concept of gambling, is seen in problem gambling as responsible for the formation of the math-related cognitive distortions, especially the Gambler’s Fallacy. In problem-gambling research, the concept of randomness was traditionally referred to as having a mathematical nature and categorized and approached as such. Randomness is not a mathematical concept, and I argue that its weak mathematical dimension is not decisive at all for the randomness-related issues in gambling and problem gambling, including the correction of the misconceptions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Mathematical necessity and reality.James Franklin - 1989 - Australasian Journal of Philosophy 67 (3):286 – 294.
    Einstein, like most philosophers, thought that there cannot be mathematical truths which are both necessary and about reality. The article argues against this, starting with prima facie examples such as "It is impossible to tile my bathroom floor with regular pentagonal tiles." Replies are given to objections based on the supposedly purely logical or hypothetical nature of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  32. Logic, mathematics, physics: from a loose thread to the close link: Or what gravity is for both logic and mathematics rather than only for physics.Vasil Penchev - 2023 - Astrophysics, Cosmology and Gravitation Ejournal 2 (52):1-82.
    Gravitation is interpreted to be an “ontomathematical” force or interaction rather than an only physical one. That approach restores Newton’s original design of universal gravitation in the framework of “The Mathematical Principles of Natural Philosophy”, which allows for Einstein’s special and general relativity to be also reinterpreted ontomathematically. The entanglement theory of quantum gravitation is inherently involved also ontomathematically by virtue of the consideration of the qubit Hilbert space after entanglement as the Fourier counterpart of pseudo-Riemannian space. Gravitation can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. An Elementary System of Axioms for Euclidean Geometry Based on Symmetry Principles.Boris Čulina - 2018 - Axiomathes 28 (2):155-180.
    In this article I develop an elementary system of axioms for Euclidean geometry. On one hand, the system is based on the symmetry principles which express our a priori ignorant approach to space: all places are the same to us, all directions are the same to us and all units of length we use to create geometric figures are the same to us. On the other hand, through the process of algebraic simplification, this system of axioms directly provides the Weyl’s (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Øystein Linnebo, Philosophy of mathematics, Princeton University Press, 2017, pp. 216, € 29.00, ISBN 978-0691161402. [REVIEW]Filippo Mancini - 2019 - Universa. Recensioni di Filosofia 8.
    La matematica viene generalmente considerata uno degli ambiti più affidabili dell’intera impresa scientifica. Il suo successo e la sua solidità sono testimoniati, ad esempio, dall’uso imprescindibile che ne fanno le scienze empiriche e dall’accordo pressoché unanime con cui la comunità dei matematici delibera sulla validità di un nuovo risultato. Tuttavia, dal punto di vista filosofico la matematica rappresenta un puzzle tanto intrigante quanto intricato. Philosophy of Mathematics di Ø. Linnebo si propone di presentare e discutere le concezioni filosofiche della (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Hobbes on the Order of Sciences: A Partial Defense of the Mathematization Thesis.Zvi Biener - 2016 - Southern Journal of Philosophy 54 (3):312-332.
    Accounts of Hobbes’s ‘system’ of sciences oscillate between two extremes. On one extreme, the system is portrayed as wholly axiomtic-deductive, with statecraft being deduced in an unbroken chain from the principles of logic and first philosophy. On the other, it is portrayed as rife with conceptual cracks and fissures, with Hobbes’s statements about its deductive structure amounting to mere window-dressing. This paper argues that a middle way is found by conceiving of Hobbes’s _Elements of Philosophy_ on the model of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  36. Reconstructing the Unity of Mathematics circa 1900.David J. Stump - 1997 - Perspectives on Science 5 (3):383-417.
    Standard histories of mathematics and of analytic philosophy contend that work on the foundations of mathematics was motivated by a crisis such as the discovery of paradoxes in set theory or the discovery of non-Euclidean geometries. Recent scholarship, however, casts doubt on the standard histories, opening the way for consideration of an alternative motive for the study of the foundations of mathematics—unification. Work on foundations has shown that diverse mathematical practices could be integrated into a single framework of axiomatic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  37. Frege on the Foundation of Geometry in Intuition.Jeremy Shipley - 2015 - Journal for the History of Analytical Philosophy 3 (6).
    I investigate the role of geometric intuition in Frege’s early mathematical works and the significance of his view of the role of intuition in geometry to properly understanding the aims of his logicist project. I critically evaluate the interpretations of Mark Wilson, Jamie Tappenden, and Michael Dummett. The final analysis that I provide clarifies the relationship of Frege’s restricted logicist project to dominant trends in German mathematical research, in particular to Weierstrassian arithmetization and to the Riemannian conceptual/geometrical tradition at Göttingen. (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  38. Fine-Structure Constant from Golden Ratio Geometry.Michael A. Sherbon - 2018 - International Journal of Mathematics and Physical Sciences Research 5 (2):89-100.
    After a brief review of the golden ratio in history and our previous exposition of the fine-structure constant and equations with the exponential function, the fine-structure constant is studied in the context of other research calculating the fine-structure constant from the golden ratio geometry of the hydrogen atom. This research is extended and the fine-structure constant is then calculated in powers of the golden ratio to an accuracy consistent with the most recent publications. The mathematical constants associated with the golden (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  39. Downloaded Worksheets: A Learning Activity to Enhance Mathematical Level.Elmer C. Zarate, Beverly B. Fernandez & Lorelie E. Dorias - 2022 - Universal Journal of Educational Research 1 (1).
    The researcher was prompted to conduct this study to give intervention of the alarming situation which there is a low performance in solving problems related to geometry in Grade IV Mathematics. This study was about on how to enhance the mathematical competencies of the grade IV pupils using a downloaded worksheets as a learning activity. This study focused in giving remediation applying the intervention materials. These resources give several approaches to attain mastery using distinct drill cards. The investigation was carried (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  40. The Constitution of Weyl’s Pure Infinitesimal World Geometry.C. D. McCoy - 2022 - Hopos: The Journal of the International Society for the History of Philosophy of Science 12 (1):189–208.
    Hermann Weyl was one of the most important figures involved in the early elaboration of the general theory of relativity and its fundamentally geometrical spacetime picture of the world. Weyl’s development of “pure infinitesimal geometry” out of relativity theory was the basis of his remarkable attempt at unifying gravitation and electromagnetism. Many interpreters have focused primarily on Weyl’s philosophical influences, especially the influence of Husserl’s transcendental phenomenology, as the motivation for these efforts. In this article, I argue both that these (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. God, Human Memory, and the Certainty of Geometry: An Argument Against Descartes.Marc Champagne - 2016 - Philosophy and Theology 28 (2):299–310.
    Descartes holds that the tell-tale sign of a solid proof is that its entailments appear clearly and distinctly. Yet, since there is a limit to what a subject can consciously fathom at any given moment, a mnemonic shortcoming threatens to render complex geometrical reasoning impossible. Thus, what enables us to recall earlier proofs, according to Descartes, is God’s benevolence: He is too good to pull a deceptive switch on us. Accordingly, Descartes concludes that geometry and belief in God must go (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Application of natural deduction in Renaissance geometry.Mirek Ryszard - 2014 - Argument: Biannual Philosophical Journal 4 (2):425-438.
    my goal here is to provide a detailed analysis of the methods of inference that are employed in De prospectiva pingendi. For this purpose, a method of natural deduction is proposed. the treatise by Piero della Francesca is a manifestation of a union between the ne arts and the mathematical sciences of arithmetic and geometry. He de nes painting as a part of perspective and, speaking precisely, as a branch of geometry, which is why we nd advanced geometrical exercises here.
    Download  
     
    Export citation  
     
    Bookmark  
  43. Cassirer and the Structural Turn in Modern Geometry.Georg Schiemer - 2018 - Journal for the History of Analytical Philosophy 6 (3).
    The paper investigates Ernst Cassirer’s structuralist account of geometrical knowledge developed in his Substanzbegriff und Funktionsbegriff. The aim here is twofold. First, to give a closer study of several developments in projective geometry that form the direct background for Cassirer’s philosophical remarks on geometrical concept formation. Specifically, the paper will survey different attempts to justify the principle of duality in projective geometry as well as Felix Klein’s generalization of the use of geometrical transformations in his Erlangen program. The second aim (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  44. Discrete and continuous: a fundamental dichotomy in mathematics.James Franklin - 2017 - Journal of Humanistic Mathematics 7 (2):355-378.
    The distinction between the discrete and the continuous lies at the heart of mathematics. Discrete mathematics (arithmetic, algebra, combinatorics, graph theory, cryptography, logic) has a set of concepts, techniques, and application areas largely distinct from continuous mathematics (traditional geometry, calculus, most of functional analysis, differential equations, topology). The interaction between the two – for example in computer models of continuous systems such as fluid flow – is a central issue in the applicable mathematics of the last hundred years. This article (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  45. Ancient Greek Mathematical Proofs and Metareasoning.Mario Bacelar Valente - 2024 - In Maria Zack (ed.), Research in History and Philosophy of Mathematics. Annals of the Canadian Society for History and Philosophy of Mathematics. pp. 15-33.
    We present an approach in which ancient Greek mathematical proofs by Hippocrates of Chios and Euclid are addressed as a form of (guided) intentional reasoning. Schematically, in a proof, we start with a sentence that works as a premise; this sentence is followed by another, the conclusion of what we might take to be an inferential step. That goes on until the last conclusion is reached. Guided by the text, we go through small inferential steps; in each one, we go (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Towards Epistemic Justice in Islam.Fatema Amijee - 2023 - In Mohammad Saleh Zarepour (ed.), Islamic philosophy of religion: analytic perspectives. New York: Routledge. pp. 241-257.
    Epistemic injustice consists in a wrong done to someone in their capacity as a knower. I focus on epistemic injustice—more specifically, testimonial injustice—as it arises in the Qur’an. Verse 2:282 implies that the worth of a man’s testimony is twice that of a woman’s testimony. The divine norm suggested by the verse is in direct conflict with the norms that govern testimonial justice. These norms require that women should not be judged less reliable simply because they are women. But a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Plato's Natural Philosophy and Metaphysics.Luc Brisson - 2018 - In Sean D. Kirkland & Eric Sanday (eds.), A Companion to Ancient Philosophy. Evanston, Illinois: Northwestern University Press. pp. 212–231.
    This chapter contains sections titled: Going Beyond Nature in Order to Explain it Technē, epistēmē and alēthēs doxa Mathematics, pure and applied Observation and Experimental Verification Bibliography.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  48. Poincaré on the Foundation of Geometry in the Understanding.Jeremy Shipley - 2017 - In Maria Zack & Dirk Schlimm (eds.), Research in History and Philosophy of Mathematics: The CSHPM 2016 Annual Meeting in Calgary, Alberta. New York: Birkhäuser. pp. 19-37.
    This paper is about Poincaré’s view of the foundations of geometry. According to the established view, which has been inherited from the logical positivists, Poincaré, like Hilbert, held that axioms in geometry are schemata that provide implicit definitions of geometric terms, a view he expresses by stating that the axioms of geometry are “definitions in disguise.” I argue that this view does not accord well with Poincaré’s core commitment in the philosophy of geometry: the view that geometry is the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  49. The Ontology of Knowledge, logic, arithmetic, sets theory and geometry (issue 20220523).Jean-Louis Boucon - 2021 - Published.
    Despite the efforts undertaken to separate scientific reasoning and metaphysical considerations, despite the rigor of construction of mathematics, these are not, in their very foundations, independent of the modalities, of the laws of representation of the world. The OdC shows that the logical Facts Exist neither more nor less than the Facts of the world which are Facts of Knowledge. Mathematical facts are representation facts. The primary objective of this article is to integrate the subject into mathematics as a mode (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. The "Unreasonable" Effectiveness of Mathematics: The Foundational Approach of the Theoretic Alternatives.Catalin Barboianu - 2015 - Revista de Filosofie 62 (1):58-71.
    The attempts of theoretically solving the famous puzzle-dictum of physicist Eugene Wigner regarding the “unreasonable” effectiveness of mathematics as a problem of analytical philosophy, started at the end of the 19th century, are yet far from coming out with an acceptable theoretical solution. The theories developed for explaining the empirical “miracle” of applied mathematics vary in nature, foundation and solution, from denying the existence of a genuine problem to structural theories with an advanced level of mathematical formalism. Despite this (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 960