Results for 'Analytic Geometry'

961 found
Order:
  1. Revalidation of the Developed Learning Material in Analytic Geometry and Trigonometry in IDEA Format.Joan Saavedra, Victorina Palanas & Jeruel Canceran - 2023 - Jpair Multidisciplinary Research 53 (1):91-108.
    Elective mathematics has been an extra mathematics subject for pilot students of Eduardo Barretto Sr. National High School for quite some time now. Through this, many alumni testified how this helped them understand senior high school and college math. However, the teachers have also been struggling with the resources for specific areas of mathematics, such as Business Math, Statistics, Analytic Geometry, Trigonometry, and Calculus. When the pandemic hit the Philippines, contextualized learning material aligned with the Most Essential Learning (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Is Geometry Analytic?David Mwakima - 2017 - Dianoia 1 (4):66 - 78.
    In this paper I present critical evaluations of Ayer and Putnam's views on the analyticity of geometry. By drawing on the historico-philosophical work of Michael Friedman on the relativized apriori; and Roberto Torretti on the foundations of geometry, I show how we can make sense of the assertion that pure geometry is analytic in Carnap's sense.
    Download  
     
    Export citation  
     
    Bookmark  
  3. ARISTOTELIAN LOGIC AND EUCLIDEAN GEOMETRY.John Corcoran - 2014 - Bulletin of Symbolic Logic 20 (1):131-2.
    John Corcoran and George Boger. Aristotelian logic and Euclidean geometry. Bulletin of Symbolic Logic. 20 (2014) 131. -/- By an Aristotelian logic we mean any system of direct and indirect deductions, chains of reasoning linking conclusions to premises—complete syllogisms, to use Aristotle’s phrase—1) intended to show that their conclusions follow logically from their respective premises and 2) resembling those in Aristotle’s Prior Analytics. Such systems presuppose existence of cases where it is not obvious that the conclusion follows from the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. (1 other version)Visual geometry.James Hopkins - 1973 - Philosophical Review 82 (1):3-34.
    We cannot imagine two straight lines intersecting at two points even though they may do so. In this case our abilities to imagine depend upon our abilities to visualise.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  5. Emergence, evolution, and the geometry of logic: Causal leaps and the myth of historical development. [REVIEW]Stephen Palmquist - 2007 - Foundations of Science 12 (1):9-37.
    After sketching the historical development of “emergence” and noting several recent problems relating to “emergent properties”, this essay proposes that properties may be either “emergent” or “mergent” and either “intrinsic” or “extrinsic”. These two distinctions define four basic types of change: stagnation, permanence, flux, and evolution. To illustrate how emergence can operate in a purely logical system, the Geometry of Logic is introduced. This new method of analyzing conceptual systems involves the mapping of logical relations onto geometrical figures, following (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  6. Cónicas y Superficies Cuádricas.Jonathan Taborda & Jaime Chica - manuscript
    There are two problems Analytical Geometry with facing anyone who studies this discipline: define the nature of the locus represented by the general equation 2do degree in two or three variables: That curve represents the plane? What surface is in space? These two problems are posed and solved by applying the study of matrices and spectral theory.
    Download  
     
    Export citation  
     
    Bookmark  
  7. Conics and Quadric surfaces.Jonathan Taborda & Jaime Chica - manuscript
    There are two problems Analytical Geometry with facing anyone who studies this discipline: define the nature of the locus represented by the general equation 2do degree in two or three variables: That curve represents the plane? What surface is in space? These two problems are posed and solved by applying the study of matrices and spectral theory.
    Download  
     
    Export citation  
     
    Bookmark  
  8. Cuádricas.Jonathan Taborda & Jaime Chica - manuscript
    There are two problems Analytical Geometry with facing anyone who studies this discipline: define the nature of the locus represented by the general equation 2do degree in two or three variables: That curve represents the plane? What surface is in space? These two problems are posed and solved by applying the study of matrices and spectral theory.
    Download  
     
    Export citation  
     
    Bookmark  
  9. After Non-Euclidean Geometry: Intuition, Truth and the Autonomy of Mathematics.Janet Folina - 2018 - Journal for the History of Analytical Philosophy 6 (3).
    The mathematical developments of the 19th century seemed to undermine Kant’s philosophy. Non-Euclidean geometries challenged Kant’s view that there is a spatial intuition rich enough to yield the truth of Euclidean geometry. Similarly, advancements in algebra challenged the view that temporal intuition provides a foundation for both it and arithmetic. Mathematics seemed increasingly detached from experience as well as its form; moreover, with advances in symbolic logic, mathematical inference also seemed independent of intuition. This paper considers various philosophical responses (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Cassirer and the Structural Turn in Modern Geometry.Georg Schiemer - 2018 - Journal for the History of Analytical Philosophy 6 (3).
    The paper investigates Ernst Cassirer’s structuralist account of geometrical knowledge developed in his Substanzbegriff und Funktionsbegriff. The aim here is twofold. First, to give a closer study of several developments in projective geometry that form the direct background for Cassirer’s philosophical remarks on geometrical concept formation. Specifically, the paper will survey different attempts to justify the principle of duality in projective geometry as well as Felix Klein’s generalization of the use of geometrical transformations in his Erlangen program. The (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  11. Analytical dialectic and basic physics.Arnoud van Thiel - 1962 - The Hague: L. J. C. Boucher.
    A philosophical system that aims to explain the structure of nature from the perspective of the framework of human consciousness, and thus the foundations of mathematics and physics.
    Download  
     
    Export citation  
     
    Bookmark  
  12. Frege on the Foundation of Geometry in Intuition.Jeremy Shipley - 2015 - Journal for the History of Analytical Philosophy 3 (6).
    I investigate the role of geometric intuition in Frege’s early mathematical works and the significance of his view of the role of intuition in geometry to properly understanding the aims of his logicist project. I critically evaluate the interpretations of Mark Wilson, Jamie Tappenden, and Michael Dummett. The final analysis that I provide clarifies the relationship of Frege’s restricted logicist project to dominant trends in German mathematical research, in particular to Weierstrassian arithmetization and to the Riemannian conceptual/geometrical tradition at (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  13. Attempts by Avicenna and Ibn al-Nafīs to Expand the Field of the Transference of Demonstration in the Context of the Relationship Between Geometry and Medicine.Bakhadir Musametov - 2021 - Nazariyat, Journal for the History of Islamic Philosophy and Sciences 7 (1):37-71.
    This paper aims to deal with the disputes on transferring demonstration between the various sciences in the context of the medicine-geometry relationship. According to Aristotle’s metabasis-prohibition, these two sciences should be located in separate compartments due to the characteristics of their subject-matter. However, a thorough analysis of the critical passage in Aristotle’s Posterior Analytics on circular wounds forces a revision of the boundaries of the interactions between sciences, since subsequently Avicenna, on the grounds of this passage, would widen the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Material cause and syllogistic necessity in posterior analytics II 11.Paolo Fait - 2019 - Manuscrito 42 (4):282-322.
    The paper examines Posterior Analytics II 11, 94a20-36 and makes three points. (1) The confusing formula ‘given what things, is it necessary for this to be’ [τίνων ὄντων ἀνάγκη τοῦτ᾿ εἶναι] at a21-22 introduces material cause, not syllogistic necessity. (2) When biological material necessitation is the only causal factor, Aristotle is reluctant to formalize it in syllogistic terms, and this helps to explain why, in II 11, he turns to geometry in order to illustrate a kind of material cause (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Upright posture and the meaning of meronymy: A synthesis of metaphoric and analytic accounts.Jamin Pelkey - 2018 - Cognitive Semiotics 11 (1):1-18.
    Cross-linguistic strategies for mapping lexical and spatial relations from body partonym systems to external object meronymies (as in English ‘table leg’, ‘mountain face’) have attracted substantial research and debate over the past three decades. Due to the systematic mappings, lexical productivity and geometric complexities of body-based meronymies found in many Mesoamerican languages, the region has become focal for these discussions, prominently including contrastive accounts of the phenomenon in Zapotec and Tzeltal, leading researchers to question whether such systems should be explained (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  16.  65
    Formalizing Mechanical Analysis Using Sweeping Net Methods.Parker Emmerson - 2024 - Journal of Liberated Mathematics 1:12.
    We present a formal mechanical analysis using sweeping net methods to approximate surfacing singularities of saddle maps. By constructing densified sweeping subnets for individual vertices and integrating them, we create a comprehensive approximation of singularities. This approach utilizes geometric concepts, analytical methods, and theorems that demonstrate the robustness and stability of the nets under perturbations. Through detailed proofs and visualizations, we provide a new perspective on singularities and their approximations in analytic geometry.
    Download  
     
    Export citation  
     
    Bookmark  
  17. The Development of Descartes’ Idea of Representation by Correspondence.Hanoch Ben-Yami - 2023 - In Andrea Strazzoni & Marco Sgarbi (eds.), Reading Descartes. Consciousness, Body, and Reasoning. Florence: Firenze University Press. pp. 41-57.
    Descartes was the first to hold that, when we perceive, the representation need not resemble what it represents but should correspond to it. Descartes developed this ground-breaking, influential conception in his work on analytic geometry and then transferred it to his theory of perception. I trace the development of the idea in Descartes’ early mathematical works; his articulation of it in Rules for the Direction of the Mind; his first suggestions there to apply this kind of representation-by-correspondence in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. On the alleged simplicity of impure proof.Andrew Arana - 2017 - In Roman Kossak & Philip Ording (eds.), Simplicity: Ideals of Practice in Mathematics and the Arts. Springer. pp. 207-226.
    Roughly, a proof of a theorem, is “pure” if it draws only on what is “close” or “intrinsic” to that theorem. Mathematicians employ a variety of terms to identify pure proofs, saying that a pure proof is one that avoids what is “extrinsic,” “extraneous,” “distant,” “remote,” “alien,” or “foreign” to the problem or theorem under investigation. In the background of these attributions is the view that there is a distance measure (or a variety of such measures) between mathematical statements and (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  19.  59
    Defining π via Infinite Densification of the Sweeping Net and Reverse Integration.Parker Emmerson - 2024 - Journal of Liberated Mathematics 1 (1):7.
    We present a novel approach to defining the mathematical constant π through the infinite den- sification of a sweeping net, which approximates a circle as the net becomes infinitely dense. By developing and enhancing notation related to sweeping nets and saddle maps, we establish a rigor- ous framework for expressing π in terms of the densification process using reverse integration. This method, inspired by the concept that numbers ”come from infinity,” leverages a reverse integral approach to model the transition from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Premeny interpretácie teologického a matematického jazyka „knihy prírody“.Gašpar Fronc - 2021 - In Zlatica Plašienková (ed.), Paradigmatické zmeny v chápaní kozmologickej a antropologickej problematiky: minulosť a súčasnosť. Univerzita Komenského v Bratislave. pp. 94 – 118.
    The symbolism of nature as a book in which one reads is of ancient origin. This study focuses on the question of its mathematical and theological language in the biblical context and on the background of changes in natural philosophy, especially in the Renaissance period. The biblical context is associated with the paradigm shift in the Renaissance period, because all the researched authors addressed the questions of meaning and methods of research of nature in connection with the hermeneutics of biblical (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. Aristotle on Geometrical Potentialities.Naoya Iwata - 2021 - Journal of the History of Philosophy 59 (3):371-397.
    This paper examines Aristotle's discussion of the priority of actuality to potentiality in geometry at Metaphysics Θ9, 1051a21–33. Many scholars have assumed what I call the "geometrical construction" interpretation, according to which his point here concerns the relation between an inquirer's thinking and a geometrical figure. In contrast, I defend what I call the "geometrical analysis" interpretation, according to which it concerns the asymmetrical relation between geometrical propositions in which one is proved by means of the other. His argument (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  22. Reconstructing the Unity of Mathematics circa 1900.David J. Stump - 1997 - Perspectives on Science 5 (3):383-417.
    Standard histories of mathematics and of analytic philosophy contend that work on the foundations of mathematics was motivated by a crisis such as the discovery of paradoxes in set theory or the discovery of non-Euclidean geometries. Recent scholarship, however, casts doubt on the standard histories, opening the way for consideration of an alternative motive for the study of the foundations of mathematics—unification. Work on foundations has shown that diverse mathematical practices could be integrated into a single framework of axiomatic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  23. Posthumanist Phenomenology and Artificial Intelligence.Avery Rijos - unknown - Medium.
    This paper examines the ontological and epistemological implications of artificial intelligence (AI) through posthumanist philosophy, integrating the works of Deleuze, Foucault, and Haraway with contemporary computational methodologies. It introduces concepts such as negative augmentation, praxes of revealing, and desedimentation, while extending ideas like affirmative cartographies, ethics of alterity, and planes of immanence to critique anthropocentric assumptions about identity, cognition, and agency. By redefining AI systems as dynamic assemblages emerging through networks of interaction and co-creation, the paper challenges traditional dichotomies such (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24.  86
    Nano-plasmonic and nanoelectronic pattern is one of the miniaturization techniqu.Afshin Rashid - 2024 - Authorea 12.
    nanological gates, in order to design nano-scale computers with dual-scale capabilities. All living biological systems function due to the molecular interactions of different subsystems. Molecular components (proteins and nucleic acids, lipids and carbohydrates, DNA and RNA) can be used as an inspirational strategy on how to design high-performance NEMS and MEMS that have the required features and characteristics. Considered. In addition, analytical and numerical methods are available for dynamic analysis and three-dimensional geometry, bonding and other properties of atoms and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Review of Hintikka and Remes. The Method of Analysis (Reidel, 1974).John Corcoran - 1979 - MATHEMATICAL REVIEWS 58:3202-3.
    John Corcoran. 1979 Review of Hintikka and Remes. The Method of Analysis (Reidel, 1974). Mathematical Reviews 58 3202 #21388. -/- The “method of analysis” is a technique used by ancient Greek mathematicians (and perhaps by Descartes, Newton, and others) in connection with discovery of proofs of difficult theorems and in connection with discovery of constructions of elusive geometric figures. Although this method was originally applied in geometry, its later application to number played an important role in the early development (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Posthumanist Phenomenology and Artificial Intelligence.Avery Rijos - 2024 - Philosophy Papers (Philpapers).
    This paper examines the ontological and epistemological implications of artificial intelligence (AI) through posthumanist philosophy, integrating the works of Deleuze, Foucault, and Haraway with contemporary computational methodologies. It introduces concepts such as negative augmentation, praxes of revealing, and desedimentation, while extending ideas like affirmative cartographies, ethics of alterity, and planes of immanence to critique anthropocentric assumptions about identity, cognition, and agency. By redefining AI systems as dynamic assemblages emerging through networks of interaction and co-creation, the paper challenges traditional dichotomies such (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Russell's Progress: Spatial Dimensions, the From-Which, and the At-Which.Gary Hatfield - 2013 - In Dina Emundts (ed.), Self, World, and Art: Metaphysical Topics in Kant and Hegel. Boston: De Gruyter. pp. 321–44.
    The chapter concerns some aspects of Russell’s epistemological turn in the period after 1911. In particular, it focuses on two aspects of his philosophy in this period: his attempt to render material objects as constructions out of sense data, and his attitude toward sense data as “hard data.” It examines closely Russell’s “breakthrough” of early 1914, in which he concluded that, viewed from the standpoint of epistemology and analytic construction, space has six dimensions, not merely three. Russell posits a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. equality and identity.John Corcoran & Anthony Ramnauth - 2013 - Bulletin of Symbolic Logic 19 (3):255-256.
    Equality and identity. Bulletin of Symbolic Logic. 19 (2013) 255-6. (Coauthor: Anthony Ramnauth) Also see https://www.academia.edu/s/a6bf02aaab This article uses ‘equals’ [‘is equal to’] and ‘is’ [‘is identical to’, ‘is one and the same as’] as they are used in ordinary exact English. In a logically perfect language the oxymoron ‘the numbers 3 and 2+1 are the same number’ could not be said. Likewise, ‘the number 3 and the number 2+1 are one number’ is just as bad from a logical point (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Articulating Space in Terms of Transformation Groups: Helmholtz and Cassirer.Francesca Biagioli - 2018 - Journal for the History of Analytical Philosophy 6 (3).
    Hermann von Helmholtz’s geometrical papers have been typically deemed to provide an implicitly group-theoretical analysis of space, as articulated later by Felix Klein, Sophus Lie, and Henri Poincaré. However, there is less agreement as to what properties exactly in such a view would pertain to space, as opposed to abstract mathematical structures, on the one hand, and empirical contents, on the other. According to Moritz Schlick, the puzzle can be resolved only by clearly distinguishing the empirical qualities of spatial perception (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  30. La géométrie cognitive de la guerre.Barry Smith - 2002 - In Smith Barry (ed.), Les Nationalismes. Puf. pp. 199--226.
    Why does ‘ethnic cleansing’ occur? Why does the rise of nationalist feeling in Europe and of Black separatist movements in the United States often go hand in hand with an upsurge of anti-Semitism? Why do some mixings of distinct religious and ethnic groups succeed, where others (for example in Northern Ireland, or in Bosnia) fail so catastrophically? Why do phrases like ‘balkanisation’, ‘dismemberment’, ‘mutilation’, ‘violation of the motherland’ occur so often in warmongering rhetoric? All of these questions are, it will (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Geometry as a Universal mental Construction.Véronique Izard, Pierre Pica, Danièle Hinchey, Stanislas Dehane & Elizabeth Spelke - 2011 - In Stanislas Dehaene & Elizabeth Brannon (eds.), Space, Time and Number in the Brain: Searching for the Foundations of Mathematical Thought. Oxford University Press.
    Geometry, etymologically the “science of measuring the Earth”, is a mathematical formalization of space. Just as formal concepts of number may be rooted in an evolutionary ancient system for perceiving numerical quantity, the fathers of geometry may have been inspired by their perception of space. Is the spatial content of formal Euclidean geometry universally present in the way humans perceive space, or is Euclidean geometry a mental construction, specific to those who have received appropriate instruction? The (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  32. Core Knowledge of Geometry in an Amazonian Indigene Group.Stanislas Dehaene, Véronique Izard, Pierre Pica & Elizabeth Spelke - 2006 - Science 311 (5759)::381-4.
    Does geometry constitues a core set of intuitions present in all humans, regarless of their language or schooling ? We used two non verbal tests to probe the conceptual primitives of geometry in the Munduruku, an isolated Amazonian indigene group. Our results provide evidence for geometrical intuitions in the absence of schooling, experience with graphic symbols or maps, or a rich language of geometrical terms.
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  33. Linguistic Geometry and its Applications.W. B. Vasantha Kandasamy, K. Ilanthenral & Florentin Smarandache - 2022 - Miami, FL, USA: Global Knowledge.
    The notion of linguistic geometry is defined in this book. It is pertinent to keep in the record that linguistic geometry differs from classical geometry. Many basic or fundamental concepts and notions of classical geometry are not true or extendable in the case of linguistic geometry. Hence, for simple illustration, facts like two distinct points in classical geometry always define a line passing through them; this is generally not true in linguistic geometry. Suppose (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Analytic Philosophy (Alternative title 'Analytic Atheism?').Charles Pigden - 2013 - In Stephen Bullivant & Michael Ruse (eds.), The Oxford Handbook of Atheism. Oxford University Press UK. pp. 307-319.
    Most analytic philosophers are atheists, but is there a deep connection between analytic philosophy and atheism? The paper argues a) that the founding fathers of analytic philosophy were mostly teenage atheists before they became philosophers; b) that analytic philosophy was invented partly because it was realized that the God-substitute provided by the previously fashionable philosophy - Absolute Idealism – could not cut the spiritual mustard; c) that analytic philosophy developed an unhealthy obsession with meaninglessness which (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  35. Euclidean Geometry is a Priori.Boris Culina - manuscript
    An argument is given that Euclidean geometry is a priori in the same way that numbers are a priori, the result of modeling, not the world, but our activities in the world.
    Download  
     
    Export citation  
     
    Bookmark  
  36. The mindsponge and BMF analytics for innovative thinking in social sciences and humanities.Quan-Hoang Vuong, Minh-Hoang Nguyen & Viet-Phuong La (eds.) - 2022 - Berlin, Germany: De Gruyter.
    Academia is a competitive environment. Early Career Researchers (ECRs) are limited in experience and resources and especially need achievements to secure and expand their careers. To help with these issues, this book offers a new approach for conducting research using the combination of mindsponge innovative thinking and Bayesian analytics. This is not just another analytics book. 1. A new perspective on psychological processes: Mindsponge is a novel approach for examining the human mind’s information processing mechanism. This conceptual framework is used (...)
    Download  
     
    Export citation  
     
    Bookmark   99 citations  
  37. Geometry of motion: some elements of its historical development.Mario Bacelar Valente - 2019 - ArtefaCToS. Revista de Estudios de la Ciencia y la Tecnología 8 (2):4-26.
    in this paper we return to Marshall Clagett’s view about the existence of an ancient Greek geometry of motion. It can be read in two ways. As a basic presentation of ancient Greek geometry of motion, followed by some aspects of its further development in landmark works by Galileo and Newton. Conversely, it can be read as a basic presentation of aspects of Galileo’s and Newton’s mathematics that can be considered as developments of a geometry of motion (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Analytic Truths and Kripke’s Semantic Turn.Zsófia Zvolenszky - 2006 - Croatian Journal of Philosophy 6 (2):327-341.
    In his influential Naming and Necessity lectures, Saul Kripke made new sense of modal statements: “Kant might have been a bachelor”, “Königsberg is necessarily identical with Kaliningrad”. Many took the notions he introduced-metaphysical necessity and rigid designation -- to herald new metaphysical issues and have important consequences. In fact, the Kripkean insight is at bottom semantic, rather than metaphysical: it is part of how proper names work that they purport to refer to individuals to whom modal properties can be ascribed. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  39. Flexible intuitions of Euclidean geometry in an Amazonian indigene group.Pierre Pica, Véronique Izard, Elizabeth Spelke & Stanislas Dehaene - 2011 - Pnas 23.
    Kant argued that Euclidean geometry is synthesized on the basis of an a priori intuition of space. This proposal inspired much behavioral research probing whether spatial navigation in humans and animals conforms to the predictions of Euclidean geometry. However, Euclidean geometry also includes concepts that transcend the perceptible, such as objects that are infinitely small or infinitely large, or statements of necessity and impossibility. We tested the hypothesis that certain aspects of nonperceptible Euclidian geometry map onto (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  40. Analyticity and Ontology.Louis deRosset - 2015 - Oxford Studies in Metaphysics 9.
    /Analyticity theorists/, as I will call them, endorse the /doctrine of analyticity in ontology/: if some truth P analytically entails the existence of certain things, then a theory that contains P but does not claim that those things exist is no more ontologically parsimonious than a theory that also claims that they exist. Suppose, for instance, that the existence of a table in a certain location is analytically entailed by the existence and features of certain particles in that location. The (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  41. Affine geometry, visual sensation, and preference for symmetry of things in a thing.Birgitta Dresp-Langley - 2016 - Symmetry 127 (8).
    Evolution and geometry generate complexity in similar ways. Evolution drives natural selection while geometry may capture the logic of this selection and express it visually, in terms of specific generic properties representing some kind of advantage. Geometry is ideally suited for expressing the logic of evolutionary selection for symmetry, which is found in the shape curves of vein systems and other natural objects such as leaves, cell membranes, or tunnel systems built by ants. The topology and (...) of symmetry is controlled by numerical parameters, which act in analogy with a biological organism’s DNA. The introductory part of this paper reviews findings from experiments illustrating the critical role of two-dimensional (2D) design parameters, affine geometry and shape symmetry for visual or tactile shape sensation and perception-based decision making in populations of experts and non-experts. It will be shown that 2D fractal symmetry, referred to herein as the “symmetry of things in a thing”, results from principles very similar to those of affine projection. Results from experiments on aesthetic and visual preference judgments in response to 2D fractal trees with varying degrees of asymmetry are presented. In a first experiment (psychophysical scaling procedure), non-expert observers had to rate (on a scale from 0 to 10) the perceived beauty of a random series of 2D fractal trees with varying degrees of fractal symmetry. In a second experiment (two-alternative forced choice procedure), they had to express their preference for one of two shapes from the series. The shape pairs were presented successively in random order. Results show that the smallest possible fractal deviation from “symmetry of things in a thing” significantly reduces the perceived attractiveness of such shapes. The potential of future studies where different levels of complexity of fractal patterns are weighed against different degrees of symmetry is pointed out in the conclusion. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  42. Spinoza’s Geometry of Power.Valtteri Viljanen - 2011 - Cambridge: Cambridge University Press.
    This work examines the unique way in which Benedict de Spinoza combines two significant philosophical principles: that real existence requires causal power and that geometrical objects display exceptionally clearly how things have properties in virtue of their essences. Valtteri Viljanen argues that underlying Spinoza's psychology and ethics is a compelling metaphysical theory according to which each and every genuine thing is an entity of power endowed with an internal structure akin to that of geometrical objects. This allows Spinoza to offer (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  43. The analytical Thomism of the Cracow circle.Miroslav Vacura - 2011 - Filosoficky Casopis 59 (5):689-705.
    The traditional picture of the development of analytical philosophy, represented especially by such thinkers as G. Frege, G. E. Moore, B. Russell or R. Carnap, whose attitude was generally anti-metaphysical, can, on closer study, be shown to be incomplete. This article treats of the Cracow circle – a group of Polish philosophers among whom are, above all, to be counted J. Salamucha, J. M. Bocheński, J. F. Drewnowski, and B. Sobociński, who were, at the beginning of the twentieth century, fascinated (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Explaining the Geometry of Desert.Neil Feit & Stephen Kershnar - 2004 - Public Affairs Quarterly 18 (4):273-298.
    In the past decade, three philosophers in particular have recently explored the relation between desert and intrinsic value. Fred Feldman argues that consequentialism need not give much weight – or indeed any weight at all – to the happiness of persons who undeservedly experience pleasure. He defends the claim that the intrinsic value of a state of affairs is determined by the “fit” between the amount of well-being that a person receives and the amount of well-being that the person deserves. (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  45. Geometry for a Brain. Optimal Control in a Network of Adaptive Memristors.Ignazio Licata & Germano Resconi - 2013 - Adv. Studies Theor. Phys., (no.10):479-513.
    In the brain the relations between free neurons and the conditioned ones establish the constraints for the informational neural processes. These constraints reflect the systemenvironment state, i.e. the dynamics of homeocognitive activities. The constraints allow us to define the cost function in the phase space of free neurons so as to trace the trajectories of the possible configurations at minimal cost while respecting the constraints imposed. Since the space of the free states is a manifold or a non orthogonal space, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. The Conventional and the Analytic.Manuel García-Carpintero & Manuel Pérez Otero - 2009 - Philosophy and Phenomenological Research 78 (2):239-274.
    Empiricist philosophers like Carnap invoked analyticity in order to explain a priori knowledge and necessary truth. Analyticity was “truth purely in virtue of meaning”. The view had a deflationary motivation: in Carnap’s proposal, linguistic conventions alone determine the truth of analytic sentences, and thus there is no mystery in our knowing their truth a priori, or in their necessary truth; for they are, as it were, truths of our own making. Let us call this “Carnapian conventionalism”, conventionalismC and cognates (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  47. (1 other version)On Explanations from Geometry of Motion.Juha Saatsi - 2018 - British Journal for the Philosophy of Science 69 (1):253–273.
    This paper examines explanations that turn on non-local geometrical facts about the space of possible configurations a system can occupy. I argue that it makes sense to contrast such explanations from "geometry of motion" with causal explanations. I also explore how my analysis of these explanations cuts across the distinction between kinematics and dynamics.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  48. Analytic Metaphysics versus Naturalized Metaphysics: The Relevance of Applied Ontology.Baptiste Le Bihan & Adrien Barton - 2021 - Erkenntnis 86 (1):21-37.
    The relevance of analytic metaphysics has come under criticism: Ladyman & Ross, for instance, have suggested do discontinue the field. French & McKenzie have argued in defense of analytic metaphysics that it develops tools that could turn out to be useful for philosophy of physics. In this article, we show first that this heuristic defense of metaphysics can be extended to the scientific field of applied ontology, which uses constructs from analytic metaphysics. Second, we elaborate on a (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  49. Fundamental and Emergent Geometry in Newtonian Physics.David Wallace - 2020 - British Journal for the Philosophy of Science 71 (1):1-32.
    Using as a starting point recent and apparently incompatible conclusions by Saunders and Knox, I revisit the question of the correct spacetime setting for Newtonian physics. I argue that understood correctly, these two versions of Newtonian physics make the same claims both about the background geometry required to define the theory, and about the inertial structure of the theory. In doing so I illustrate and explore in detail the view—espoused by Knox, and also by Brown —that inertial structure is (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  50. Physical Geometry and Fundamental Metaphysics.Cian Dorr - 2011 - Proceedings of the Aristotelian Society 111 (1pt1):135-159.
    I explore some ways in which one might base an account of the fundamental metaphysics of geometry on the mathematical theory of Linear Structures recently developed by Tim Maudlin (2010). Having considered some of the challenges facing this approach, Idevelop an alternative approach, according to which the fundamental ontology includes concrete entities structurally isomorphic to functions from space-time points to real numbers.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 961