Results for 'Constructive mathematics, Problem-based organization, Intuitionist logic, Two fundamental dichotomies, Intuitionist arithmetic'

954 found
Order:
  1. A NEW PHILOSOPHICAL FOUNDATION OF CONSTRUCTIVE MATHEMATICS.Antonino Drago - manuscript
    The current definition of Constructive mathematics as “mathematics within intuitionist logic” ignores two fundamental issues. First, the kind of organization of the theory at issue. I show that intuitionist logic governs a problem-based organization, whose model is alternative to that of the deductive-axiomatic organization, governed by classical logic. Moreover, this dichotomy is independent of that of the kind of infinity, either potential or actual, to which respectively correspond constructive mathematical and classical mathematical tools. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Three Dogmas of First-Order Logic and some Evidence-based Consequences for Constructive Mathematics of differentiating between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism.Bhupinder Singh Anand - manuscript
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. From the History of Physics to the Discovery of the Foundations of Physics,.Antonino Drago - manuscript
    FROM THE HISTORY OF PHYSICS TO THE DISCOVERY OF THE FOUNDATIONS OF PHYSICS By Antonino Drago, formerly at Naples University “Federico II”, Italy – drago@unina,.it (Size : 391.800 bytes 75,400 words) The book summarizes a half a century author’s work on the foundations of physics. For the forst time is established a level of discourse on theoretical physics which at the same time is philosophical in nature (kinds of infinity, kinds of organization) and formal (kinds of mathematics, kinds of logic). (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Discrete and continuous: a fundamental dichotomy in mathematics.James Franklin - 2017 - Journal of Humanistic Mathematics 7 (2):355-378.
    The distinction between the discrete and the continuous lies at the heart of mathematics. Discrete mathematics (arithmetic, algebra, combinatorics, graph theory, cryptography, logic) has a set of concepts, techniques, and application areas largely distinct from continuous mathematics (traditional geometry, calculus, most of functional analysis, differential equations, topology). The interaction between the two – for example in computer models of continuous systems such as fluid flow – is a central issue in the applicable mathematics of the last hundred years. This (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  5. Hilbert Mathematics versus Gödel Mathematics. III. Hilbert Mathematics by Itself, and Gödel Mathematics versus the Physical World within It: both as Its Particular Cases.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (47):1-46.
    The paper discusses Hilbert mathematics, a kind of Pythagorean mathematics, to which the physical world is a particular case. The parameter of the “distance between finiteness and infinity” is crucial. Any nonzero finite value of it features the particular case in the frameworks of Hilbert mathematics where the physical world appears “ex nihilo” by virtue of an only mathematical necessity or quantum information conservation physically. One does not need the mythical Big Bang which serves to concentrate all the violations of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. (1 other version)The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences.Bhupinder Singh Anand - forthcoming
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Skolem’s “paradox” as logic of ground: The mutual foundation of both proper and improper interpretations.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (19):1-16.
    A principle, according to which any scientific theory can be mathematized, is investigated. That theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather a metamathematical axiom about the relation of mathematics and reality. Its investigation needs philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. All science as rigorous science: the principle of constructive mathematizability of any theory.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (12):1-15.
    A principle, according to which any scientific theory can be mathematized, is investigated. Social science, liberal arts, history, and philosophy are meant first of all. That kind of theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Set Theory INC# Based on Infinitary Intuitionistic Logic with Restricted Modus Ponens Rule (Part.II) Hyper inductive definitions.Jaykov Foukzon - 2021 - Journal of Advances in Mathematics and Computer Science 36 (4):22.
    In this paper intuitionistic set theory INC# in infinitary set theoretical language is considered. External induction principle in nonstandard intuitionistic arithmetic were derived. Non trivial application in number theory is considered.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  10. Towards a Theory of Computation similar to some other scientific theories.Antonino Drago - manuscript
    At first sight the Theory of Computation i) relies on a kind of mathematics based on the notion of potential infinity; ii) its theoretical organization is irreducible to an axiomatic one; rather it is organized in order to solve a problem: “What is a computation?”; iii) it makes essential use of doubly negated propositions of non-classical logic, in particular in the word expressions of the Church-Turing’s thesis; iv) its arguments include ad absurdum proofs. Under such aspects, it is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Buying Logical Principles with Ontological Coin: The Metaphysical Lessons of Adding epsilon to Intuitionistic Logic.David DeVidi & Corey Mulvihill - 2017 - IfCoLog Journal of Logics and Their Applications 4 (2):287-312.
    We discuss the philosophical implications of formal results showing the con- sequences of adding the epsilon operator to intuitionistic predicate logic. These results are related to Diaconescu’s theorem, a result originating in topos theory that, translated to constructive set theory, says that the axiom of choice (an “existence principle”) implies the law of excluded middle (which purports to be a logical principle). As a logical choice principle, epsilon allows us to translate that result to a logical setting, where one (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12.  87
    Why there can be no mathematical or meta-mathematical proof of consistency for ZF.Bhupinder Singh Anand - manuscript
    In the first part of this investigation we highlight two, seemingly irreconcilable, beliefs that suggest an impending crisis in the teaching, research, and practice of—primarily state-supported—mathematics: (a) the belief, with increasing, essentially faith-based, conviction and authority amongst academics that first-order Set Theory can be treated as the lingua franca of mathematics, since its theorems—even if unfalsifiable—can be treated as ‘knowledge’ because they are finite proof sequences which are entailed finitarily by self-evidently Justified True Beliefs; and (b) the slowly emerging, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Set Theory INC_{∞^{#}}^{#} Based on Infinitary Intuitionistic Logic with Restricted Modus Ponens Rule (Part III).Hyper inductive definitions. Application in transcendental number theory.Jaykov Foukzon - 2021 - Journal of Advances in Mathematics and Computer Science 36 (8):43.
    Main results are: (i) number e^{e} is transcendental; (ii) the both numbers e+π and e-π are irrational.
    Download  
     
    Export citation  
     
    Bookmark  
  14. Deleuze and the Mathematical Philosophy of Albert Lautman.Simon B. Duffy - 2009 - In Jon Roffe & Graham Jones (eds.), Deleuze’s Philosophical Lineage. Edinburgh University Press.
    In the chapter of Difference and Repetition entitled ‘Ideas and the synthesis of difference,’ Deleuze mobilizes mathematics to develop a ‘calculus of problems’ that is based on the mathematical philosophy of Albert Lautman. Deleuze explicates this process by referring to the operation of certain conceptual couples in the field of contemporary mathematics: most notably the continuous and the discontinuous, the infinite and the finite, and the global and the local. The two mathematical theories that Deleuze draws upon for this (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  15. Gentzen’s “cut rule” and quantum measurement in terms of Hilbert arithmetic. Metaphor and understanding modeled formally.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal 14 (14):1-37.
    Hilbert arithmetic in a wide sense, including Hilbert arithmetic in a narrow sense consisting by two dual and anti-isometric Peano arithmetics, on the one hand, and the qubit Hilbert space (originating for the standard separable complex Hilbert space of quantum mechanics), on the other hand, allows for an arithmetic version of Gentzen’s cut elimination and quantum measurement to be described uniformy as two processes occurring accordingly in those two branches. A philosophical reflection also justifying that unity by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. THE HISTORICAL SYNTAX OF PHILOSOPHICAL LOGIC.Yaroslav Hnatiuk - 2022 - European Philosophical and Historical Discourse 8 (1):78-87.
    This article analyzes the historical development of the philosophical logic syntax from the standpoint of the unity of historical and logical methods. According to this perspective, there are three types of logical syntax: the elementary subject-predicate, the modified definitivespecificative, and the standard propositional-functional. These types are generalized in the grammatical and mathematical styles of logical syntax. The main attention is paid to two scientific revolutions in elementary subject-predicate syntax, which led to the emergence of modified definitive-specific and standard propositional-functional syntaxes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Hilbert's Metamathematical Problems and Their Solutions.Besim Karakadilar - 2008 - Dissertation, Boston University
    This dissertation examines several of the problems that Hilbert discovered in the foundations of mathematics, from a metalogical perspective. The problems manifest themselves in four different aspects of Hilbert’s views: (i) Hilbert’s axiomatic approach to the foundations of mathematics; (ii) His response to criticisms of set theory; (iii) His response to intuitionist criticisms of classical mathematics; (iv) Hilbert’s contribution to the specification of the role of logical inference in mathematical reasoning. This dissertation argues that Hilbert’s axiomatic approach was guided (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Truth, Proof and Gödelian Arguments: A Defence of Tarskian Truth in Mathematics.Markus Pantsar - 2009 - Dissertation, University of Helsinki
    One of the most fundamental questions in the philosophy of mathematics concerns the relation between truth and formal proof. The position according to which the two concepts are the same is called deflationism, and the opposing viewpoint substantialism. In an important result of mathematical logic, Kurt Gödel proved in his first incompleteness theorem that all consistent formal systems containing arithmetic include sentences that can neither be proved nor disproved within that system. However, such undecidable Gödel sentences can be (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  19. Fermat’s last theorem proved in Hilbert arithmetic. III. The quantum-information unification of Fermat’s last theorem and Gleason’s theorem.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (12):1-30.
    The previous two parts of the paper demonstrate that the interpretation of Fermat’s last theorem (FLT) in Hilbert arithmetic meant both in a narrow sense and in a wide sense can suggest a proof by induction in Part I and by means of the Kochen - Specker theorem in Part II. The same interpretation can serve also for a proof FLT based on Gleason’s theorem and partly similar to that in Part II. The concept of (probabilistic) measure of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Advancing Uncertain Combinatorics through Graphization, Hyperization, and Uncertainization: Fuzzy, Neutrosophic, Soft, Rough, and Beyond. Second volume.Takaaki Fujita & Florentin Smarandache - 2024
    The second volume of “Advancing Uncertain Combinatorics through Graphization, Hyperization, and Uncertainization: Fuzzy, Neutrosophic, Soft, Rough, and Beyond” presents a deep exploration of the progress in uncertain combinatorics through innovative methodologies like graphization, hyperization, and uncertainization. This volume integrates foundational concepts from fuzzy, neutrosophic, soft, and rough set theory, among others, to further advance the field. Combinatorics and set theory, two central pillars of mathematics, focus on counting, arrangement, and the study of collections under defined rules. Combinatorics excels in handling (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Causally Complete Science for the Reason-Based Society.Andrei P. Kirilyuk - 2023 - Fqxi Essay Contest - Spring, 2023: How Could Science Be Different?.
    Modern fundamental science tends to avoid the principle of physical causality and realism, replacing it with heuristically postulated and separated mathematical constructions that impose their own rules before being adjusted to measurement results. While it is officially accepted as the single possible kind of rigorous knowledge, we argue that another, explicitly extended kind of science can provide the causally complete picture of reality avoiding the glaring gaps, growing problems and persisting stagnation of the artificially reduced knowledge paradigm. The logic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Logicism, Interpretability, and Knowledge of Arithmetic.Sean Walsh - 2014 - Review of Symbolic Logic 7 (1):84-119.
    A crucial part of the contemporary interest in logicism in the philosophy of mathematics resides in its idea that arithmetical knowledge may be based on logical knowledge. Here an implementation of this idea is considered that holds that knowledge of arithmetical principles may be based on two things: (i) knowledge of logical principles and (ii) knowledge that the arithmetical principles are representable in the logical principles. The notions of representation considered here are related to theory-based and structure- (...) notions of representation from contemporary mathematical logic. It is argued that the theory-based versions of such logicism are either too liberal (the plethora problem) or are committed to intuitively incorrect closure conditions (the consistency problem). Structure-based versions must on the other hand respond to a charge of begging the question (the circularity problem) or explain how one may have a knowledge of structure in advance of a knowledge of axioms (the signature problem). This discussion is significant because it gives us a better idea of what a notion of representation must look like if it is to aid in realizing some of the traditional epistemic aims of logicism in the philosophy of mathematics. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  23. Defining a General Structure of Four Inferential Processes by Means of Four Pairs of Choices Concerning Two Basic Dichotomies.Antonino Drago - 2019 - In Matthieu Fontaine, Cristina Barés-Gómez, Francisco Salguero-Lamillar, Lorenzo Magnani & Ángel Nepomuceno-Fernández (eds.), Model-Based Reasoning in Science and Technology: Inferential Models for Logic, Language, Cognition and Computation. Springer Verlag. pp. 298-317.
    In previous papers I have characterized four ways of reasoning in Peirce’s philosophy, and four ways of reasoning in Computability Theory. I have established their correspondence on the basis of the four pairs of choices regarding two dichotomies, respectively the dichotomy between two kinds of Mathematics and the dichotomy between two kinds of Logic. In the present paper I introduce four principles of reasoning in theoretical Physics and I interpret also them by means of the four pairs of choices regarding (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. The commonly ignored aspects of the history of symmetries. Their link with intuitionist logic.Antonino Drago - manuscript
    The obscure and punctuated history of symmetry is compared with the history of the celebrated and exalting notion of infinitesimal; some considerations about them are derived. A long list of odd and hidden events concerning symmetry in theoretical physics is offered. The last event is the discovery of the nature of the same word “symmetry” which pertains to non-classical logic, and it is linked to the principle of sufficient reason. A comparison of the roles played by the two mathematical techniques (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. CRITIQUE OF IMPURE REASON: Horizons of Possibility and Meaning.Steven James Bartlett - 2021 - Salem, USA: Studies in Theory and Behavior.
    PLEASE NOTE: This is the corrected 2nd eBook edition, 2021. ●●●●● _Critique of Impure Reason_ has now also been published in a printed edition. To reduce the otherwise high price of this scholarly, technical book of nearly 900 pages and make it more widely available beyond university libraries to individual readers, the non-profit publisher and the author have agreed to issue the printed edition at cost. ●●●●● The printed edition was released on September 1, 2021 and is now available through (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  26. Hilbert Mathematics Versus Gödel Mathematics. IV. The New Approach of Hilbert Mathematics Easily Resolving the Most Difficult Problems of Gödel Mathematics.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (75):1-52.
    The paper continues the consideration of Hilbert mathematics to mathematics itself as an additional “dimension” allowing for the most difficult and fundamental problems to be attacked in a new general and universal way shareable between all of them. That dimension consists in the parameter of the “distance between finiteness and infinity”, particularly able to interpret standard mathematics as a particular case, the basis of which are arithmetic, set theory and propositional logic: that is as a special “flat” case (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Co-constructive logic for proofs and refutations.James Trafford - 2014 - Studia Humana 3 (4):22-40.
    This paper considers logics which are formally dual to intuitionistic logic in order to investigate a co-constructive logic for proofs and refutations. This is philosophically motivated by a set of problems regarding the nature of constructive truth, and its relation to falsity. It is well known both that intuitionism can not deal constructively with negative information, and that defining falsity by means of intuitionistic negation leads, under widely-held assumptions, to a justification of bivalence. For example, we do not (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  28. Probability Guide to Gambling: The Mathematics of Dice, Slots, Roulette, Baccarat, Blackjack, Poker, Lottery and Sport Bets.Catalin Barboianu - 2006 - Craiova, Romania: Infarom.
    Over the past two decades, gamblers have begun taking mathematics into account more seriously than ever before. While probability theory is the only rigorous theory modeling the uncertainty, even though in idealized conditions, numerical probabilities are viewed not only as mere mathematical information, but also as a decision-making criterion, especially in gambling. This book presents the mathematics underlying the major games of chance and provides a precise account of the odds associated with all gaming events. It begins by explaining in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Sztuka a prawda. Problem sztuki w dyskusji między Gorgiaszem a Platonem (Techne and Truth. The problem of techne in the dispute between Gorgias and Plato).Zbigniew Nerczuk - 2002 - Wydawnictwo Uniwersytetu Wrocławskiego.
    Techne and Truth. The problem of techne in the dispute between Gorgias and Plato -/- The source of the problem matter of the book is the Plato’s dialogue „Gorgias”. One of the main subjects of the discussion carried out in this multi-aspect work is the issue of the art of rhetoric. In the dialogue the contemporary form of the art of rhetoric, represented by Gorgias, Polos and Callicles, is confronted with Plato’s proposal of rhetoric and concept of art (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30.  54
    The Nuances of Deprogramming Zeros.Parker Emmerson - 2024 - Journal of Liberated Mathematics.
    Description In this paper, we propose an advanced mathematical framework centered around the Energy Number Field (E), which fundamentally avoids the conventional concept of zero by introducing a neutral ele- ment, νE. Through this approach, we redefine core mathematical constructs, including limits, continuity, differentiation, integration, and series summation, ensuring they operate seamlessly within a zero-less paradigm. We address and redefine matrix operations, topology, metric spaces, and complex analysis, aligning them with the principles of E. Additionally, we explore non-mappable properties of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. The Relationship of Arithmetic As Two Twin Peano Arithmetic(s) and Set Theory: A New Glance From the Theory of Information.Vasil Penchev - 2020 - Metaphilosophy eJournal (Elseviers: SSRN) 12 (10):1-33.
    The paper introduces and utilizes a few new concepts: “nonstandard Peano arithmetic”, “complementary Peano arithmetic”, “Hilbert arithmetic”. They identify the foundations of both mathematics and physics demonstrating the equivalence of the newly introduced Hilbert arithmetic and the separable complex Hilbert space of quantum mechanics in turn underlying physics and all the world. That new both mathematical and physical ground can be recognized as information complemented and generalized by quantum information. A few fundamental mathematical problems of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. The entanglement of logic and set theory, constructively.Laura Crosilla - 2022 - Inquiry: An Interdisciplinary Journal of Philosophy 65 (6).
    ABSTRACT Theories of sets such as Zermelo Fraenkel set theory are usually presented as the combination of two distinct kinds of principles: logical and set-theoretic principles. The set-theoretic principles are imposed ‘on top’ of first-order logic. This is in agreement with a traditional view of logic as universally applicable and topic neutral. Such a view of logic has been rejected by the intuitionists, on the ground that quantification over infinite domains requires the use of intuitionistic rather than classical logic. In (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  33. Non-Constructive Procedural Theory of Propositional Problems and the Equivalence of Solutions.Ivo Pezlar - 2019 - In Igor Sedlár & Martin Blicha (eds.), The Logica Yearbook 2018. College Publications. pp. 197-210.
    We approach the topic of solution equivalence of propositional problems from the perspective of non-constructive procedural theory of problems based on Transparent Intensional Logic (TIL). The answer we put forward is that two solutions are equivalent if and only if they have equivalent solution concepts. Solution concepts can be understood as a generalization of the notion of proof objects from the Curry-Howard isomorphism.
    Download  
     
    Export citation  
     
    Bookmark  
  34. Color may be the phenomenal dual aspect of two-state quantum systems in a mixed state.Tal Hendel - manuscript
    Panmicropsychism is the view that the fundamental physical ingredients of our universe are also its fundamental phenomenal ingredients. Since there is only a limited number of fundamental physical ingredients, panmicropsychism seems to imply that there exists only a small set (palette) of basic phenomenal qualities. How does this limited palette of basic phenomenal qualities give rise to our rich set of experiences? This is known as ‘the palette problem’. One class of solutions to this problem, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Bishop's Mathematics: a Philosophical Perspective.Laura Crosilla - forthcoming - In Handbook of Bishop's Mathematics. CUP.
    Errett Bishop's work in constructive mathematics is overwhelmingly regarded as a turning point for mathematics based on intuitionistic logic. It brought new life to this form of mathematics and prompted the development of new areas of research that witness today's depth and breadth of constructive mathematics. Surprisingly, notwithstanding the extensive mathematical progress since the publication in 1967 of Errett Bishop's Foundations of Constructive Analysis, there has been no corresponding advances in the philosophy of constructive mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Hilbert mathematics versus (or rather “without”) Gödel mathematics: V. Ontomathematics!Vasil Penchev - 2024 - Metaphysics eJournal (Elsevier: SSRN) 17 (10):1-57.
    The paper is the final, fifth part of a series of studies introducing the new conceptions of “Hilbert mathematics” and “ontomathematics”. The specific subject of the present investigation is the proper philosophical sense of both, including philosophy of mathematics and philosophy of physics not less than the traditional “first philosophy” (as far as ontomathematics is a conservative generalization of ontology as well as of Heidegger’s “fundamental ontology” though in a sense) and history of philosophy (deepening Heidegger’s destruction of it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. A Mathematical Model of Quantum Computer by Both Arithmetic and Set Theory.Vasil Penchev - 2020 - Information Theory and Research eJournal 1 (15):1-13.
    A practical viewpoint links reality, representation, and language to calculation by the concept of Turing (1936) machine being the mathematical model of our computers. After the Gödel incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness to be suggested for two ones. That is consistent with the provability of completeness by means of two independent Peano arithmetics discussed in Section (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Set Theory INC# Based on Intuitionistic Logic with Restricted Modus Ponens Rule (Part. I).Jaykov Foukzon - 2021 - Journal of Advances in Mathematics and Computer Science 36 (2):73-88.
    In this article Russell’s paradox and Cantor’s paradox resolved successfully using intuitionistic logic with restricted modus ponens rule.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  39. Statements and open problems on decidable sets X⊆N that contain informal notions and refer to the current knowledge on X.Apoloniusz Tyszka - 2022 - Journal of Applied Computer Science and Mathematics 16 (2):31-35.
    Let f(1)=2, f(2)=4, and let f(n+1)=f(n)! for every integer n≥2. Edmund Landau's conjecture states that the set P(n^2+1) of primes of the form n^2+1 is infinite. Landau's conjecture implies the following unproven statement Φ: card(P(n^2+1))<ω ⇒ P(n^2+1)⊆[2,f(7)]. Let B denote the system of equations: {x_j!=x_k: i,k∈{1,...,9}}∪{x_i⋅x_j=x_k: i,j,k∈{1,...,9}}. The system of equations {x_1!=x_1, x_1 \cdot x_1=x_2, x_2!=x_3, x_3!=x_4, x_4!=x_5, x_5!=x_6, x_6!=x_7, x_7!=x_8, x_8!=x_9} has exactly two solutions in positive integers x_1,...,x_9, namely (1,...,1) and (f(1),...,f(9)). No known system S⊆B with a finite (...)
    Download  
     
    Export citation  
     
    Bookmark  
  40. Kuznetsov V. From studying theoretical physics to philosophical modeling scientific theories: Under influence of Pavel Kopnin and his school.Volodymyr Kuznetsov - 2017 - ФІЛОСОФСЬКІ ДІАЛОГИ’2016 ІСТОРІЯ ТА СУЧАСНІСТЬ У НАУКОВИХ РОЗМИСЛАХ ІНСТИТУТУ ФІЛОСОФІЇ 11:62-92.
    The paper explicates the stages of the author’s philosophical evolution in the light of Kopnin’s ideas and heritage. Starting from Kopnin’s understanding of dialectical materialism, the author has stated that category transformations of physics has opened from conceptualization of immutability to mutability and then to interaction, evolvement and emergence. He has connected the problem of physical cognition universals with an elaboration of the specific system of tools and methods of identifying, individuating and distinguishing objects from a scientific theory domain. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41.  81
    Intuitionism, Justification Logic, and Doxastic Reasoning.Vincent Alexis Peluce - 2024 - Dissertation, The Graduate Center, City University of New York
    In this Dissertation, we examine a handful of related themes in the philosophy of logic and mathematics. We take as a starting point the deeply philosophical, and—as we argue, deeply Kantian—views of L.E.J. Brouwer, the founder of intuitionism. We examine his famous first act of intuitionism. Therein, he put forth both a critical and a constructive idea. This critical idea involved digging a philosophical rift between what he thought of himself as doing and what he thought of his contemporaries, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Molecularity in the Theory of Meaning and the Topic Neutrality of Logic.Bernhard Weiss & Nils Kürbis - 2024 - In Antonio Piccolomini D'Aragona (ed.), Perspectives on Deduction: Contemporary Studies in the Philosophy, History and Formal Theories of Deduction. Springer Verlag. pp. 187-209.
    Without directly addressing the Demarcation Problem for logic—the problem of distinguishing logical vocabulary from others—we focus on distinctive aspects of logical vocabulary in pursuit of a second goal in the philosophy of logic, namely, proposing criteria for the justification of logical rules. Our preferred approach has three components. Two of these are effectively Belnap’s, but with a twist. We agree with Belnap’s response to Prior’s challenge to inferentialist characterisations of the meanings of logical constants. Belnap argued that for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Many-valued logics. A mathematical and computational introduction.Luis M. Augusto - 2020 - London: College Publications.
    2nd edition. Many-valued logics are those logics that have more than the two classical truth values, to wit, true and false; in fact, they can have from three to infinitely many truth values. This property, together with truth-functionality, provides a powerful formalism to reason in settings where classical logic—as well as other non-classical logics—is of no avail. Indeed, originally motivated by philosophical concerns, these logics soon proved relevant for a plethora of applications ranging from switching theory to cognitive modeling, and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  44. Logiczne podstawy ontologii składni języka.Urszula Wybraniec-Skardowska - 1988 - Studia Filozoficzne 271 (6-7):263-284.
    By logical foundations of language syntax ontology we understand here the construction of formalized linguistic theories based on widely conceived mathematical logic and dependent on two trends in language ontology. The formalization includes exclusively the syntactic aspect of logical analysis of language characterized categorially according to Ajdukiewicz's approach [1935, 1960]. Any categorial language L is characterized formally on two levels: on one of them it concerns the language of expression-tokens, on the other one - that of expression-types. Accepting the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  45. “Fuzzy time”, a Solution of Unexpected Hanging Paradox (a Fuzzy interpretation of Quantum Mechanics).Farzad Didehvar - manuscript
    Although Fuzzy logic and Fuzzy Mathematics is a widespread subject and there is a vast literature about it, yet the use of Fuzzy issues like Fuzzy sets and Fuzzy numbers was relatively rare in time concept. This could be seen in the Fuzzy time series. In addition, some attempts are done in fuzzing Turing Machines but seemingly there is no need to fuzzy time. Throughout this article, we try to change this picture and show why it is helpful to consider (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  46. Logical Omnipotence and Two notions of Implicit Belief.Danilo Fraga Dantas - 2019 - In Tiegue Vieira Rodrigues (ed.), Epistemologia Analítica: Debates Contemporâneos. Porto Alegre: Editora Fi. pp. 29-46.
    The most widespread models of rational reasoners (the model based on modal epistemic logic and the model based on probability theory) exhibit the problem of logical omniscience. The most common strategy for avoiding this problem is to interpret the models as describing the explicit beliefs of an ideal reasoner, but only the implicit beliefs of a real reasoner. I argue that this strategy faces serious normative issues. In this paper, I present the more fundamental (...) of logical omnipotence, which highlights the normative content of the problem of logical omniscience. I introduce two developments of the notion of implicit belief (accessible and stable belief ) and use them in two versions of the most common strategy applied to the problem of logical omnipotence. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Logic. of Descriptions. A New Approach to the Foundations of Mathematics and Science.Joanna Golińska-Pilarek & Taneli Huuskonen - 2012 - Studies in Logic, Grammar and Rhetoric 27 (40):63-94.
    We study a new formal logic LD introduced by Prof. Grzegorczyk. The logic is based on so-called descriptive equivalence, corresponding to the idea of shared meaning rather than shared truth value. We construct a semantics for LD based on a new type of algebras and prove its soundness and completeness. We further show several examples of classical laws that hold for LD as well as laws that fail. Finally, we list a number of open problems. -/- .
    Download  
     
    Export citation  
     
    Bookmark  
  48. HEGEL's PHILOSOPHY OF LOGIC AS A RECKLESS PROLONGATION OF CUSANUS’ LOGICAL DISCOVERIES.Antonino Drago - manuscript
    I take advantage of two recent results: 1) the recognition of an alternative theoretical organization to the deductive-axiomatic one; it is characterized by a sequence of four logical steps belonging to intuitionist logic; 2) the recognition of the logical content of Cusanus’ philosophical works; also this content pertains to intuitionist logic, which Cusanus anticipated by even identifying some its logical laws. Many Cusanus’ books present the alternative theoretical organization; whose yet he did not apply in a clear way (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Conceptions of truth in intuitionism.Panu Raatikainen - 2004 - History and Philosophy of Logic 25 (2):131--45.
    Intuitionism’s disagreement with classical logic is standardly based on its specific understanding of truth. But different intuitionists have actually explicated the notion of truth in fundamentally different ways. These are considered systematically and separately, and evaluated critically. It is argued that each account faces difficult problems. They all either have implausible consequences or are viciously circular.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  50. Brouwer's Intuition of Twoity and Constructions in Separable Mathematics.Bruno Bentzen - 2023 - History and Philosophy of Logic 45 (3):341-361.
    My first aim in this paper is to use time diagrams in the style of Brentano to analyze constructions in Brouwer's separable mathematics more precisely. I argue that constructions must involve not only pairing and projecting as basic operations guaranteed by the intuition of twoity, as sometimes assumed in the literature, but also a recalling operation. My second aim is to argue that Brouwer's views on the intuition of twoity and arithmetic lead to an ontological explosion. Redeveloping the constructions (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
1 — 50 / 954