Results for 'algebra of logic'

963 found
Order:
  1. Non-deterministic algebraization of logics by swap structures1.Marcelo E. Coniglio, Aldo Figallo-Orellano & Ana Claudia Golzio - 2020 - Logic Journal of the IGPL 28 (5):1021-1059.
    Multialgebras have been much studied in mathematics and in computer science. In 2016 Carnielli and Coniglio introduced a class of multialgebras called swap structures, as a semantic framework for dealing with several Logics of Formal Inconsistency that cannot be semantically characterized by a single finite matrix. In particular, these LFIs are not algebraizable by the standard tools of abstract algebraic logic. In this paper, the first steps towards a theory of non-deterministic algebraization of logics by swap structures are given. (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  2. Heinrich Behmann’s 1921 lecture on the decision problem and the algebra of logic.Paolo Mancosu & Richard Zach - 2015 - Bulletin of Symbolic Logic 21 (2):164-187.
    Heinrich Behmann (1891-1970) obtained his Habilitation under David Hilbert in Göttingen in 1921 with a thesis on the decision problem. In his thesis, he solved - independently of Löwenheim and Skolem's earlier work - the decision problem for monadic second-order logic in a framework that combined elements of the algebra of logic and the newer axiomatic approach to logic then being developed in Göttingen. In a talk given in 1921, he outlined this solution, but also presented (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  3. Non-deterministic algebras and algebraization of logics.Ana Claudia Golzio & Marcelo E. Coniglio - 2015 - Filosofia da Linguagem E da Lógica (Philosophy of Language and Philosophy of Logic, in Portuguese).
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4.  85
    The Algebras of Lewis Counterfactuals.Giuliano Rosella & Sara Ugolini - manuscript
    The logico-algebraic study of Lewis's hierarchy of variably strict conditional logics has been essentially unexplored, hindering our understanding of their mathematical foundations, and the connections with other logical systems. This work aims to fill this gap by providing a comprehensive logico-algebraic analysis of Lewis's logics. We begin by introducing novel finite axiomatizations for varying strengths of Lewis's logics, distinguishing between global and local consequence relations on Lewisian sphere models. We then demonstrate that the global consequence relation is strongly algebraizable in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Logics of Formal Inconsistency Enriched with Replacement: An Algebraic and Modal Account.Walter Carnielli, Marcelo E. Coniglio & David Fuenmayor - 2022 - Review of Symbolic Logic 15 (3):771-806.
    One of the most expected properties of a logical system is that it can be algebraizable, in the sense that an algebraic counterpart of the deductive machinery could be found. Since the inception of da Costa's paraconsistent calculi, an algebraic equivalent for such systems have been searched. It is known that these systems are non self-extensional (i.e., they do not satisfy the replacement property). More than this, they are not algebraizable in the sense of Blok-Pigozzi. The same negative results hold (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  6. An Algebraic View of Super-Belnap Logics.Hugo Albuquerque, Adam Přenosil & Umberto Rivieccio - 2017 - Studia Logica 105 (6):1051-1086.
    The Belnap–Dunn logic is a well-known and well-studied four-valued logic, but until recently little has been known about its extensions, i.e. stronger logics in the same language, called super-Belnap logics here. We give an overview of several results on these logics which have been proved in recent works by Přenosil and Rivieccio. We present Hilbert-style axiomatizations, describe reduced matrix models, and give a description of the lattice of super-Belnap logics and its connections with graph theory. We adopt the (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  7. ALGEBRA OF FUNDAMENTAL MEASUREMENTS AS A BASIS OF DYNAMICS OF ECONOMIC SYSTEMS.Sergiy Melnyk - 2012 - arXiv.
    We propose an axiomatic approach to constructing the dynamics of systems, in which one the main elements 9e8 is the consciousness of a subject. The main axiom is the statements that the state of consciousness is completely determined by the results of measurements performed on it. In case of economic systems we propose to consider an offer of transaction as a fundamental measurement. Transactions with delayed choice, discussed in this paper, represent a logical generalization of incomplete transactions and allow for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. The Basic Algebra of Game Equivalences.Valentin Goranko - 2003 - Studia Logica 75 (2):221-238.
    We give a complete axiomatization of the identities of the basic game algebra valid with respect to the abstract game board semantics. We also show that the additional conditions of termination and determinacy of game boards do not introduce new valid identities.En route we introduce a simple translation of game terms into plain modal logic and thus translate, while preserving validity both ways, game identities into modal formulae.The completeness proof is based on reduction of game terms to a (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  9. On graph-theoretic fibring of logics.A. Sernadas, C. Sernadas, J. Rasga & M. Coniglio - 2009 - Journal of Logic and Computation 19 (6):1321-1357.
    A graph-theoretic account of fibring of logics is developed, capitalizing on the interleaving characteristics of fibring at the linguistic, semantic and proof levels. Fibring of two signatures is seen as a multi-graph (m-graph) where the nodes and the m-edges include the sorts and the constructors of the signatures at hand. Fibring of two models is a multi-graph (m-graph) where the nodes and the m-edges are the values and the operations in the models, respectively. Fibring of two deductive systems is an (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  10. A graph-theoretic account of logics.A. Sernadas, C. Sernadas, J. Rasga & Marcelo E. Coniglio - 2009 - Journal of Logic and Computation 19 (6):1281-1320.
    A graph-theoretic account of logics is explored based on the general notion of m-graph (that is, a graph where each edge can have a finite sequence of nodes as source). Signatures, interpretation structures and deduction systems are seen as m-graphs. After defining a category freely generated by a m-graph, formulas and expressions in general can be seen as morphisms. Moreover, derivations involving rule instantiation are also morphisms. Soundness and completeness theorems are proved. As a consequence of the generality of the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  11. Level Theory, Part 3: A Boolean Algebra of Sets Arranged in Well-Ordered Levels.Tim Button - 2022 - Bulletin of Symbolic Logic 28 (1):1-26.
    On a very natural conception of sets, every set has an absolute complement. The ordinary cumulative hierarchy dismisses this idea outright. But we can rectify this, whilst retaining classical logic. Indeed, we can develop a boolean algebra of sets arranged in well-ordered levels. I show this by presenting Boolean Level Theory, which fuses ordinary Level Theory (from Part 1) with ideas due to Thomas Forster, Alonzo Church, and Urs Oswald. BLT neatly implement Conway’s games and surreal numbers; and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  12. (1 other version)Modal Logic and Universal Algebra I: Modal Axiomatizations of Structures.Valentin Goranko & Dimiter Vakarelov - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 265-292.
    We study the general problem of axiomatizing structures in the framework of modal logic and present a uniform method for complete axiomatization of the modal logics determined by a large family of classes of structures of any signature.
    Download  
     
    Export citation  
     
    Bookmark  
  13. Deontic Logics based on Boolean Algebra.Pablo F. Castro & Piotr Kulicki - 2013 - In Robert Trypuz (ed.), Krister Segerberg on Logic of Actions. Dordrecht, Netherland: Springer Verlag.
    Deontic logic is devoted to the study of logical properties of normative predicates such as permission, obligation and prohibition. Since it is usual to apply these predicates to actions, many deontic logicians have proposed formalisms where actions and action combinators are present. Some standard action combinators are action conjunction, choice between actions and not doing a given action. These combinators resemble boolean operators, and therefore the theory of boolean algebra offers a well-known athematical framework to study the properties (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  14. Hyperboolean Algebras and Hyperboolean Modal Logic.Valentin Goranko & Dimiter Vakarelov - 1999 - Journal of Applied Non-Classical Logics 9 (2):345-368.
    Hyperboolean algebras are Boolean algebras with operators, constructed as algebras of complexes (or, power structures) of Boolean algebras. They provide an algebraic semantics for a modal logic (called here a {\em hyperboolean modal logic}) with a Kripke semantics accordingly based on frames in which the worlds are elements of Boolean algebras and the relations correspond to the Boolean operations. We introduce the hyperboolean modal logic, give a complete axiomatization of it, and show that it lacks the finite (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  15. G'3 as the logic of modal 3-valued Heyting algebras.Marcelo E. Coniglio, Aldo Figallo-Orellano, Alejandro Hernández-Tello & Miguel Perez-Gaspar - 2022 - IfCoLog Journal of Logics and Their Applications 9 (1):175-197.
    In 2001, W. Carnielli and Marcos considered a 3-valued logic in order to prove that the schema ϕ ∨ (ϕ → ψ) is not a theorem of da Costa’s logic Cω. In 2006, this logic was studied (and baptized) as G'3 by Osorio et al. as a tool to define semantics of logic programming. It is known that the truth-tables of G'3 have the same expressive power than the one of Łukasiewicz 3-valued logic as well (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Laws of Thought and Laws of Logic after Kant.Lydia Patton - 2018 - In Sandra Lapointe (ed.), Logic from Kant to Russell. New York: Routledge. pp. 123-137.
    George Boole emerged from the British tradition of the “New Analytic”, known for the view that the laws of logic are laws of thought. Logicians in the New Analytic tradition were influenced by the work of Immanuel Kant, and by the German logicians Wilhelm Traugott Krug and Wilhelm Esser, among others. In his 1854 work An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities, Boole argues that the laws of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Finite axiomatizability of logics of distributive lattices with negation.Sérgio Marcelino & Umberto Rivieccio - forthcoming - Logic Journal of the IGPL.
    This paper focuses on order-preserving logics defined from varieties of distributive lattices with negation, and in particular on the problem of whether these can be axiomatized by means Hilbert-style calculi that are finite. On the negative side, we provide a syntactic condition on the equational presentation of a variety that entails failure of finite axiomatizability for the corresponding logic. An application of this result is that the logic of all distributive lattices with negation is not finitely axiomatizable; we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Gödel Mathematics Versus Hilbert Mathematics. II Logicism and Hilbert Mathematics, the Identification of Logic and Set Theory, and Gödel’s 'Completeness Paper' (1930).Vasil Penchev - 2023 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 15 (1):1-61.
    The previous Part I of the paper discusses the option of the Gödel incompleteness statement (1931: whether “Satz VI” or “Satz X”) to be an axiom due to the pair of the axiom of induction in arithmetic and the axiom of infinity in set theory after interpreting them as logical negations to each other. The present Part II considers the previous Gödel’s paper (1930) (and more precisely, the negation of “Satz VII”, or “the completeness theorem”) as a necessary condition for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19.  2
    On the Gettier Problem for Topological Logic of Knowledge and Belief.Thomas Mormann - manuscript
    Abstract. Gettier’s famous examples intended to show that knowledge cannot always be equated with justified true belief. The Gettier problem can also be considered as a problem for topological epistemic logic: If knowledge and justified belief are conceived as topological operators K and B on topological spaces (to be considered as universes of possible worlds), one may ask whether it happens that there is a proposition A such that KA ≠ A & BA or not. If this is the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Logical reduction of relations: From relational databases to Peirce’s reduction thesis.Sergiy Koshkin - 2023 - Logic Journal of the IGPL 31 (5):779-809.
    We study logical reduction (factorization) of relations into relations of lower arity by Boolean or relative products that come from applying conjunctions and existential quantifiers to predicates, i.e. by primitive positive formulas of predicate calculus. Our algebraic framework unifies natural joins and data dependencies of database theory and relational algebra of clone theory with the bond algebra of C.S. Peirce. We also offer new constructions of reductions, systematically study irreducible relations and reductions to them and introduce a new (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21.  61
    The Book of Phenomenological Velocity: Algebraic Techniques for Gestalt Cosmology, Transcendental Relativity and Quantum Mechanics.Parker Emmerson - 2024 - Journal of Liberated Mathematics 1:380.
    If you have enjoyed any of the 7 (seven) other books I have published over 20 years, including literally thousands of pages of mathematical and topological concepts, Python programs and conceptually expanding papers, please consider buying this book for $20.00 on google play books. -/- Introduction: -/- Though the following pages provide extensive exposition and dedicated descriptions of the phenomenological velocity formulas, theory and mystery, I thought it appropriate to write this introduction as a partial explanation for what phenomenal velocity (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. The development of mathematical logic from Russell to Tarski, 1900-1935.Paolo Mancosu, Richard Zach & Calixto Badesa - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press.
    The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  23. (2 other versions)On the logical origins of quantum mechanics demonstrated by using Clifford algebra.Elio Conte - 2011 - Electronic Journal of Theoretical Physics 8 (25):109-126.
    We review a rough scheme of quantum mechanics using the Clifford algebra. Following the steps previously published in a paper by another author [31], we demonstrate that quantum interference arises in a Clifford algebraic formulation of quantum mechanics. In 1932 J. von Neumann showed that projection operators and, in particular, quantum density matrices can be interpreted as logical statements. In accord with a previously obtained result by V. F Orlov , in this paper we invert von Neumann’s result. Instead (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. McKinsey Algebras and Topological Models of S4.1.Thomas Mormann - manuscript
    The aim of this paper is to show that every topological space gives rise to a wealth of topological models of the modal logic S4.1. The construction of these models is based on the fact that every space defines a Boolean closure algebra (to be called a McKinsey algebra) that neatly reflects the structure of the modal system S4.1. It is shown that the class of topological models based on McKinsey algebras contains a canonical model that can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. New Logic and the Seeds of Analytic Philosophy.Kevin C. Klement - 2019 - In John Shand (ed.), A Companion to Nineteenth Century Philosophy (Blackwell Companions to Philosophy). Hoboken: Wiley-Blackwell. pp. 454–479.
    Analytic philosophy has been perhaps the most successful philosophical movement of the twentieth century. While there is no one doctrine that defines it, one of the most salient features of analytic philosophy is its reliance on contemporary logic, the logic that had its origin in the works of George Boole and Gottlob Frege and others in the mid‐to‐late nineteenth century. Boolean algebra, the heart of Boole's contributions to logic, has also come to represent a cornerstone of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  26.  79
    Proofs of valid categorical syllogisms in one diagrammatic and two symbolic axiomatic systems.Antonielly Garcia Rodrigues & Eduardo Mario Dias - manuscript
    Gottfried Leibniz embarked on a research program to prove all the Aristotelic categorical syllogisms by diagrammatic and algebraic methods. He succeeded in proving them by means of Euler diagrams, but didn’t produce a manuscript with their algebraic proofs. We demonstrate how key excerpts scattered across various Leibniz’s drafts on logic contained sufficient ingredients to prove them by an algebraic method –which we call the Leibniz-Cayley (LC) system– without having to make use of the more expressive and complex machinery of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Generalizations and Alternatives of Classical Algebraic Structures to NeutroAlgebraic Structures and AntiAlgebraic Structures.Florentin Smarandache - 2020 - Journal of Fuzzy Extension and Applications 1 (2):85-87.
    In this paper we present the development from paradoxism to neutrosophy, which gave birth to neutrosophic set and logic and especially to NeutroAlgebraic Structures (or NeutroAlgebras) and AntiAlgebraic Structures (or AntiAlgebras) that are generalizations and alternatives of the classical algebraic structures.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  28. The logic of distributive bilattices.Félix Bou & Umberto Rivieccio - 2011 - Logic Journal of the IGPL 19 (1):183-216.
    Bilattices, introduced by Ginsberg as a uniform framework for inference in artificial intelligence, are algebraic structures that proved useful in many fields. In recent years, Arieli and Avron developed a logical system based on a class of bilattice-based matrices, called logical bilattices, and provided a Gentzen-style calculus for it. This logic is essentially an expansion of the well-known Belnap–Dunn four-valued logic to the standard language of bilattices. Our aim is to study Arieli and Avron’s logic from the (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  29. The logic of partitions: Introduction to the dual of the logic of subsets: The logic of partitions.David Ellerman - 2010 - Review of Symbolic Logic 3 (2):287-350.
    Modern categorical logic as well as the Kripke and topological models of intuitionistic logic suggest that the interpretation of ordinary “propositional” logic should in general be the logic of subsets of a given universe set. Partitions on a set are dual to subsets of a set in the sense of the category-theoretic duality of epimorphisms and monomorphisms—which is reflected in the duality between quotient objects and subobjects throughout algebra. If “propositional” logic is thus seen (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  30.  70
    Cohesive Logic Vectors.Parker Emmerson - manuscript
    We have now mapped the set of analogies Ai,j to conceptual and mechanical meanings. This allows us to recognize how the Group Algebraic System G decomposes into five smaller subsystems, each of which relate to well-known symbolic systems. Furthermore, by recognizing the algorithmic transformations between these subsystems, we can apply each representing a single component of the Group Algebraic System G, or model how algorithms are used in mathematics, by mapping its meaning onto the corresponding transformation steps between the subsystems. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Algebraic structures of neutrosophic triplets, neutrosophic duplets, or neutrosophic multisets. Volume II.Florentin Smarandache, Xiaohong Zhang & Mumtaz Ali - 2019 - Basel, Switzerland: MDPI.
    The topics approached in this collection of papers are: neutrosophic sets; neutrosophic logic; generalized neutrosophic set; neutrosophic rough set; multigranulation neutrosophic rough set (MNRS); neutrosophic cubic sets; triangular fuzzy neutrosophic sets (TFNSs); probabilistic single-valued (interval) neutrosophic hesitant fuzzy set; neutro-homomorphism; neutrosophic computation; quantum computation; neutrosophic association rule; data mining; big data; oracle Turing machines; recursive enumerability; oracle computation; interval number; dependent degree; possibility degree; power aggregation operators; multi-criteria group decision-making (MCGDM); expert set; soft sets; LA-semihypergroups; single valued trapezoidal neutrosophic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Logics Based on Linear Orders of Contaminating Values.Roberto Ciuni, Thomas Macaulay Ferguson & Damian Szmuc - 2019 - Journal of Logic and Computation 29 (5):631–663.
    A wide family of many-valued logics—for instance, those based on the weak Kleene algebra—includes a non-classical truth-value that is ‘contaminating’ in the sense that whenever the value is assigned to a formula φ⁠, any complex formula in which φ appears is assigned that value as well. In such systems, the contaminating value enjoys a wide range of interpretations, suggesting scenarios in which more than one of these interpretations are called for. This calls for an evaluation of systems with multiple (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  33. What Is the Sense in Logic and Philosophy of Language.Urszula Wybraniec-Skardowska - 2020 - Bulletin of the Section of Logic 49 (2):185-211.
    In the paper, various notions of the logical semiotic sense of linguistic expressions – namely, syntactic and semantic, intensional and extensional – are considered and formalised on the basis of a formal-logical conception of any language L characterised categorially in the spirit of certain Husserl's ideas of pure grammar, Leśniewski-Ajdukiewicz's theory of syntactic/semantic categories and, in accordance with Frege's ontological canons, Bocheński's and some of Suszko's ideas of language adequacy of expressions of L. The adequacy ensures their unambiguous syntactic and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Algebraic structures of neutrosophic triplets, neutrosophic duplets, or neutrosophic multisets. Volume I.Florentin Smarandache, Xiaohong Zhang & Mumtaz Ali - 2018 - Basel, Switzerland: MDPI. Edited by Florentin Smarandache, Xiaohong Zhang & Mumtaz Ali.
    The topics approached in the 52 papers included in this book are: neutrosophic sets; neutrosophic logic; generalized neutrosophic set; neutrosophic rough set; multigranulation neutrosophic rough set (MNRS); neutrosophic cubic sets; triangular fuzzy neutrosophic sets (TFNSs); probabilistic single-valued (interval) neutrosophic hesitant fuzzy set; neutro-homomorphism; neutrosophic computation; quantum computation; neutrosophic association rule; data mining; big data; oracle Turing machines; recursive enumerability; oracle computation; interval number; dependent degree; possibility degree; power aggregation operators; multi-criteria group decision-making (MCGDM); expert set; soft sets; LA-semihypergroups; single (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Algebraic Structures in the Universe of Neutrosophic: Analysis with Innovative Algorithmic Approaches.Florentin Smarandache, Derya Bakbak, Vakkas Uluçay, Abdullah Kargın & Necmiye Merve Şahin (eds.) - 2024
    Neutrosophic theory and its applications have been expanding in all directions at an astonishing rate especially after of the introduction the journal entitled “Neutrosophic Sets and Systems”. New theories, techniques, algorithms have been rapidly developed. One of the most striking trends in the neutrosophic theory is the hybridization of neutrosophic set with other potential sets such as rough set, bipolar set, soft set, hesitant fuzzy set, etc. The different hybrid structures such as rough neutrosophic set, single valued neutrosophic rough set, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. An infinity of super-Belnap logics.Umberto Rivieccio - 2012 - Journal of Applied Non-Classical Logics 22 (4):319-335.
    We look at extensions (i.e., stronger logics in the same language) of the Belnap–Dunn four-valued logic. We prove the existence of a countable chain of logics that extend the Belnap–Dunn and do not coincide with any of the known extensions (Kleene’s logics, Priest’s logic of paradox). We characterise the reduced algebraic models of these new logics and prove a completeness result for the first and last element of the chain stating that both logics are determined by a single (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  37.  59
    Fuzzy R Systems and Algebraic Routley-Meyer Semantics.Eunsuk Yang - 2022 - Korean Journal of Logic 25 (3):313-332.
    Here algebraic Routley-Meyer semantics is addressed for two fuzzy versions of the logic of relevant implication R. To this end, two versions R t and R T of R and their fuzzy extensions FRt and FRT , respectively, are first discussed together with their algebraic semantics. Next algebraic Routley-Meyer semantics for these two fuzzy extensions is introduced. Finally, it is verified that these logics are sound and complete over the semantics.
    Download  
     
    Export citation  
     
    Bookmark  
  38. Universal Logic in terms of Quantum Information.Vasil Penchev - 2020 - Metaphilosophy eJournal (Elsevier: SSRN) 12 (9):1-5.
    Any logic is represented as a certain collection of well-orderings admitting or not some algebraic structure such as a generalized lattice. Then universal logic should refer to the class of all subclasses of all well-orderings. One can construct a mapping between Hilbert space and the class of all logics. Thus there exists a correspondence between universal logic and the world if the latter is considered a collection of wave functions, as which the points in Hilbert space can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Modeling the interaction of computer errors by four-valued contaminating logics.Roberto Ciuni, Thomas Macaulay Ferguson & Damian Szmuc - 2019 - In Rosalie Iemhoff, Michael Moortgat & Ruy de Queiroz (eds.), Logic, Language, Information, and Computation. Folli Publications on Logic, Language and Information. pp. 119-139.
    Logics based on weak Kleene algebra (WKA) and related structures have been recently proposed as a tool for reasoning about flaws in computer programs. The key element of this proposal is the presence, in WKA and related structures, of a non-classical truth-value that is “contaminating” in the sense that whenever the value is assigned to a formula ϕ, any complex formula in which ϕ appears is assigned that value as well. Under such interpretations, the contaminating states represent occurrences of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  40. Moderna logika u hrvatskoj filozofiji 20. stoljeća [Modern logic in Croatian philosophy of the 20th century].Srećko Kovač - 2007 - In Damir Barbarić & Franjo Zenko (eds.), Hrvatska filozofija u XX. stoljeću. Matica hrvatska. pp. 97-110.
    The first beginnings of modern logic in Croatia are recognizable as early as in the middle of the 19th century in Vatroslav Bertić. At the turn of the 20th century, Albin Nagy, who was teaching in Italy, made contributions to algebraic logic and to the philosophy of logic. At that time, a distinctive author Mate Meršić stood out, also working on algebraic logic. In the Croatian academic philosophy, until the publication of Gajo Petrović's textbook (1964) and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. The (Greatest) Fragment of Classical Logic that Respects the Variable-Sharing Principle (in the FMLA-FMLA Framework).Damian E. Szmuc - 2021 - Bulletin of the Section of Logic 50 (4):421-453.
    We examine the set of formula-to-formula valid inferences of Classical Logic, where the premise and the conclusion share at least a propositional variable in common. We review the fact, already proved in the literature, that such a system is identical to the first-degree entailment fragment of R. Epstein's Relatedness Logic, and that it is a non-transitive logic of the sort investigated by S. Frankowski and others. Furthermore, we provide a semantics and a calculus for this logic. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  42. An Investigation on the Basic Conceptual Foundations of Quantum Mechanics by Using the Clifford Algebra.Elio Conte - 2011 - Advanced Studies in Theoretical Physics 5 (11):485-544.
    We review our approach to quantum mechanics adding also some new interesting results. We start by giving proof of two important theorems on the existence of the A(Si) and i,±1 N Clifford algebras. This last algebra gives proof of the von Neumann basic postulates on the quantum measurement explaining thus in an algebraic manner the wave function collapse postulated in standard quantum theory. In this manner we reach the objective to expose a self-consistent version of quantum mechanics. In detail (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  43. Logic-Language-Ontology.Urszula B. Wybraniec-Skardowska - 2022 - Cham, Switzerland: Springer Nature, Birkhäuser, Studies in Universal Logic series.
    The book is a collection of papers and aims to unify the questions of syntax and semantics of language, which are included in logic, philosophy and ontology of language. The leading motif of the presented selection of works is the differentiation between linguistic tokens (material, concrete objects) and linguistic types (ideal, abstract objects) following two philosophical trends: nominalism (concretism) and Platonizing version of realism. The opening article under the title “The Dual Ontological Nature of Language Signs and the Problem (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  44. Discovering Empirical Theories of Modular Software Systems. An Algebraic Approach.Nicola Angius & Petros Stefaneas - 2016 - In Vincent C. Müller (ed.), Computing and philosophy: Selected papers from IACAP 2014. Cham: Springer. pp. 99-115.
    This paper is concerned with the construction of theories of software systems yielding adequate predictions of their target systems’ computations. It is first argued that mathematical theories of programs are not able to provide predictions that are consistent with observed executions. Empirical theories of software systems are here introduced semantically, in terms of a hierarchy of computational models that are supplied by formal methods and testing techniques in computer science. Both deductive top-down and inductive bottom-up approaches in the discovery of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Cognition, Algebra, and Culture in the Tongan Kinship Terminology.Giovanni Bennardo & Dwight Read - 2007 - Journal of Cognition and Culture 7 (1-2):49-88.
    We present an algebraic account of the Tongan kinship terminology (TKT) that provides an insightful journey into the fabric of Tongan culture. We begin with the ethnographic account of a social event. The account provides us with the activities of that day and the centrality of kin relations in the event, but it does not inform us of the conceptual system that the participants bring with them. Rather, it is a slice in time of an ongoing dynamic process that links (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  46. Logic. of Descriptions. A New Approach to the Foundations of Mathematics and Science.Joanna Golińska-Pilarek & Taneli Huuskonen - 2012 - Studies in Logic, Grammar and Rhetoric 27 (40):63-94.
    We study a new formal logic LD introduced by Prof. Grzegorczyk. The logic is based on so-called descriptive equivalence, corresponding to the idea of shared meaning rather than shared truth value. We construct a semantics for LD based on a new type of algebras and prove its soundness and completeness. We further show several examples of classical laws that hold for LD as well as laws that fail. Finally, we list a number of open problems. -/- .
    Download  
     
    Export citation  
     
    Bookmark  
  47. Agglomerative Algebras.Jeremy Goodman - 2018 - Journal of Philosophical Logic 48 (4):631-648.
    This paper investigates a generalization of Boolean algebras which I call agglomerative algebras. It also outlines two conceptions of propositions according to which they form an agglomerative algebra but not a Boolean algebra with respect to conjunction and negation.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  48. ‘Chasing’ the diagram—the use of visualizations in algebraic reasoning.Silvia de Toffoli - 2017 - Review of Symbolic Logic 10 (1):158-186.
    The aim of this article is to investigate the roles of commutative diagrams (CDs) in a specific mathematical domain, and to unveil the reasons underlying their effectiveness as a mathematical notation; this will be done through a case study. It will be shown that CDs do not depict spatial relations, but represent mathematical structures. CDs will be interpreted as a hybrid notation that goes beyond the traditional bipartition of mathematical representations into diagrammatic and linguistic. It will be argued that one (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  49. Logic and Sense.Urszula Wybraniec-Skardowska - 2016 - Philosophy Study 6 (9).
    In the paper, original formal-logical conception of syntactic and semantic: intensional and extensional senses of expressions of any language L is outlined. Syntax and bi-level intensional and extensional semantics of language L are characterized categorically: in the spirit of some Husserl’s ideas of pure grammar, Leśniewski-Ajukiewicz’s theory syntactic/semantic categories and in accordance with Frege’s ontological canons, Bocheński’s famous motto—syntax mirrors ontology and some ideas of Suszko: language should be a linguistic scheme of ontological reality and simultaneously a tool of its (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  50. Some Logical Notations for Pragmatic Assertions.Massimiliano Carrara, Daniele Chiffi & Ahti-Veikko Pietarinen - 2020 - Logique Et Analyse 251:297 - 315.
    The pragmatic notion of assertion has an important inferential role in logic. There are also many notational forms to express assertions in logical systems. This paper reviews, compares and analyses languages with signs for assertions, including explicit signs such as Frege’s and Dalla Pozza’s logical systems and implicit signs with no specific sign for assertion, such as Peirce’s algebraic and graphical logics and the recent modification of the latter termed Assertive Graphs. We identify and discuss the main ‘points’ of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 963