Results for 'consistency of arithmetic'

902 found
Order:
  1. How to prove the consistency of arithmetic.Jaakko Hintikka & Besim Karakadilar - 2006 - Acta Philosophica Fennica 78:1.
    It is argued that the goal of Hilbert's program was to prove the model-theoretical consistency of different axiom systems. This Hilbert proposed to do by proving the deductive consistency of the relevant systems. In the extended independence-friendly logic there is a complete proof method for the contradictory negations of independence-friendly sentences, so the existence of a single proposition that is not disprovable from arithmetic axioms can be shown formally in the extended independence-friendly logic. It can also be (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  2. On Certain Axiomatizations of Arithmetic of Natural and Integer Numbers.Urszula Wybraniec-Skardowska - 2019 - Axioms 2019 (Deductive Systems).
    The systems of arithmetic discussed in this work are non-elementary theories. In this paper, natural numbers are characterized axiomatically in two di erent ways. We begin by recalling the classical set P of axioms of Peano’s arithmetic of natural numbers proposed in 1889 (including such primitive notions as: set of natural numbers, zero, successor of natural number) and compare it with the set W of axioms of this arithmetic (including the primitive notions like: set of natural numbers (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. The Relationship of Arithmetic As Two Twin Peano Arithmetic(s) and Set Theory: A New Glance From the Theory of Information.Vasil Penchev - 2020 - Metaphilosophy eJournal (Elseviers: SSRN) 12 (10):1-33.
    The paper introduces and utilizes a few new concepts: “nonstandard Peano arithmetic”, “complementary Peano arithmetic”, “Hilbert arithmetic”. They identify the foundations of both mathematics and physics demonstrating the equivalence of the newly introduced Hilbert arithmetic and the separable complex Hilbert space of quantum mechanics in turn underlying physics and all the world. That new both mathematical and physical ground can be recognized as information complemented and generalized by quantum information. A few fundamental mathematical problems of the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. On Radical Enactivist Accounts of Arithmetical Cognition.Markus Pantsar - 2022 - Ergo: An Open Access Journal of Philosophy 9.
    Hutto and Myin have proposed an account of radically enactive (or embodied) cognition (REC) as an explanation of cognitive phenomena, one that does not include mental representations or mental content in basic minds. Recently, Zahidi and Myin have presented an account of arithmetical cognition that is consistent with the REC view. In this paper, I first evaluate the feasibility of that account by focusing on the evolutionarily developed proto-arithmetical abilities and whether empirical data on them support the radical enactivist view. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. Logicism, Interpretability, and Knowledge of Arithmetic.Sean Walsh - 2014 - Review of Symbolic Logic 7 (1):84-119.
    A crucial part of the contemporary interest in logicism in the philosophy of mathematics resides in its idea that arithmetical knowledge may be based on logical knowledge. Here an implementation of this idea is considered that holds that knowledge of arithmetical principles may be based on two things: (i) knowledge of logical principles and (ii) knowledge that the arithmetical principles are representable in the logical principles. The notions of representation considered here are related to theory-based and structure-based notions of representation (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  6.  77
    Husserl’s Philosophy of Arithmetic in Reviews.Carlo Ierna - 2013 - The New Yearbook for Phenomenology and Phenomenological Philosophy 12:198-242.
    This present collection of (translations of) reviews is intended to help obtain a more balanced picture of the reception and impact of Edmund Husserl’s first book, the 1891 Philosophy of Arithmetic. One of the insights to be gained from this non-exhaustive collection of reviews is that the Philosophy of Arithmetic had a much more widespread reception than hitherto assumed: in the present collection alone there already are fourteen, all published between 1891 and 1895. Three of the reviews appeared (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Consistency proof of a fragment of pv with substitution in bounded arithmetic.Yoriyuki Yamagata - 2018 - Journal of Symbolic Logic 83 (3):1063-1090.
    This paper presents proof that Buss's S22 can prove the consistency of a fragment of Cook and Urquhart's PV from which induction has been removed but substitution has been retained. This result improves Beckmann's result, which proves the consistency of such a system without substitution in bounded arithmetic S12. Our proof relies on the notion of "computation" of the terms of PV. In our work, we first prove that, in the system under consideration, if an equation is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Self-reference and the languages of arithmetic.Richard Heck - 2007 - Philosophia Mathematica 15 (1):1-29.
    I here investigate the sense in which diagonalization allows one to construct sentences that are self-referential. Truly self-referential sentences cannot be constructed in the standard language of arithmetic: There is a simple theory of truth that is intuitively inconsistent but is consistent with Peano arithmetic, as standardly formulated. True self-reference is possible only if we expand the language to include function-symbols for all primitive recursive functions. This language is therefore the natural setting for investigations of self-reference.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  9. Why there can be no mathematical or meta-mathematical proof of consistency for ZF.Bhupinder Singh Anand - manuscript
    In the first part of this investigation we highlight two, seemingly irreconcilable, beliefs that suggest an impending crisis in the teaching, research, and practice of—primarily state-supported—mathematics: (a) the belief, with increasing, essentially faith-based, conviction and authority amongst academics that first-order Set Theory can be treated as the lingua franca of mathematics, since its theorems—even if unfalsifiable—can be treated as ‘knowledge’ because they are finite proof sequences which are entailed finitarily by self-evidently Justified True Beliefs; and (b) the slowly emerging, but (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Evitable iterates of the consistency operator.James Walsh - 2023 - Computability 12 (1):59--69.
    Why are natural theories pre-well-ordered by consistency strength? In previous work, an approach to this question was proposed. This approach was inspired by Martin's Conjecture, one of the most prominent conjectures in recursion theory. Fixing a reasonable subsystem $T$ of arithmetic, the goal was to classify the recursive functions that are monotone with respect to the Lindenbaum algebra of $T$. According to an optimistic conjecture, roughly, every such function must be equivalent to an iterate $\mathsf{Con}_T^\alpha$ of the (...) operator ``in the limit'' within the ultrafilter of sentences that are true in the standard model. In previous work the author established the first case of this optimistic conjecture; roughly, every recursive monotone function is either as weak as the identity operator in the limit or as strong as $\mathsf{Con}_T$ in the limit. Yet in this note we prove that this optimistic conjecture fails already at the next step; there are recursive monotone functions that are neither as weak as $\mathsf{Con}_T$ in the limit nor as strong as $\mathsf{Con}_T^2$ in the limit. In fact, for every $\alpha$, we produce a function that is cofinally equivalent to $\mathsf{Con}^\alpha_T$ yet cofinally equivalent to $\mathsf{Con}_T$. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Gentzen’s “cut rule” and quantum measurement in terms of Hilbert arithmetic. Metaphor and understanding modeled formally.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal 14 (14):1-37.
    Hilbert arithmetic in a wide sense, including Hilbert arithmetic in a narrow sense consisting by two dual and anti-isometric Peano arithmetics, on the one hand, and the qubit Hilbert space (originating for the standard separable complex Hilbert space of quantum mechanics), on the other hand, allows for an arithmetic version of Gentzen’s cut elimination and quantum measurement to be described uniformy as two processes occurring accordingly in those two branches. A philosophical reflection also justifying that unity by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. A Mathematical Model of Quantum Computer by Both Arithmetic and Set Theory.Vasil Penchev - 2020 - Information Theory and Research eJournal 1 (15):1-13.
    A practical viewpoint links reality, representation, and language to calculation by the concept of Turing (1936) machine being the mathematical model of our computers. After the Gödel incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness to be suggested for two ones. That is consistent with the provability of completeness by means of two independent Peano arithmetics discussed in Section I. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. Hilbert's Metamathematical Problems and Their Solutions.Besim Karakadilar - 2008 - Dissertation, Boston University
    This dissertation examines several of the problems that Hilbert discovered in the foundations of mathematics, from a metalogical perspective. The problems manifest themselves in four different aspects of Hilbert’s views: (i) Hilbert’s axiomatic approach to the foundations of mathematics; (ii) His response to criticisms of set theory; (iii) His response to intuitionist criticisms of classical mathematics; (iv) Hilbert’s contribution to the specification of the role of logical inference in mathematical reasoning. This dissertation argues that Hilbert’s axiomatic approach was guided primarily (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Developing Artificial Human-Like Arithmetical Intelligence (and Why).Markus Pantsar - 2023 - Minds and Machines 33 (3):379-396.
    Why would we want to develop artificial human-like arithmetical intelligence, when computers already outperform humans in arithmetical calculations? Aside from arithmetic consisting of much more than mere calculations, one suggested reason is that AI research can help us explain the development of human arithmetical cognition. Here I argue that this question needs to be studied already in the context of basic, non-symbolic, numerical cognition. Analyzing recent machine learning research on artificial neural networks, I show how AI studies could potentially (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  15. Hilbert arithmetic as a Pythagorean arithmetic: arithmetic as transcendental.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (54):1-24.
    The paper considers a generalization of Peano arithmetic, Hilbert arithmetic as the basis of the world in a Pythagorean manner. Hilbert arithmetic unifies the foundations of mathematics (Peano arithmetic and set theory), foundations of physics (quantum mechanics and information), and philosophical transcendentalism (Husserl’s phenomenology) into a formal theory and mathematical structure literally following Husserl’s tracе of “philosophy as a rigorous science”. In the pathway to that objective, Hilbert arithmetic identifies by itself information related to finite (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. On the Arithmetical Truth of Self‐Referential Sentences.Kaave Lajevardi & Saeed Salehi - 2019 - Theoria 85 (1):8-17.
    We take an argument of Gödel's from his ground‐breaking 1931 paper, generalize it, and examine its validity. The argument in question is this: "the sentence G says about itself that it is not provable, and G is indeed not provable; therefore, G is true".
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  17. The Symmetries of Quantum and Classical Information. The Ressurrected “Ether" of Quantum Information.Vasil Penchev - 2021 - Philosophy of Science eJournal (Elsevier: SSRN) 14 (41):1-36.
    The paper considers the symmetries of a bit of information corresponding to one, two or three qubits of quantum information and identifiable as the three basic symmetries of the Standard model, U(1), SU(2), and SU(3) accordingly. They refer to “empty qubits” (or the free variable of quantum information), i.e. those in which no point is chosen (recorded). The choice of a certain point violates those symmetries. It can be represented furthermore as the choice of a privileged reference frame (e.g. that (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  18. Arithmetic without the successor axiom.Andrew Boucher -
    Second-order Peano Arithmetic minus the Successor Axiom is developed from first principles through Quadratic Reciprocity and a proof of self-consistency. This paper combines 4 other papers of the author in a self-contained exposition.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  19. A defense of Isaacson’s thesis, or how to make sense of the boundaries of finite mathematics.Pablo Dopico - 2024 - Synthese 203 (2):1-22.
    Daniel Isaacson has advanced an epistemic notion of arithmetical truth according to which the latter is the set of truths that we grasp on the basis of our understanding of the structure of natural numbers alone. Isaacson’s thesis is then the claim that Peano Arithmetic (PA) is the theory of finite mathematics, in the sense that it proves all and only arithmetical truths thus understood. In this paper, we raise a challenge for the thesis and show how it can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. The Effect of Procedural Justice on the Organizational Loyalty of Faculty Staff in Universities.Al Shobaki Mazen J. - 2018 - International Journal of Academic Management Science Research (IJAMSR) 2 (10):30-44.
    This study aimed to identify the effect of procedural justice on organizational loyalty from the point of view of Faculty Staff at Palestine Technical University- Kadoorei. It also aimed to identify the differences in the views of the study sample on the study variables according to the years of service. In order to achieve this, the researchers used a questionnaire consisting of (22) paragraphs where the first area (10) paragraphs looking at procedural justice while the paragraphs of the second area (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. All science as rigorous science: the principle of constructive mathematizability of any theory.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (12):1-15.
    A principle, according to which any scientific theory can be mathematized, is investigated. Social science, liberal arts, history, and philosophy are meant first of all. That kind of theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. A new reading and comparative interpretation of Gödel’s completeness (1930) and incompleteness (1931) theorems.Vasil Penchev - 2016 - Логико-Философские Штудии 13 (2):187-188.
    Peano arithmetic cannot serve as the ground of mathematics for it is inconsistent to infinity, and infinity is necessary for its foundation. Though Peano arithmetic cannot be complemented by any axiom of infinity, there exists at least one (logical) axiomatics consistent to infinity. That is nothing else than a new reading at issue and comparative interpretation of Gödel’s papers (1930; 1931) meant here. Peano arithmetic admits anyway generalizations consistent to infinity and thus to some addable axiom(s) of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Two conjectures on the arithmetic in ℝ and ℂ†.Apoloniusz Tyszka - 2010 - Mathematical Logic Quarterly 56 (2):175-184.
    Let G be an additive subgroup of ℂ, let Wn = {xi = 1, xi + xj = xk: i, j, k ∈ {1, …, n }}, and define En = {xi = 1, xi + xj = xk, xi · xj = xk: i, j, k ∈ {1, …, n }}. We discuss two conjectures. If a system S ⊆ En is consistent over ℝ, then S has a real solution which consists of numbers whose absolute values belong to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. The Truth Assignments That Differentiate Human Reasoning From Mechanistic Reasoning: The Evidence-Based Argument for Lucas' Goedelian Thesis.Bhupinder Singh Anand - 2016 - Cognitive Systems Research 40:35-45.
    We consider the argument that Tarski's classic definitions permit an intelligence---whether human or mechanistic---to admit finitary evidence-based definitions of the satisfaction and truth of the atomic formulas of the first-order Peano Arithmetic PA over the domain N of the natural numbers in two, hitherto unsuspected and essentially different, ways: (1) in terms of classical algorithmic verifiabilty; and (2) in terms of finitary algorithmic computability. We then show that the two definitions correspond to two distinctly different assignments of satisfaction and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  25. Operators in the paradox of the knower.Patrick Grim - 1993 - Synthese 94 (3):409 - 428.
    Predicates are term-to-sentence devices, and operators are sentence-to-sentence devices. What Kaplan and Montague's Paradox of the Knower demonstrates is that necessity and other modalities cannot be treated as predicates, consistent with arithmetic; they must be treated as operators instead. Such is the current wisdom.A number of previous pieces have challenged such a view by showing that a predicative treatment of modalities neednot raise the Paradox of the Knower. This paper attempts to challenge the current wisdom in another way as (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  26. The Concept of a Substance and its Linguistic Embodiment.Henry Laycock - 2023 - Philosophies 8 (6):114.
    My objective is a better comprehension of two theoretically fundamental concepts. One, the concept of a substance in an ordinary (non-Aristotelian) sense, ranging over such things as salt, carbon, copper, iron, water, and methane – kinds of stuff that now count as (chemical) elements and compounds. The other I’ll call the object-concept in the abstract sense of Russell, Wittgenstein, and Frege in their logico-semantical enquiries. The material object-concept constitutes the heart of our received logico / ontic system, still massively influenced (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  27. (1 other version)The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences.Bhupinder Singh Anand - forthcoming
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  28. Truth, Proof and Gödelian Arguments: A Defence of Tarskian Truth in Mathematics.Markus Pantsar - 2009 - Dissertation, University of Helsinki
    One of the most fundamental questions in the philosophy of mathematics concerns the relation between truth and formal proof. The position according to which the two concepts are the same is called deflationism, and the opposing viewpoint substantialism. In an important result of mathematical logic, Kurt Gödel proved in his first incompleteness theorem that all consistent formal systems containing arithmetic include sentences that can neither be proved nor disproved within that system. However, such undecidable Gödel sentences can be established (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  29. Endless Incoherence— A Review of Shoemaker's Physical Realization (2009)(review revised 2019).Michael Starks - 2019 - In Talking Monkeys: Philosophy, Psychology, Science, Religion and Politics on a Doomed Planet - Articles and Reviews 2006-2019 Michael Starks 3rd Edition. Las Vegas, NV USA: Reality Press. pp. 284-301.
    Over 40 years ago I read a small grey book with metaphysics in the title which began with the words “Metaphysics is dead. Wittgenstein has killed it.” I am one of many who agree but sadly the rest of the world has not gotten the message. Shoemaker’s work is nonsense on stilts but is unusual only in that it never deviates into sense from the first paragraph to the last. At least with Dennett, Carruthers, Churchland etc. one gets a breath (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. The case of quantum mechanics mathematizing reality: the “superposition” of mathematically modelled and mathematical reality: Is there any room for gravity?Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (24):1-15.
    A case study of quantum mechanics is investigated in the framework of the philosophical opposition “mathematical model – reality”. All classical science obeys the postulate about the fundamental difference of model and reality, and thus distinguishing epistemology from ontology fundamentally. The theorems about the absence of hidden variables in quantum mechanics imply for it to be “complete” (versus Einstein’s opinion). That consistent completeness (unlike arithmetic to set theory in the foundations of mathematics in Gödel’s opinion) can be interpreted furthermore (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Trial and error mathematics: Dialectical systems and completions of theories.Luca San Mauro, Jacopo Amidei, Uri Andrews, Duccio Pianigiani & Andrea Sorbi - 2019 - Journal of Logic and Computation 1 (29):157-184.
    This paper is part of a project that is based on the notion of a dialectical system, introduced by Magari as a way of capturing trial and error mathematics. In Amidei et al. (2016, Rev. Symb. Logic, 9, 1–26) and Amidei et al. (2016, Rev. Symb. Logic, 9, 299–324), we investigated the expressive and computational power of dialectical systems, and we compared them to a new class of systems, that of quasi-dialectical systems, that enrich Magari’s systems with a natural mechanism (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Gödel mathematics versus Hilbert mathematics. I. The Gödel incompleteness (1931) statement: axiom or theorem?Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (9):1-56.
    The present first part about the eventual completeness of mathematics (called “Hilbert mathematics”) is concentrated on the Gödel incompleteness (1931) statement: if it is an axiom rather than a theorem inferable from the axioms of (Peano) arithmetic, (ZFC) set theory, and propositional logic, this would pioneer the pathway to Hilbert mathematics. One of the main arguments that it is an axiom consists in the direct contradiction of the axiom of induction in arithmetic and the axiom of infinity in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Hilbert Mathematics Versus Gödel Mathematics. IV. The New Approach of Hilbert Mathematics Easily Resolving the Most Difficult Problems of Gödel Mathematics.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (75):1-52.
    The paper continues the consideration of Hilbert mathematics to mathematics itself as an additional “dimension” allowing for the most difficult and fundamental problems to be attacked in a new general and universal way shareable between all of them. That dimension consists in the parameter of the “distance between finiteness and infinity”, particularly able to interpret standard mathematics as a particular case, the basis of which are arithmetic, set theory and propositional logic: that is as a special “flat” case of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. The inexpressibility of validity.Julien Murzi - 2014 - Analysis 74 (1):65-81.
    Tarski's Undefinability of Truth Theorem comes in two versions: that no consistent theory which interprets Robinson's Arithmetic (Q) can prove all instances of the T-Scheme and hence define truth; and that no such theory, if sound, can even express truth. In this note, I prove corresponding limitative results for validity. While Peano Arithmetic already has the resources to define a predicate expressing logical validity, as Jeff Ketland has recently pointed out (2012, Validity as a primitive. Analysis 72: 421-30), (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  35. ONE AND THE MULTIPLE ON THE PHILOSOPHY OF MATHEMATICS - ALEXIS KARPOUZOS.Alexis Karpouzos - 2025 - Comsic Spirit 1:6.
    The relationship between the One and the Multiple in mystic philosophy is a profound and central theme that explores the nature of existence, the cosmos, and the divine. This theme is present in various mystical traditions, including those of the East and West, and it addresses the paradoxical coexistence of the unity and multiplicity of all things. -/- In mystic philosophy, the **One** often represents the ultimate reality, the source from which all things emanate and to which all things return. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  36. Skolem’s “paradox” as logic of ground: The mutual foundation of both proper and improper interpretations.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (19):1-16.
    A principle, according to which any scientific theory can be mathematized, is investigated. That theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather a metamathematical axiom about the relation of mathematics and reality. Its investigation needs philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Meršić o Hilbertovoj aksiomatskoj metodi [Meršić on Hilbert's axiomatic method].Srećko Kovač - 2006 - In E. Banić-Pajnić & M. Girardi Karšulin (eds.), Zbornik u čast Franji Zenku. pp. 123-135.
    The criticism of Hilbert's axiomatic system of geometry by Mate Meršić (Merchich, 1850-1928), presented in his work "Organistik der Geometrie" (1914, also in "Modernes und Modriges", 1914), is analyzed and discussed. According to Meršić, geometry cannot be based on its own axioms, as a logical analysis of spatial intuition, but must be derived as a "spatial concretion" using "higher" axioms of arithmetic, logic, and "rational algorithmics." Geometry can only be one, because space is also only one. It cannot be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Computing, Modelling, and Scientific Practice: Foundational Analyses and Limitations.Philippos Papayannopoulos - 2018 - Dissertation,
    This dissertation examines aspects of the interplay between computing and scientific practice. The appropriate foundational framework for such an endeavour is rather real computability than the classical computability theory. This is so because physical sciences, engineering, and applied mathematics mostly employ functions defined in continuous domains. But, contrary to the case of computation over natural numbers, there is no universally accepted framework for real computation; rather, there are two incompatible approaches --computable analysis and BSS model--, both claiming to formalise algorithmic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  39. Do Goedel's incompleteness theorems set absolute limits on the ability of the brain to express and communicate mental concepts verifiably?Bhupinder Singh Anand - 2004 - Neuroquantology 2:60-100.
    Classical interpretations of Goedels formal reasoning, and of his conclusions, implicitly imply that mathematical languages are essentially incomplete, in the sense that the truth of some arithmetical propositions of any formal mathematical language, under any interpretation, is, both, non-algorithmic, and essentially unverifiable. However, a language of general, scientific, discourse, which intends to mathematically express, and unambiguously communicate, intuitive concepts that correspond to scientific investigations, cannot allow its mathematical propositions to be interpreted ambiguously. Such a language must, therefore, define mathematical truth (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  40. Three Dogmas of First-Order Logic and some Evidence-based Consequences for Constructive Mathematics of differentiating between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism.Bhupinder Singh Anand - manuscript
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then adopt what may (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. Remarks on Wittgenstein, Gödel, Chaitin, Incompleteness, Impossiblity and the Psychological Basis of Science and Mathematics.Michael Richard Starks - 2019 - In Remarks on Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason in Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, da Costa, Godel, Searle, Rodych, Berto, Floyd, Moyal. Reality Press. pp. 24-38.
    It is commonly thought that such topics as Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason are disparate scientific physical or mathematical issues having little or nothing in common. I suggest that they are largely standard philosophical problems (i.e., language games) which were resolved by Wittgenstein over 80 years ago. -/- Wittgenstein also demonstrated the fatal error in regarding mathematics or language or our behavior in general as a unitary coherent logical ‘system,’ rather than as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. Why did Fermat believe he had `a truly marvellous demonstration' of FLT?Bhupinder Singh Anand - manuscript
    Conventional wisdom dictates that proofs of mathematical propositions should be treated as necessary, and sufficient, for entailing `significant' mathematical truths only if the proofs are expressed in a---minimally, deemed consistent---formal mathematical theory in terms of: * Axioms/Axiom schemas * Rules of Deduction * Definitions * Lemmas * Theorems * Corollaries. Whilst Andrew Wiles' proof of Fermat's Last Theorem FLT, which appeals essentially to geometrical properties of real and complex numbers, can be treated as meeting this criteria, it nevertheless leaves two (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Civic Identity Consisting of Moral and Political Identity among Young Adults.Hyemin Han & Kelsie J. Dawson - forthcoming - Personality and Individual Differences.
    In the present study, we tested whether civic identity consisting of moral and political identity via the bifactor model of civic identity with the Stanford Civic Purpose dataset. Previous research in youth development proposed that civic identity consists of two closely related identity constructs, i.e., moral and political identity. Given the bifactor model in factor analysis assumes the presence of both the general and specific factors, we hypothesized that the bifactor model would better fit the data than conventional alternative models. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Reid, Constance. Hilbert (a Biography). Reviewed by Corcoran in Philosophy of Science 39 (1972), 106–08.John Corcoran - 1972 - Philosophy of Science 39 (1):106-108.
    Reid, Constance. Hilbert (a Biography). Reviewed by Corcoran in Philosophy of Science 39 (1972), 106–08. -/- Constance Reid was an insider of the Berkeley-Stanford logic circle. Her San Francisco home was in Ashbury Heights near the homes of logicians such as Dana Scott and John Corcoran. Her sister Julia Robinson was one of the top mathematical logicians of her generation, as was Julia’s husband Raphael Robinson for whom Robinson Arithmetic was named. Julia was a Tarski PhD and, in recognition (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  45. Probabilistically coherent credences despite opacity.Christian List - 2024 - Economics and Philosophy 40 (2):497-506.
    Real human agents, even when they are rational by everyday standards, sometimes assign different credences to objectively equivalent statements, such as ‘Orwell is a writer’ and ‘E.A. Blair is a writer’, or credences less than 1 to necessarily true statements, such as not-yet-proven theorems of arithmetic. Anna Mahtani calls this the phenomenon of ‘opacity’. Opaque credences seem probabilistically incoherent, which goes against a key modelling assumption of probability theory. I sketch a modelling strategy for capturing opaque credence assignments without (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. The (Metaphysical) Foundations of Arithmetic?Thomas Donaldson - 2017 - Noûs 51 (4):775-801.
    Gideon Rosen and Robert Schwartzkopff have independently suggested (variants of) the following claim, which is a varian of Hume's Principle: -/- When the number of Fs is identical to the number of Gs, this fact is grounded by the fact that there is a one-to-one correspondence between the Fs and Gs. -/- My paper is a detailed critique of the proposal. I don't find any decisive refutation of the proposal. At the same time, it has some consequences which many will (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  47. The Logical Consistency of Simultaneous Agnostic Hypothesis Tests.Julio Michael Stern - 2016 - Entropy 8 (256):1-22.
    Simultaneous hypothesis tests can fail to provide results that meet logical requirements. For example, if A and B are two statements such that A implies B, there exist tests that, based on the same data, reject B but not A. Such outcomes are generally inconvenient to statisticians (who want to communicate the results to practitioners in a simple fashion) and non-statisticians (confused by conflicting pieces of information). Based on this inconvenience, one might want to use tests that satisfy logical requirements. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  48. Two Lost Operations of Arithmetic: Duplation and Mediation.Lloyd Strickland - 2022 - Mathematics Today 65:212-213.
    Download  
     
    Export citation  
     
    Bookmark  
  49. Quantum theology, or: “Theologie als strenge Wissenschaft”.Vasil Penchev - 2024 - Metaphilosophy eJournal (Elsevier: SSRN) 16 (15):1-66.
    The main idea consists in researching the existence of certain characteristics of nature similar to human reasonability and purposeful actions, originating and rigorously inferable from the postulates of quantum mechanics as well as from those of special and general relativity. The pathway of the “free-will theorems” proved by Conway and Kochen in 2006 and 2009 is followed and pioneered further. Those natural reasonability and teleology are identified as a special subject called “God” and studyable by “quantum theology”, a scientific counterpart (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. An empirically feasible approach to the epistemology of arithmetic.Markus Pantsar - 2014 - Synthese 191 (17):4201-4229.
    Recent years have seen an explosion of empirical data concerning arithmetical cognition. In this paper that data is taken to be philosophically important and an outline for an empirically feasible epistemological theory of arithmetic is presented. The epistemological theory is based on the empirically well-supported hypothesis that our arithmetical ability is built on a protoarithmetical ability to categorize observations in terms of quantities that we have already as infants and share with many nonhuman animals. It is argued here that (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
1 — 50 / 902