Results for 'countable'

70 found
Order:
  1. Countable Additivity, Idealization, and Conceptual Realism.Yang Liu - 2020 - Economics and Philosophy 36 (1):127-147.
    This paper addresses the issue of finite versus countable additivity in Bayesian probability and decision theory -- in particular, Savage's theory of subjective expected utility and personal probability. I show that Savage's reason for not requiring countable additivity in his theory is inconclusive. The assessment leads to an analysis of various highly idealised assumptions commonly adopted in Bayesian theory, where I argue that a healthy dose of, what I call, conceptual realism is often helpful in understanding the interpretational (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  2. Countable fusion not yet proven guilty: it may be the Whiteheadian account of space whatdunnit.G. Oppy - 1997 - Analysis 57 (4):249-253.
    I criticise a paper by Peter Forrest in which he argues that a principle of unrestricted countable fusion has paradoxical consequences. I argue that the paradoxical consequences that he exhibits may be due to his Whiteheadean assumptions about the nature of spacetime rather than to the principle of unrestricted countable fusion.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  3. Countable additivity and the de finetti lottery.Paul Bartha - 2004 - British Journal for the Philosophy of Science 55 (2):301-321.
    De Finetti would claim that we can make sense of a draw in which each positive integer has equal probability of winning. This requires a uniform probability distribution over the natural numbers, violating countable additivity. Countable additivity thus appears not to be a fundamental constraint on subjective probability. It does, however, seem mandated by Dutch Book arguments similar to those that support the other axioms of the probability calculus as compulsory for subjective interpretations. These two lines of reasoning (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  4. The World's Countability: On the Mastery of Divided Reference and the Controversy over the Count/Mass Distinction in Chinese.Viatcheslav Vetrov - 2022 - Monumenta Serica 70 (2):457-497.
    Academic discussions of the count/mass distinction in Chinese feature three general problems, upon which this essay critically reflects: 1) Most studies focus either on modern or on classical Chinese thus representing parallel discussions that never intersect; 2) studies on count/mass grammar are often detached from reflections on count/mass semantics, which results in serious theoretical and terminological flaws; 3) approaches to Chinese often crucially depend on observations of English grammar and semantics, as, e.g., many/much vs. few/little patterns, the use of plural (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Inconsistent Countable Set in Second Order ZFC and Nonexistence of the Strongly Inaccessible Cardinals.Jaykov Foukzon - 2015 - British Journal of Mathematics and Computer Science 9 (5):380-393.
    In this article we derived an important example of the inconsistent countable set in second order ZFC (ZFC_2) with the full second-order semantics. Main results: (i) :~Con(ZFC2_); (ii) let k be an inaccessible cardinal, V is an standard model of ZFC (ZFC_2) and H_k is a set of all sets having hereditary size less then k; then : ~Con(ZFC + E(V)(V = Hk)):.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  6. Non-Archimedean Preferences Over Countable Lotteries.Jeffrey Sanford Russell - 2020 - Journal of Mathematical Economics 88 (May 2020):180-186.
    We prove a representation theorem for preference relations over countably infinite lotteries that satisfy a generalized form of the Independence axiom, without assuming Continuity. The representing space consists of lexicographically ordered transfinite sequences of bounded real numbers. This result is generalized to preference orders on abstract superconvex spaces.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  7. Theories of truth for countable languages which conform to classical logic.Seppo Heikkilä - forthcoming - Nonlinear Studies.
    Every countable language which conforms to classical logic is shown to have an extension which has a consistent definitional theory of truth. That extension has a consistent semantical theory of truth, if every sentence of the object language is valuated by its meaning either as true or as false. These theories contain both a truth predicate and a non-truth predicate. Theories are equivalent when sentences of the object lqanguage are valuated by their meanings.
    Download  
     
    Export citation  
     
    Bookmark  
  8. Events and Countability.Friederike Moltmann - manuscript
    There is an emerging view according to which countability is not an integral part of the lexical meaning of singular count nouns, but is ‘added on’ or ‘made available’, whether syntactically, semantically or both. This view has been pursued by Borer and Rothstein among others in order to deal with classifier languages such as Chinese as well as challenges to standard views of the mass-count distinction such as object mass nouns such as furniture. I will discuss a range of data, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  9. Names, light nouns, and countability.Friederike Moltmann - 2022 - Linguistic Inquiry 54 (1):117 - 146.
    Proper names are generally taken to be count nouns. This paper argues that this is mistaken and that at least in some languages, for example German, names divide into mass and count. Making use of Kayne's (2005, 2010) theory of light nouns, this paper argues that light nouns are part of (simple) names and that a mass-count distinction among light nouns explains the behavior of certain types of names in German as mass rather than count. The paper elaborates the role (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  10. The modal logic of the countable random frame.Valentin Goranko & Bruce Kapron - 2003 - Archive for Mathematical Logic 42 (3):221-243.
    We study the modal logic M L r of the countable random frame, which is contained in and `approximates' the modal logic of almost sure frame validity, i.e. the logic of those modal principles which are valid with asymptotic probability 1 in a randomly chosen finite frame. We give a sound and complete axiomatization of M L r and show that it is not finitely axiomatizable. Then we describe the finite frames of that logic and show that it has (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  11. Against the countable transitive model approach to forcing.Matteo de Ceglie - 2021 - In Martin Blicha & Igor Sedlár (eds.), The Logica Yearbook 2020. College Publications.
    In this paper, I argue that one of the arguments usually put forward in defence of universism is in tension with current set theoretic practice. According to universism, there is only one set theoretic universe, V, and when applying the method of forcing we are not producing new universes, but only simulating them inside V. Since the usual interpretation of set generic forcing is used to produce a “simulation” of an extension of V from a countable set inside V (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Truthlikeness for Theories on Countable Languages.Thomas Mormann - 2006 - In Ian Jarvie, Karl Milford & David Miller (eds.), Karl Popper: A Centenary Assessment vol. 3.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  13. Upper bounds on locally countable admissible initial segments of a Turing degree hierarchy.Harold T. Hodes - 1981 - Journal of Symbolic Logic 46 (4):753-760.
    Where AR is the set of arithmetic Turing degrees, 0 (ω ) is the least member of { $\mathbf{\alpha}^{(2)}|\mathbf{a}$ is an upper bound on AR}. This situation is quite different if we examine HYP, the set of hyperarithmetic degrees. We shall prove (Corollary 1) that there is an a, an upper bound on HYP, whose hyperjump is the degree of Kleene's O. This paper generalizes this example, using an iteration of the jump operation into the transfinite which is based on (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14. The Solution of the Invariant Subspace Problem. Complex Hilbert Space. External Countable Dimensional Linear spaces Over Field *Rc#. Part II.Jaykov Foukzon - 2022 - Journal of Advances in Mathematics and Computer Science 37 (11): 31-69.
    We present a new approach to the invariant subspace problem for complex Hilbert spaces.This approach based on nonconservative Extension of the Model Theoretical NSA. Our main result will be that: if T is a bounded linear operator on an infinite-dimensional complex separable Hilbert space H,it follow that T has a non-trivial closed invariant subspace.
    Download  
     
    Export citation  
     
    Bookmark  
  15. Chance and the Continuum Hypothesis.Daniel Hoek - 2020 - Philosophy and Phenomenological Research 103 (3):639-60.
    This paper presents and defends an argument that the continuum hypothesis is false, based on considerations about objective chance and an old theorem due to Banach and Kuratowski. More specifically, I argue that the probabilistic inductive methods standardly used in science presuppose that every proposition about the outcome of a chancy process has a certain chance between 0 and 1. I also argue in favour of the standard view that chances are countably additive. Since it is possible to randomly pick (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  16. Ross on sleeping beauty.Brian Weatherson - 2013 - Philosophical Studies 163 (2):503-512.
    In two excellent recent papers, Jacob Ross has argued that the standard arguments for the ‘thirder’ answer to the Sleeping Beauty puzzle lead to violations of countable additivity. The problem is that most arguments for that answer generalise in awkward ways when he looks at the whole class of what he calls Sleeping Beauty problems. In this note I develop a new argument for the thirder answer that doesn't generalise in this way.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  17. Conglomerability, disintegrability and the comparative principle.Rush T. Stewart & Michael Nielsen - 2021 - Analysis 81 (3):479-488.
    Our aim here is to present a result that connects some approaches to justifying countable additivity. This result allows us to better understand the force of a recent argument for countable additivity due to Easwaran. We have two main points. First, Easwaran’s argument in favour of countable additivity should have little persuasive force on those permissive probabilists who have already made their peace with violations of conglomerability. As our result shows, Easwaran’s main premiss – the comparative principle (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  18. Cantor’s Proof in the Full Definable Universe.Laureano Luna & William Taylor - 2010 - Australasian Journal of Logic 9:10-25.
    Cantor’s proof that the powerset of the set of all natural numbers is uncountable yields a version of Richard’s paradox when restricted to the full definable universe, that is, to the universe containing all objects that can be defined not just in one formal language but by means of the full expressive power of natural language: this universe seems to be countable on one account and uncountable on another. We argue that the claim that definitional contexts impose restrictions on (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  19. Arrow's theorem, ultrafilters, and reverse mathematics.Benedict Eastaugh - forthcoming - Review of Symbolic Logic.
    This paper initiates the reverse mathematics of social choice theory, studying Arrow's impossibility theorem and related results including Fishburn's possibility theorem and the Kirman–Sondermann theorem within the framework of reverse mathematics. We formalise fundamental notions of social choice theory in second-order arithmetic, yielding a definition of countable society which is tractable in RCA0. We then show that the Kirman–Sondermann analysis of social welfare functions can be carried out in RCA0. This approach yields a proof of Arrow's theorem in RCA0, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Infinite Prospects.Jeffrey Sanford Russell & Yoaav Isaacs - 2021 - Philosophy and Phenomenological Research 103 (1):178-198.
    People with the kind of preferences that give rise to the St. Petersburg paradox are problematic---but not because there is anything wrong with infinite utilities. Rather, such people cannot assign the St. Petersburg gamble any value that any kind of outcome could possibly have. Their preferences also violate an infinitary generalization of Savage's Sure Thing Principle, which we call the *Countable Sure Thing Principle*, as well as an infinitary generalization of von Neumann and Morgenstern's Independence axiom, which we call (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  21. On Accuracy and Coherence with Infinite Opinion Sets.Mikayla Kelley - 2023 - Philosophy of Science 90 (1):92-128.
    There is a well-known equivalence between avoiding accuracy dominance and having probabilistically coherent credences (see, e.g., de Finetti 1974, Joyce 2009, Predd et al. 2009, Pettigrew 2016). However, this equivalence has been established only when the set of propositions on which credence functions are defined is finite. In this paper, I establish connections between accuracy dominance and coherence when credence functions are defined on an infinite set of propositions. In particular, I establish the necessary results to extend the classic accuracy (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  22. Logics Based on Linear Orders of Contaminating Values.Roberto Ciuni, Thomas Macaulay Ferguson & Damian Szmuc - 2019 - Journal of Logic and Computation 29 (5):631–663.
    A wide family of many-valued logics—for instance, those based on the weak Kleene algebra—includes a non-classical truth-value that is ‘contaminating’ in the sense that whenever the value is assigned to a formula φ⁠, any complex formula in which φ appears is assigned that value as well. In such systems, the contaminating value enjoys a wide range of interpretations, suggesting scenarios in which more than one of these interpretations are called for. This calls for an evaluation of systems with multiple contaminating (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  23. More about uniform upper Bounds on ideals of Turing degrees.Harold T. Hodes - 1983 - Journal of Symbolic Logic 48 (2):441-457.
    Let I be a countable jump ideal in $\mathscr{D} = \langle \text{The Turing degrees}, \leq\rangle$ . The central theorem of this paper is: a is a uniform upper bound on I iff a computes the join of an I-exact pair whose double jump a (1) computes. We may replace "the join of an I-exact pair" in the above theorem by "a weak uniform upper bound on I". We also answer two minimality questions: the class of uniform upper bounds on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Arithmetic is Necessary.Zachary Goodsell - 2024 - Journal of Philosophical Logic 53 (4).
    (Goodsell, Journal of Philosophical Logic, 51(1), 127-150 2022) establishes the noncontingency of sentences of first-order arithmetic, in a plausible higher-order modal logic. Here, the same result is derived using significantly weaker assumptions. Most notably, the assumption of rigid comprehension—that every property is coextensive with a modally rigid one—is weakened to the assumption that the Boolean algebra of properties under necessitation is countably complete. The results are generalized to extensions of the language of arithmetic, and are applied to answer a question (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Absolutely No Free Lunches!Gordon Belot - forthcoming - Theoretical Computer Science.
    This paper is concerned with learners who aim to learn patterns in infinite binary sequences: shown longer and longer initial segments of a binary sequence, they either attempt to predict whether the next bit will be a 0 or will be a 1 or they issue forecast probabilities for these events. Several variants of this problem are considered. In each case, a no-free-lunch result of the following form is established: the problem of learning is a formidably difficult one, in that (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  26. A Simpler and More Realistic Subjective Decision Theory.Haim Gaifman & Yang Liu - 2018 - Synthese 195 (10):4205--4241.
    In his classic book “the Foundations of Statistics” Savage developed a formal system of rational decision making. The system is based on (i) a set of possible states of the world, (ii) a set of consequences, (iii) a set of acts, which are functions from states to consequences, and (iv) a preference relation over the acts, which represents the preferences of an idealized rational agent. The goal and the culmination of the enterprise is a representation theorem: Any preference relation that (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  27. Obligation, Permission, and Bayesian Orgulity.Michael Nielsen & Rush T. Stewart - 2019 - Ergo: An Open Access Journal of Philosophy 6.
    This essay has two aims. The first is to correct an increasingly popular way of misunderstanding Belot's Orgulity Argument. The Orgulity Argument charges Bayesianism with defect as a normative epistemology. For concreteness, our argument focuses on Cisewski et al.'s recent rejoinder to Belot. The conditions that underwrite their version of the argument are too strong and Belot does not endorse them on our reading. A more compelling version of the Orgulity Argument than Cisewski et al. present is available, however---a point (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  28. Typicality à la Russell in Set Theory.Athanassios Tzouvaras - 2022 - Notre Dame Journal of Formal Logic 63 (2).
    We adjust the notion of typicality originated with Russell, which was introduced and studied in a previous paper for general first-order structures, to make it expressible in the language of set theory. The adopted definition of the class ${\rm NT}$ of nontypical sets comes out as a natural strengthening of Russell's initial definition, which employs properties of small (minority) extensions, when the latter are restricted to the various levels $V_\zeta$ of $V$. This strengthening leads to defining ${\rm NT}$ as the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. (1 other version)Representation of strongly independent preorders by sets of scalar-valued functions.David McCarthy, Kalle Mikkola & Teruji Thomas - 2017 - MPRA Paper No. 79284.
    We provide conditions under which an incomplete strongly independent preorder on a convex set X can be represented by a set of mixture preserving real-valued functions. We allow X to be infi nite dimensional. The main continuity condition we focus on is mixture continuity. This is sufficient for such a representation provided X has countable dimension or satisfi es a condition that we call Polarization.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  30. An infinity of super-Belnap logics.Umberto Rivieccio - 2012 - Journal of Applied Non-Classical Logics 22 (4):319-335.
    We look at extensions (i.e., stronger logics in the same language) of the Belnap–Dunn four-valued logic. We prove the existence of a countable chain of logics that extend the Belnap–Dunn and do not coincide with any of the known extensions (Kleene’s logics, Priest’s logic of paradox). We characterise the reduced algebraic models of these new logics and prove a completeness result for the first and last element of the chain stating that both logics are determined by a single finite (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  31. Value neutrality and the ranking of opportunity sets.Michael Garnett - 2016 - Economics and Philosophy 32 (1):99-119.
    I defend the idea that a liberal commitment to value neutrality is best honoured by maintaining a pure cardinality component in our rankings of opportunity or liberty sets. I consider two challenges to this idea. The first holds that cardinality rankings are unnecessary for neutrality, because what is valuable about a set of liberties from a liberal point of view is not its size but rather its variety. The second holds that pure cardinality metrics are insufficient for neutrality, because liberties (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  32. Set existence principles and closure conditions: unravelling the standard view of reverse mathematics.Benedict Eastaugh - 2019 - Philosophia Mathematica 27 (2):153-176.
    It is a striking fact from reverse mathematics that almost all theorems of countable and countably representable mathematics are equivalent to just five subsystems of second order arithmetic. The standard view is that the significance of these equivalences lies in the set existence principles that are necessary and sufficient to prove those theorems. In this article I analyse the role of set existence principles in reverse mathematics, and argue that they are best understood as closure conditions on the powerset (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  33. Reducing the Actual: A Phenomenological Bracketing of Deleuze’s Qualities and Extensities.Joshua Soffer - manuscript
    Deleuze is prominent among those philosophers who pronounce that difference must be understood as ontologically prior to identity. He teaches that identity is a surface effect of difference, so to understand the basis of logico-mathematical idealities we must uncover their genesis in the fecundity of differentiation. Deleuze wants to offer a foundation of number and mathematics as a subversive, creative force, an affirmation of Nietzsche’s eternal return as the ‘roll of the dice’. But he begins too late. For Deleuze, virtual (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Deflationary Truth and Pathologies.Cezary Cieśliński - 2010 - Journal of Philosophical Logic 39 (3):325-337.
    By a classical result of Kotlarski, Krajewski and Lachlan, pathological satisfaction classes can be constructed for countable, recursively saturated models of Peano arithmetic. In this paper we consider the question of whether the pathology can be eliminated; we ask in effect what generalities involving the notion of truth can be obtained in a deflationary truth theory (a theory of truth which is conservative over its base). It is shown that the answer depends on the notion of pathology we adopt. (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  35. Modal logic with names.George Gargov & Valentin Goranko - 1993 - Journal of Philosophical Logic 22 (6):607 - 636.
    We investigate an enrichment of the propositional modal language L with a "universal" modality ■ having semantics x ⊧ ■φ iff ∀y(y ⊧ φ), and a countable set of "names" - a special kind of propositional variables ranging over singleton sets of worlds. The obtained language ℒ $_{c}$ proves to have a great expressive power. It is equivalent with respect to modal definability to another enrichment ℒ(⍯) of ℒ, where ⍯ is an additional modality with the semantics x ⊧ (...)
    Download  
     
    Export citation  
     
    Bookmark   68 citations  
  36. Philosophy of Probability: Foundations, Epistemology, and Computation.Sylvia Wenmackers - 2011 - Dissertation, University of Groningen
    This dissertation is a contribution to formal and computational philosophy. -/- In the first part, we show that by exploiting the parallels between large, yet finite lotteries on the one hand and countably infinite lotteries on the other, we gain insights in the foundations of probability theory as well as in epistemology. Case 1: Infinite lotteries. We discuss how the concept of a fair finite lottery can best be extended to denumerably infinite lotteries. The solution boils down to the introduction (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  37. What makes a `good' modal theory of sets?Neil Barton - manuscript
    I provide an examination and comparison of modal theories for underwriting different non-modal theories of sets. I argue that there is a respect in which the `standard' modal theory for set construction---on which sets are formed via the successive individuation of powersets---raises a significant challenge for some recently proposed `countabilist' modal theories (i.e. ones that imply that every set is countable). I examine how the countabilist can respond to this issue via the use of regularity axioms and raise some (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. L'étoffe du sensible [Sensible Stuffs].Olivier Massin - 2014 - In Jean-Marie Chevalier & Benoît Gaultier (eds.), Connaître: Questions d’épistémologie contemporaine. Paris: Editions d'Ithaque. pp. 201-230.
    The proper sensible criterion of sensory individuation holds that senses are individuated by the special kind of sensibles on which they exclusively bear about (colors for sight, sounds for hearing, etc.). H. P. Grice objected to the proper sensibles criterion that it cannot account for the phenomenal difference between feeling and seeing shapes or other common sensibles. That paper advances a novel answer to Grice's objection. Admittedly, the upholder of the proper sensible criterion must bind the proper sensibles –i.e. colors– (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  39. Countabilism and Maximality Principles.Neil Barton & Sy-David Friedman - manuscript
    It is standard in set theory to assume that Cantor's Theorem establishes that the continuum is an uncountable set. A challenge for this position comes from the observation that through forcing one can collapse any cardinal to the countable and that the continuum can be made arbitrarily large. In this paper, we present a different take on the relationship between Cantor's Theorem and extensions of universes, arguing that they can be seen as showing that every set is countable (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  40. The Stuff That Matters.N. G. Laskowski - 2024 - In Russ Shafer-Landau (ed.), Oxford Studies of Metaethics 19. Oxford University Press USA.
    On one way of talking about a traditional metaethical topic, realists accept that some items appear on the list of what exists in the moral or more broadly normative domain of inquiry. They then divide over whether those items are like what science and experience suggest that all other items on the list of what exists across all domains are like – naturalistic and secular. Reductive naturalists answer this further question affirmatively. Why don’t nonnaturalists? I explore the answer that it’s (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. The Kochen - Specker theorem in quantum mechanics: a philosophical comment (part 1).Vasil Penchev - 2013 - Philosophical Alternatives 22 (1):67-77.
    Non-commuting quantities and hidden parameters – Wave-corpuscular dualism and hidden parameters – Local or nonlocal hidden parameters – Phase space in quantum mechanics – Weyl, Wigner, and Moyal – Von Neumann’s theorem about the absence of hidden parameters in quantum mechanics and Hermann – Bell’s objection – Quantum-mechanical and mathematical incommeasurability – Kochen – Specker’s idea about their equivalence – The notion of partial algebra – Embeddability of a qubit into a bit – Quantum computer is not Turing machine – (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  42. Polyhedral Completeness of Intermediate Logics: The Nerve Criterion.Sam Adam-day, Nick Bezhanishvili, David Gabelaia & Vincenzo Marra - 2024 - Journal of Symbolic Logic 89 (1):342-382.
    We investigate a recently devised polyhedral semantics for intermediate logics, in which formulas are interpreted in n-dimensional polyhedra. An intermediate logic is polyhedrally complete if it is complete with respect to some class of polyhedra. The first main result of this paper is a necessary and sufficient condition for the polyhedral completeness of a logic. This condition, which we call the Nerve Criterion, is expressed in terms of Alexandrov’s notion of the nerve of a poset. It affords a purely combinatorial (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. On the basic principle of number.Joosoak Kim - manuscript
    A history of the construction of number has been in line with the process of recognition about the properties of geometry. Natural number representing countability is exhibited on a straight line and the completeness of real number is also originated from the continuous property of the number line. Complex number on a plane off the number line is established and thereafter, the whole number system is completed. When the process of constructing a number with geometric features is investigated from different (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Logic in the Tractatus.Max Weiss - 2017 - Review of Symbolic Logic 10 (1):1-50.
    I present a reconstruction of the logical system of the Tractatus, which differs from classical logic in two ways. It includes an account of Wittgenstein’s “form-series” device, which suffices to express some effectively generated countably infinite disjunctions. And its attendant notion of structure is relativized to the fixed underlying universe of what is named. -/- There follow three results. First, the class of concepts definable in the system is closed under finitary induction. Second, if the universe of objects is countably (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  45. Link's Revenge: A Case Study in Natural Language Mereology.Eric Snyder & Stewart Shapiro - 2018 - In Gabriele Mras, Paul Weingartner & Bernhard Ritter (eds.), Philosophy of Logic and Mathematics: Proceedings of the 41st International Ludwig Wittgenstein Symposium. Berlin, Boston: De Gruyter. pp. 3-36.
    Most philosophers are familiar with the metaphysical puzzle of the statue and the clay. A sculptor begins with some clay, eventually sculpting a statue from it. Are the clay and the statue one and the same thing? Apparently not, since they have different properties. For example, the clay could survive being squashed, but the statue could not. The statue is recently formed, though the clay is not, etc. Godehart Link 1983’s highly influential analysis of the count/mass distinction recommends that English (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. (2 other versions)The Search for New Axioms in the Hyperuniverse Programme.Claudio Ternullo & Sy-David Friedman - 2016 - In Francesca Boccuni & Andrea Sereni (eds.), Objectivity, Realism, and Proof. FilMat Studies in the Philosophy of Mathematics. Cham, Switzerland: Springer International Publishing. pp. 165-188.
    The Hyperuniverse Programme, introduced in Arrigoni and Friedman (2013), fosters the search for new set-theoretic axioms. In this paper, we present the procedure envisaged by the programme to find new axioms and the conceptual framework behind it. The procedure comes in several steps. Intrinsically motivated axioms are those statements which are suggested by the standard concept of set, i.e. the `maximal iterative concept', and the programme identi fies higher-order statements motivated by the maximal iterative concept. The satisfaction of these statements (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  47. More trouble for regular probabilitites.Matthew W. Parker - 2012
    In standard probability theory, probability zero is not the same as impossibility. But many have suggested that only impossible events should have probability zero. This can be arranged if we allow infinitesimal probabilities, but infinitesimals do not solve all of the problems. We will see that regular probabilities are not invariant over rigid transformations, even for simple, bounded, countable, constructive, and disjoint sets. Hence, regular chances cannot be determined by space-time invariant physical laws, and regular credences cannot satisfy seemingly (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  48. (1 other version)Conceptions of infinity and set in Lorenzen’s operationist system.Carolin Antos - 2004 - In S. Rahman (ed.), Logic, Epistemology, and the Unity of Science. Dordrecht: Kluwer Academic Publishers.
    In the late 1940s and early 1950s Lorenzen developed his operative logic and mathematics, a form of constructive mathematics. Nowadays this is mostly seen as the precursor to the more well-known dialogical logic and one could assumed that the same philosophical motivations were present in both works. However we want to show that this is not always the case. In particular, we claim, that Lorenzen’s well-known rejection of the actual infinite as stated in Lorenzen (1957) was not a major motivation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. How can a line segment with extension be composed of extensionless points?Brian Reese, Michael Vazquez & Scott Weinstein - 2022 - Synthese 200 (2):1-28.
    We provide a new interpretation of Zeno’s Paradox of Measure that begins by giving a substantive account, drawn from Aristotle’s text, of the fact that points lack magnitude. The main elements of this account are (1) the Axiom of Archimedes which states that there are no infinitesimal magnitudes, and (2) the principle that all assignments of magnitude, or lack thereof, must be grounded in the magnitude of line segments, the primary objects to which the notion of linear magnitude applies. Armed (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Number, Language, and Mathematics.Joosoak Kim - manuscript
    Number is a major object in mathematics. Mathematics is a discipline which studies the properties of a number. The object is expressible by mathematical language, which has been devised more rigorously than natural language. However, the language is not thoroughly free from natural language. Countability of natural number is also originated from natural language. It is necessary to understand how language leads a number into mathematics, its’ main playground.
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 70