Results for 'numbers'

258 found
Order:
See also
  1. Reference to Numbers in Natural Language.Friederike Moltmann - 2013 - Philosophical Studies 162 (3):499 - 536.
    A common view is that natural language treats numbers as abstract objects, with expressions like the number of planets, eight, as well as the number eight acting as referential terms referring to numbers. In this paper I will argue that this view about reference to numbers in natural language is fundamentally mistaken. A more thorough look at natural language reveals a very different view of the ontological status of natural numbers. On this view, numbers are (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  2. Of Numbers and Electrons.Cian Dorr - 2010 - Proceedings of the Aristotelian Society 110 (2pt2):133-181.
    According to a tradition stemming from Quine and Putnam, we have the same broadly inductive reason for believing in numbers as we have for believing in electrons: certain theories that entail that there are numbers are better, qua explanations of our evidence, than any theories that do not. This paper investigates how modal theories of the form ‘Possibly, the concrete world is just as it in fact is and T’ and ‘Necessarily, if standard mathematics is true and the (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  3. Don’T Count on Taurek: Vindicating the Case for the Numbers Counting.Yishai Cohen - 2014 - Res Publica 20 (3):245-261.
    Suppose you can save only one of two groups of people from harm, with one person in one group, and five persons in the other group. Are you obligated to save the greater number? While common sense seems to say ‘yes’, the numbers skeptic says ‘no’. Numbers Skepticism has been partly motivated by the anti-consequentialist thought that the goods, harms and well-being of individual people do not aggregate in any morally significant way. However, even many non-consequentialists think that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  4.  49
    Arbitrary Reference, Numbers, and Propositions.Michele Palmira - 2018 - European Journal of Philosophy 26 (3):1069-1085.
    Reductionist realist accounts of certain entities, such as the natural numbers and propositions, have been taken to be fatally undermined by what we may call the problem of arbitrary identification. The problem is that there are multiple and equally adequate reductions of the natural numbers to sets (see Benacerraf, 1965), as well as of propositions to unstructured or structured entities (see, e.g., Bealer, 1998; King, Soames, & Speaks, 2014; Melia, 1992). This paper sets out to solve the problem (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Numbers and Propositions: Reply to Melia.Tim Crane - 1992 - Analysis 52 (4):253-256.
    Is the way we use propositions to individuate beliefs and other intentional states analogous to the way we use numbers to measure weights and other physical magnitudes? In an earlier paper [2], I argued that there is an important disanalogy. One and the same weight can be 'related to' different numbers under different units of measurement. Moreover, the choice of a unit of measurement is arbitrary,in the sense that which way we choose doesn't affect the weight attributed to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  6.  51
    Frege, the Complex Numbers, and the Identity of Indiscernibles.Wenzel Christian Helmut - 2010 - Logique Et Analyse 53 (209):51-60.
    There are mathematical structures with elements that cannot be distinguished by the properties they have within that structure. For instance within the field of complex numbers the two square roots of −1, i and −i, have the same algebraic properties in that field. So how do we distinguish between them? Imbedding the complex numbers in a bigger structure, the quaternions, allows us to algebraically tell them apart. But a similar problem appears for this larger structure. There seems to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7.  73
    Platonism by the Numbers.Steven M. Duncan - manuscript
    In this paper, I defend traditional Platonic mathematical realism from its contemporary detractors, arguing that numbers, understood as abstract, non-physical objects of rational intuition, are indispensable for the act of counting.
    Download  
     
    Export citation  
     
    Bookmark  
  8. Talking About Numbers: Easy Arguments for Mathematical Realism. [REVIEW]Richard Lawrence - 2017 - History and Philosophy of Logic 38 (4):390-394.
    Download  
     
    Export citation  
     
    Bookmark  
  9. Is Euclid's Proof of the Infinitude of Prime Numbers Tautological?Zeeshan Mahmud - manuscript
    Euclid's classic proof about the infinitude of prime numbers has been a standard model of reasoning in student textbooks and books of elementary number theory. It has withstood scrutiny for over 2000 years but we shall prove that despite the deceptive appearance of its analytical reasoning it is tautological in nature. We shall argue that the proof is more of an observation about the general property of a prime numbers than an expository style of natural deduction of the (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  10.  65
    One, Two, Three… A Discussion on the Generation of Numbers in Plato’s Parmenides.Florin George Calian - 2015 - New Europe College:49-78.
    One of the questions regarding the Parmenides is whether Plato was committed to any of the arguments developed in the second part of the dialogue. This paper argues for considering at least one of the arguments from the second part of the Parmenides, namely the argument of the generation of numbers, as being platonically genuine. I argue that the argument at 142b-144b, which discusses the generation of numbers, is not deployed for the sake of dialectical argumentation alone, but (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Dennis R. Alexander and Ronald L. Numbers : Biology and Ideology: From Descartes to Dawkins.Massimo Pigliucci - 2013 - Science & Education 22 (2):405-409.
    Science has always strived for objectivity, for a ‘‘view from nowhere’’ that is not marred by ideology or personal preferences. That is a lofty ideal toward which perhaps it makes sense to strive, but it is hardly the reality. This collection of thirteen essays assembled by Denis R. Alexander and Ronald L. Numbers ought to give much pause to scientists and the public at large, though historians, sociologists and philosophers of science will hardly be surprised by the material covered (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Belief Dependence: How Do the Numbers Count?Zach Barnett - 2019 - Philosophical Studies 176 (2):297-319.
    This paper is about how to aggregate outside opinion. If two experts are on one side of an issue, while three experts are on the other side, what should a non-expert believe? Certainly, the non-expert should take into account more than just the numbers. But which other factors are relevant, and why? According to the view developed here, one important factor is whether the experts should have been expected, in advance, to reach the same conclusion. When the agreement of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  13. African Numbers Games and Gambler Motivation: 'Fahfee' in Contemporary South African.Stephen Louw - 2018 - African Affairs 117 (466):109-129.
    Since independence, at least 28 African countries have legalized some form of gambling. Yet a range of informal gambling activities have also flourished, often provoking widespread public concern about the negative social and economic impact of unregulated gambling on poor communities. This article addresses an illegal South African numbers game called fahfee. Drawing on interviews with players, operators, and regulatory officials, this article explores two aspects of this game. First, it explores the lives of both players and runners, as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Why the Numbers Should Sometimes Count.John T. Sanders - 1988 - Philosophy and Public Affairs 17 (1):3-14.
    John Taurek has argued that, where choices must be made between alternatives that affect different numbers of people, the numbers are not, by themselves, morally relevant. This is because we "must" take "losses-to" the persons into account (and these don't sum), but "must not" consider "losses-of" persons (because we must not treat persons like objects). I argue that the numbers are always ethically relevant, and that they may sometimes be the decisive consideration.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  15.  64
    Exact Equality and Successor Function: Two Key Concepts on the Path Towards Understanding Exact Numbers.Véronique Izard, Pierre Pica, Elizabeth S. Spelke & Stanislas Dehaene - 2008 - Philosophical Psychology 21 (4):491 – 505.
    Humans possess two nonverbal systems capable of representing numbers, both limited in their representational power: the first one represents numbers in an approximate fashion, and the second one conveys information about small numbers only. Conception of exact large numbers has therefore been thought to arise from the manipulation of exact numerical symbols. Here, we focus on two fundamental properties of the exact numbers as prerequisites to the concept of EXACT NUMBERS : the fact that (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  16. Infinite Numbers Are Large Finite Numbers.Jeremy Gwiazda - unknown
    In this paper, I suggest that infinite numbers are large finite numbers, and that infinite numbers, properly understood, are 1) of the structure omega + (omega* + omega)Ө + omega*, and 2) the part is smaller than the whole. I present an explanation of these claims in terms of epistemic limitations. I then consider the importance, part of which is demonstrating the contradiction that lies at the heart of Cantorian set theory: the natural numbers are too (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation  
  17. Ortega y Gasset on Georg Cantor’s Theory of Transfinite Numbers.Lior Rabi - 2016 - Kairos (15):46-70.
    Ortega y Gasset is known for his philosophy of life and his effort to propose an alternative to both realism and idealism. The goal of this article is to focus on an unfamiliar aspect of his thought. The focus will be given to Ortega’s interpretation of the advancements in modern mathematics in general and Cantor’s theory of transfinite numbers in particular. The main argument is that Ortega acknowledged the historical importance of the Cantor’s Set Theory, analyzed it and articulated (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. On Multiverses and Infinite Numbers.Jeremy Gwiazda - 2014 - In Klaas Kraay (ed.), God and the Multiverse. Routledge. pp. 162-173.
    A multiverse is comprised of many universes, which quickly leads to the question: How many universes? There are either finitely many or infinitely many universes. The purpose of this paper is to discuss two conceptions of infinite number and their relationship to multiverses. The first conception is the standard Cantorian view. But recent work has suggested a second conception of infinite number, on which infinite numbers behave very much like finite numbers. I will argue that that this second (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Rational Numbers: A Non‐Consequentialist Explanation Of Why You Should Save The Many And Not The Few.Tom Dougherty - 2013 - Philosophical Quarterly 63 (252):413-427.
    You ought to save a larger group of people rather than a distinct smaller group of people, all else equal. A consequentialist may say that you ought to do so because this produces the most good. If a non-consequentialist rejects this explanation, what alternative can he or she give? This essay defends the following explanation, as a solution to the so-called numbers problem. Its two parts can be roughly summarised as follows. First, you are morally required to want the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. Theoretical Implications of the Study of Numbers and Numerals in Mundurucu.Pierre Pica & Alain Lecomte - 2008 - Philosophical Psychology 21 (4):507 – 522.
    Developing earlier studies of the system of numbers in Mundurucu, this paper argues that the Mundurucu numeral system is far more complex than usually assumed. The Mundurucu numeral system provides indirect but insightful arguments for a modular approach to numbers and numerals. It is argued that distinct components must be distinguished, such as a system of representation of numbers in the format of internal magnitudes, a system of representation for individuals and sets, and one-to-one correspondences between the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  21.  74
    Wittgenstein on Pseudo-Irrationals, Diagonal Numbers and Decidability.Timm Lampert - 2008 - In The Logica Yearbook 2008. London: pp. 95-111.
    In his early philosophy as well as in his middle period, Wittgenstein holds a purely syntactic view of logic and mathematics. However, his syntactic foundation of logic and mathematics is opposed to the axiomatic approach of modern mathematical logic. The object of Wittgenstein’s approach is not the representation of mathematical properties within a logical axiomatic system, but their representation by a symbolism that identifies the properties in question by its syntactic features. It rests on his distinction of descriptions and operations; (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  22. Numbers, Fairness and Charity.Adam Hosein - manuscript
    This paper discusses the "numbers problem," the problem of explaining why you should save more people rather than fewer when forced to choose. Existing non-consequentialist approaches to the problem appeal to fairness to explain why. I argue that this is a mistake and that we can give a more satisfying answer by appealing to requirements of charity or beneficence.
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  23. Numbers Without Science.Russell Marcus - 2007 - Dissertation, The Graduate School and University Center of the City University of New York
    Numbers without Science opposes the Quine-Putnam indispensability argument, seeking to undermine the argument and reduce its profound influence. Philosophers rely on indispensability to justify mathematical knowledge using only empiricist epistemology. I argue that we need an independent account of our knowledge of mathematics. The indispensability argument, in broad form, consists of two premises. The major premise alleges that we are committed to mathematical objects if science requires them. The minor premise alleges that science in fact requires mathematical objects. The (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  24. Fair Numbers: What Data Can and Cannot Tell Us About the Underrepresentation of Women in Philosophy.Yann Benétreau-Dupin & Guillaume Beaulac - 2015 - Ergo: An Open Access Journal of Philosophy 2:59-81.
    The low representation (< 30%) of women in philosophy in English-speaking countries has generated much discussion, both in academic circles and the public sphere. It is sometimes suggested (Haslanger 2009) that unconscious biases, acting at every level in the field, may be grounded in gendered schemas of philosophers and in the discipline more widely, and that actions to make philosophy a more welcoming place for women should address such schemas. However, existing data are too limited to fully warrant such an (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  25. Evidentialism and the Numbers Game.Andrew E. Reisner - 2007 - Theoria 73 (4):304-316.
    In this paper I introduce an objection to normative evidentialism about reasons for belief. The objection arises from difficulties that evidentialism has with explaining our reasons for belief in unstable belief contexts with a single fixed point. I consider what other kinds of reasons for belief are relevant in such cases.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  26. What We Talk About When We Talk About Numbers.Richard Pettigrew - manuscript
    In this paper, I describe and motivate a new species of mathematical structuralism, which I call Instrumental Nominalism about Set-Theoretic Structuralism. As the name suggests, this approach takes standard Set-Theoretic Structuralism of the sort championed by Bourbaki and removes its ontological commitments by taking an instrumental nominalist approach to that ontology of the sort described by Joseph Melia and Gideon Rosen. I argue that this avoids all of the problems that plague other versions of structuralism.
    Download  
     
    Export citation  
     
    Bookmark  
  27. An Alleged Analogy Between Numbers and Propositions.Tim Crane - 1990 - Analysis 50 (4):224-230.
    A Commonplace of recent philosophy of mind is that intentional states are relations between thinkers and propositions. This thesis-call it the 'Relational Thesis'-does not depend on any specific theory of propositions. One can hold it whether one believes that propositions are Fregean Thoughts, ordered n-tuples of objects and properties or sets of possible worlds. An assumption that all these theories of propositions share is that propositions are abstract objects, without location in space or time...
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  28.  45
    Numbers and Functions in Hilbert's Finitism.Richard Zach - 1998 - Taiwanese Journal for History and Philosophy of Science 10:33-60.
    David Hilbert's finitistic standpoint is a conception of elementary number theory designed to answer the intuitionist doubts regarding the security and certainty of mathematics. Hilbert was unfortunately not exact in delineating what that viewpoint was, and Hilbert himself changed his usage of the term through the 1920s and 30s. The purpose of this paper is to outline what the main problems are in understanding Hilbert and Bernays on this issue, based on some publications by them which have so far received (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  29. St. Augustine on Time, Time Numbers, and Enduring Objects.Jason W. Carter - 2011 - Vivarium 49 (4):301-323.
    Throughout his works, St. Augustine offers at least nine distinct views on the nature of time, at least three of which have remained almost unnoticed in the secondary literature. I first examine each these nine descriptions of time and attempt to diffuse common misinterpretations, especially of the views which seek to identify Augustinian time as consisting of an un-extended point or a distentio animi . Second, I argue that Augustine's primary understanding of time, like that of later medieval scholastics, is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  30. Numbers Versus Nominalists.Nathan Salmon - 2008 - Analysis 68 (3):177–182.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  31.  84
    If There Were No Numbers, What Would You Think?Thomas Mark Eden Donaldson - 2014 - Thought: A Journal of Philosophy 3 (4):283-287.
    Hartry Field has argued that mathematical realism is epistemologically problematic, because the realist is unable to explain the supposed reliability of our mathematical beliefs. In some of his discussions of this point, Field backs up his argument by saying that our purely mathematical beliefs do not ‘counterfactually depend on the facts’. I argue that counterfactual dependence is irrelevant in this context; it does nothing to bolster Field's argument.
    Download  
     
    Export citation  
     
    Bookmark  
  32.  67
    The Mapping of Numbers on Space : Evidence for a Logarithmic Intuition.Véronique Izard, Pierre Pica, Elizabeth Spelke & Stanislas Dehaene - 2008 - Médecine/Science 24 (12):1014-1016.
    Des branches entières des mathématiques sont fondées sur des liens posés entre les nombres et l’espace : mesure de longueurs, définition de repères et de coordonnées, projection des nombres complexes sur le plan… Si les nombres complexes, comme l’utilisation de repères, sont apparus relativement récemment (vers le XVIIe siècle), la mesure des longueurs est en revanche un procédé très ancien, qui remonte au moins au 3e ou 4e millénaire av. J-C. Loin d’être fortuits, ces liens entre les nombres et l’espace (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  33.  54
    Maternal Exercise During Pregnancy Increases BDNF Levels and Cell Numbers in the Hippocampal Formation but Not in the Cerebral Cortex of Adult Rat Offspring.Sérgio Gomes da Silva - 2016 - PLoS ONE 11 (1):01-15.
    Clinical evidence has shown that physical exercise during pregnancy may alter brain devel- opment and improve cognitive function of offspring. However, the mechanisms through which maternal exercise might promote such effects are not well understood. The present study examined levels of brain-derived neurotrophic factor (BDNF) and absolute cell num- bers in the hippocampal formation and cerebral cortex of rat pups born from mothers exer- cised during pregnancy. Additionally, we evaluated the cognitive abilities of adult offspring in different behavioral paradigms (exploratory (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Consideration on the Flow Velocity in the Experimental Analysis of the Flame Displacement Speed Using DNS Data of Turbulent Premixed Flames with Different Lewis Numbers.Kazuya Tsuboi - 2014 - Open Journal of Fluid Dynamics 4 (3):278-287.
    The flame displacement speed is one of the major characteristics in turbulent premixed flames. The flame displacement speed is experimentally obtained from the displacement normal to the flame surface, while it is numerically evaluated by the transport equation of the flame surface. The flame displacement speeds obtained both experimentally and numerically cannot be compared directly because their definitions are different. In this study, two kinds of experimental flame displacement speeds—involving the mean inflow velocity and the local flow velocity—were simulated using (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Surreal Decisions.Eddy Keming Chen & Daniel Rubio - 2018 - Philosophy and Phenomenological Research.
    Although expected utility theory has proven a fruitful and elegant theory in the finite realm, attempts to generalize it to infinite values have resulted in many paradoxes. In this paper, we argue that the use of John Conway's surreal numbers shall provide a firm mathematical foundation for transfinite decision theory. To that end, we prove a surreal representation theorem and show that our surreal decision theory respects dominance reasoning even in the case of infinite values. We then bring our (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  36. Abstract Objects and the Semantics of Natural Language.Friederike Moltmann - 2013 - Oxford University Press.
    This book pursues the question of how and whether natural language allows for reference to abstract objects in a fully systematic way. By making full use of contemporary linguistic semantics, it presents a much greater range of linguistic generalizations than has previously been taken into consideration in philosophical discussions, and it argues for an ontological picture is very different from that generally taken for granted by philosophers and semanticists alike. Reference to abstract objects such as properties, numbers, propositions, and (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  37. Sleeping Beauty: Exploring a Neglected Solution.Laureano Luna - forthcoming - British Journal for the Philosophy of Science.
    The strong law of large numbers and considerations concerning additional information strongly suggest that Beauty upon awakening has probability 1⁄3 to be in a heads-awakening but should still believe the probability that the coin landed heads in the Sunday toss to be 1⁄2. The problem is that she is in a heads-awakening if and only if the coin landed heads. So, how can she rationally assign different probabilities or credences to propositions she knows imply each other? This is the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  38. Mathematical Platonism.Massimo Pigliucci - 2011 - Philosophy Now 84:47-47.
    Are numbers and other mathematical objects "out there" in some philosophically meaningful sense?
    Download  
     
    Export citation  
     
    Bookmark  
  39.  84
    Nominalization, Specification, and Investigation.Richard Lawrence - 2017 - Dissertation, University of California, Berkeley
    Frege famously held that numbers play the role of objects in our language and thought, and that this role is on display when we use sentences like "The number of Jupiter's moons is four". I argue that this role is an example of a general pattern that also encompasses persons, times, locations, reasons, causes, and ways of appearing or acting. These things are 'objects' simply in the sense that they are answers to questions: they are the sort of thing (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  40. Aristotle and Modern Mathematical Theories of the Continuum.Anne Newstead - 2001 - In Demetra Sfendoni-Mentzou & James Brown (eds.), Aristotle and Contemporary Philosophy of Science. Peter Lang.
    This paper is on Aristotle's conception of the continuum. It is argued that although Aristotle did not have the modern conception of real numbers, his account of the continuum does mirror the topology of the real number continuum in modern mathematics especially as seen in the work of Georg Cantor. Some differences are noted, particularly as regards Aristotle's conception of number and the modern conception of real numbers. The issue of whether Aristotle had the notion of open versus (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation  
  41. The Number of Planets, a Number-Referring Term?Friederike Moltmann - 2016 - In Philip A. Ebert & Marcus Rossberg (eds.), Abstractionism: Essays in Philosophy of Mathematics. Oxford University Press. pp. 113-129.
    The question whether numbers are objects is a central question in the philosophy of mathematics. Frege made use of a syntactic criterion for objethood: numbers are objects because there are singular terms that stand for them, and not just singular terms in some formal language, but in natural language in particular. In particular, Frege (1884) thought that both noun phrases like the number of planets and simple numerals like eight as in (1) are singular terms referring to (...) as abstract objects. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  42.  91
    On the Reality of the Continuum Discussion Note: A Reply to Ormell, ‘Russell's Moment of Candour’, Philosophy: Anne Newstead and James Franklin.Anne Newstead - 2008 - Philosophy 83 (1):117-127.
    In a recent article, Christopher Ormell argues against the traditional mathematical view that the real numbers form an uncountably infinite set. He rejects the conclusion of Cantor’s diagonal argument for the higher, non-denumerable infinity of the real numbers. He does so on the basis that the classical conception of a real number is mys- terious, ineffable, and epistemically suspect. Instead, he urges that mathematics should admit only ‘well-defined’ real numbers as proper objects of study. In practice, this (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  43.  88
    Plato’s Philosophy of Cognition by Mathematical Modelling.Roman S. Kljujkov & Sergey Kljujkov - 2014 - Dialogue and Universalism 24 (3):110-115.
    By the end of his life Plato had rearranged the theory of ideas into his teaching about ideal numbers, but no written records have been left. The Ideal mathematics of Plato is present in all his dialogues. It can be clearly grasped in relation to the effective use of mathematical modelling. Many problems of mathematical modelling were laid in the foundation of the method by cutting the three-level idealism of Plato to the single-level “ideism” of Aristotle. For a long (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44.  80
    Name Strategy: Its Existence and Implications.Mark D. Roberts - 2005 - Int.J.Computational Cognition 3:1-14.
    It is argued that colour name strategy, object name strategy, and chunking strategy in memory are all aspects of the same general phenomena, called stereotyping, and this in turn is an example of a know-how representation. Such representations are argued to have their origin in a principle called the minimum duplication of resources. For most the subsequent discussions existence of colour name strategy suffices. It is pointed out that the BerlinA- KayA universal partial ordering of colours and the frequency of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  45.  82
    The Epistemic Significance of Numerals.Jan Heylen - forthcoming - Synthese:1-27.
    The central topic of this article is de re knowledge about natural numbers and its relation with names for numbers. It is held by several prominent philosophers that numerals are eligible for existential quantification in epistemic contexts, whereas other names for natural numbers are not. In other words, numerals are intimately linked with de re knowledge about natural numbers, whereas the other names for natural numbers are not. In this article I am looking for an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46.  61
    Some Results on Ordered Structures in Toposes.Luís Sbardellini & Marcelo Coniglio - 2006 - Reports on Mathematical Logic:181-198.
    A topos version of Cantor’s back and forth theorem is established and used to prove that the ordered structure of the rational numbers (Q, <) is homogeneous in any topos with natural numbers object. The notion of effective homogeneity is introduced, and it is shown that (Q, <) is a minimal effectively homogeneous structure, that is, it can be embedded in every other effectively homogeneous ordered structure.
    Download  
     
    Export citation  
     
    Bookmark  
  47.  77
    On the Reality of the Continuum Discussion Note: A Reply to Ormell, 'Russell's Moment of Candour', "Philosophy".Anne Newstead & James Franklin - 2008 - Philosophy 83 (1):117-127.
    This paper discusses an argument for the reality of the classical mathematical continuum. An inference to the best explanation type of argument is used to defend the idea that real numbers exist even when they cannot be constructively specified as with the "indefinable numbers".
    Download  
     
    Export citation  
     
    Bookmark  
  48. Surreal Time and Ultratasks.Haidar Al-Dhalimy & Charles J. Geyer - 2016 - Review of Symbolic Logic 9 (4):836-847.
    This paper suggests that time could have a much richer mathematical structure than that of the real numbers. Clark & Read (1984) argue that a hypertask (uncountably many tasks done in a finite length of time) cannot be performed. Assuming that time takes values in the real numbers, we give a trivial proof of this. If we instead take the surreal numbers as a model of time, then not only are hypertasks possible but so is an ultratask (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  49.  69
    Using Blinking Fractals for Mathematical Modelling of Processes of Growth in Biological Systems.Yaroslav Sergeyev - 2011 - Informatica 22 (4):559–576.
    Many biological processes and objects can be described by fractals. The paper uses a new type of objects – blinking fractals – that are not covered by traditional theories considering dynamics of self-similarity processes. It is shown that both traditional and blinking fractals can be successfully studied by a recent approach allowing one to work numerically with infinite and infinitesimal numbers. It is shown that blinking fractals can be applied for modeling complex processes of growth of biological systems including (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  50. A New Applied Approach for Executing Computations with Infinite and Infinitesimal Quantities.Yaroslav D. Sergeyev - 2008 - Informatica 19 (4):567-596.
    A new computational methodology for executing calculations with infinite and infinitesimal quantities is described in this paper. It is based on the principle ‘The part is less than the whole’ introduced by Ancient Greeks and applied to all numbers (finite, infinite, and infinitesimal) and to all sets and processes (finite and infinite). It is shown that it becomes possible to write down finite, infinite, and infinitesimal numbers by a finite number of symbols as particular cases of a unique (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   3 citations  
1 — 50 / 258