Results for ' set theory'

962 found
Order:
  1. Quasi-set theory: a formal approach to a quantum ontology of properties.Federico Holik, Juan Pablo Jorge, Décio Krause & Olimpia Lombardi - 2022 - Synthese 200 (5):1-26.
    In previous works, an ontology of properties for quantum mechanics has been proposed, according to which quantum systems are bundles of properties with no principle of individuality. The aim of the present article is to show that, since quasi-set theory is particularly suited for dealing with aggregates of items that do not belong to the traditional category of individual, it supplies an adequate meta-language to speak of the proposed ontology of properties and its structure.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  2. Arithmetic, Set Theory, Reduction and Explanation.William D’Alessandro - 2018 - Synthese 195 (11):5059-5089.
    Philosophers of science since Nagel have been interested in the links between intertheoretic reduction and explanation, understanding and other forms of epistemic progress. Although intertheoretic reduction is widely agreed to occur in pure mathematics as well as empirical science, the relationship between reduction and explanation in the mathematical setting has rarely been investigated in a similarly serious way. This paper examines an important particular case: the reduction of arithmetic to set theory. I claim that the reduction is unexplanatory. In (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  3. Causal Set Theory and Growing Block? Not Quite.Marco Forgione - manuscript
    In this contribution, I explore the possibility of characterizing the emergence of time in causal set theory (CST) in terms of the growing block universe (GBU) metaphysics. I show that although GBU seems to be the most intuitive time metaphysics for CST, it leaves us with a number of interpretation problems, independently of which dynamics we choose to favor for the theory —here I shall consider the Classical Sequential Growth and the Covariant model. Discrete general covariance of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. (1 other version)Modal set theory.Christopher Menzel - 2018 - In Otávio Bueno & Scott A. Shalkowski (eds.), The Routledge Handbook of Modality. New York: Routledge.
    This article presents an overview of the basic philosophical motivations for, and some recent work in, modal set theory.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. Wand/Set Theories: A realization of Conway's mathematicians' liberation movement, with an application to Church's set theory with a universal set.Tim Button - forthcoming - Journal of Symbolic Logic.
    Consider a variant of the usual story about the iterative conception of sets. As usual, at every stage, you find all the (bland) sets of objects which you found earlier. But you also find the result of tapping any earlier-found object with any magic wand (from a given stock of magic wands). -/- By varying the number and behaviour of the wands, we can flesh out this idea in many different ways. This paper's main Theorem is that any loosely constructive (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Internal Set Theory IST# Based on Hyper Infinitary Logic with Restricted Modus Ponens Rule: Nonconservative Extension of the Model Theoretical NSA.Jaykov Foukzon - 2022 - Journal of Advances in Mathematics and Computer Science 37 (7): 16-43.
    The incompleteness of set theory ZF C leads one to look for natural nonconservative extensions of ZF C in which one can prove statements independent of ZF C which appear to be “true”. One approach has been to add large cardinal axioms.Or, one can investigate second-order expansions like Kelley-Morse class theory, KM or Tarski-Grothendieck set theory T G or It is a nonconservative extension of ZF C and is obtained from other axiomatic set theories by the inclusion (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  7. Cognitive Set Theory.Alec Rogers (ed.) - 2011 - ArborRhythms.
    Cognitive Set Theory is a mathematical model of cognition which equates sets with concepts, and uses mereological elements. It has a holistic emphasis, as opposed to a reductionistic emphasis, and it therefore begins with a single universe (as opposed to an infinite collection of infinitesimal points).
    Download  
     
    Export citation  
     
    Bookmark  
  8.  56
    Strategic Set Theory.Morteza Shahram - manuscript
    An attempt to vindicate naive set theory by postulating a universal set V which is describable in two distinct description languages: predicative and extensional. The extensional description of a set consists of describing all its elements whereas its predicative description consists of describing what sets it is an element of. -/- Extensionally described V has an uncapturable description length, akin to its cardinality. But predicatively described, in virtue of being the set that is not contained in any set whatsoever, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Heisenberg quantum mechanics, numeral set-theory and.Han Geurdes - manuscript
    In the paper we will employ set theory to study the formal aspects of quantum mechanics without explicitly making use of space-time. It is demonstrated that von Neuman and Zermelo numeral sets, previously efectively used in the explanation of Hardy’s paradox, follow a Heisenberg quantum form. Here monadic union plays the role of time derivative. The logical counterpart of monadic union plays the part of the Hamiltonian in the commutator. The use of numerals and monadic union in the classical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Set Theory and Structures.Neil Barton & Sy-David Friedman - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 223-253.
    Set-theoretic and category-theoretic foundations represent different perspectives on mathematical subject matter. In particular, category-theoretic language focusses on properties that can be determined up to isomorphism within a category, whereas set theory admits of properties determined by the internal structure of the membership relation. Various objections have been raised against this aspect of set theory in the category-theoretic literature. In this article, we advocate a methodological pluralism concerning the two foundational languages, and provide a theory that fruitfully interrelates (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  11. Set Theory, Topology, and the Possibility of Junky Worlds.Thomas Mormann - 2014 - Notre Dame Journal of Formal Logic 55 (1): 79 - 90.
    A possible world is a junky world if and only if each thing in it is a proper part. The possibility of junky worlds contradicts the principle of general fusion. Bohn (2009) argues for the possibility of junky worlds, Watson (2010) suggests that Bohn‘s arguments are flawed. This paper shows that the arguments of both authors leave much to be desired. First, relying on the classical results of Cantor, Zermelo, Fraenkel, and von Neumann, this paper proves the possibility of junky (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  12. Reducing Arithmetic to Set Theory.A. C. Paseau - 2009 - In Ø. Linnebo O. Bueno (ed.), New Waves in Philosophy of Mathematics. Palgrave-Macmillan. pp. 35-55.
    The revival of the philosophy of mathematics in the 60s following its post-1931 slump left us with two conflicting positions on arithmetic’s ontological relationship to set theory. W.V. Quine’s view, presented in 'Word and Object' (1960), was that numbers are sets. The opposing view was advanced in another milestone of twentieth-century philosophy of mathematics, Paul Benacerraf’s 'What Numbers Could Not Be' (1965): one of the things numbers could not be, it explained, was sets; the other thing numbers could not (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  13. Set Theory INC# Based on Infinitary Intuitionistic Logic with Restricted Modus Ponens Rule (Part.II) Hyper inductive definitions.Jaykov Foukzon - 2021 - Journal of Advances in Mathematics and Computer Science 36 (4):22.
    In this paper intuitionistic set theory INC# in infinitary set theoretical language is considered. External induction principle in nonstandard intuitionistic arithmetic were derived. Non trivial application in number theory is considered.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  14. Nonstandard set theories and information management.Varol Akman & Mujdat Pakkan - 1996 - Journal of Intelligent Information Systems 6:5-31.
    The merits of set theory as a foundational tool in mathematics stimulate its use in various areas of artificial intelligence, in particular intelligent information systems. In this paper, a study of various nonstandard treatments of set theory from this perspective is offered. Applications of these alternative set theories to information or knowledge management are surveyed.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  15. Quantum Set Theory Extending the Standard Probabilistic Interpretation of Quantum Theory.Masanao Ozawa - 2016 - New Generation Computing 34 (1):125-152.
    The notion of equality between two observables will play many important roles in foundations of quantum theory. However, the standard probabilistic interpretation based on the conventional Born formula does not give the probability of equality between two arbitrary observables, since the Born formula gives the probability distribution only for a commuting family of observables. In this paper, quantum set theory developed by Takeuti and the present author is used to systematically extend the standard probabilistic interpretation of quantum (...) to define the probability of equality between two arbitrary observables in an arbitrary state. We apply this new interpretation to quantum measurement theory, and establish a logical basis for the difference between simultaneous measurability and simultaneous determinateness. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  16. Set Theory and Structures.Sy-David Friedman & Neil Barton - 2019 - In Stefania Centrone, Deborah Kant & Deniz Sarikaya (eds.), Reflections on the Foundations of Mathematics: Univalent Foundations, Set Theory and General Thoughts. Springer Verlag. pp. 223-253.
    Set-theoretic and category-theoretic foundations represent different perspectives on mathematical subject matter. In particular, category-theoretic language focusses on properties that can be determined up to isomorphism within a category, whereas set theory admits of properties determined by the internal structure of the membership relation. Various objections have been raised against this aspect of set theory in the category-theoretic literature. In this article, we advocate a methodological pluralism concerning the two foundational languages, and provide a theory that fruitfully interrelates (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Another use of set theory.Patrick Dehornoy - 1996 - Bulletin of Symbolic Logic 2 (4):379-391.
    Here, we analyse some recent applications of set theory to topology and argue that set theory is not only the closed domain where mathematics is usually founded, but also a flexible framework where imperfect intuitions can be precisely formalized and technically elaborated before they possibly migrate toward other branches. This apparently new role is mostly reminiscent of the one played by other external fields like theoretical physics, and we think that it could contribute to revitalize the interest in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  18. (1 other version)Twist-Valued Models for Three-valued Paraconsistent Set Theory.Walter Carnielli & Marcelo E. Coniglio - 2021 - Logic and Logical Philosophy 30 (2):187-226.
    Boolean-valued models of set theory were independently introduced by Scott, Solovay and Vopěnka in 1965, offering a natural and rich alternative for describing forcing. The original method was adapted by Takeuti, Titani, Kozawa and Ozawa to lattice-valued models of set theory. After this, Löwe and Tarafder proposed a class of algebras based on a certain kind of implication which satisfy several axioms of ZF. From this class, they found a specific 3-valued model called PS3 which satisfies all the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  19.  64
    Summary by an AI of the article The Ontology of Knowledge, Logic, Arithmetic, Set Theory, and Geometry.Jean-Louis Boucon - 2024 - Academia.
    The text “The Ontology of Knowledge, Logic, Arithmetic, Set Theory, and Geometry” by Jean-Louis Boucon explores a deeply philosophical interpretation of knowledge, its logical structure, and the foundational elements of mathematical and scientific reasoning. -/- Here’s an overview condensed by an AI of the key themes and ideas, summarized into a quite general conceptual structure. These two pages are instructive on their own, but their main purpose is to facilitate the reading of the entire article, allowing the reader to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Category theory and set theory as theories about complementary types of universals.David P. Ellerman - 2017 - Logic and Logical Philosophy 26 (2):1-18.
    Instead of the half-century old foundational feud between set theory and category theory, this paper argues that they are theories about two different complementary types of universals. The set-theoretic antinomies forced naïve set theory to be reformulated using some iterative notion of a set so that a set would always have higher type or rank than its members. Then the universal u_{F}={x|F(x)} for a property F() could never be self-predicative in the sense of u_{F}∈u_{F}. But the mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. (1 other version)Book "Set theory INC^# based on intuitionistic logic with restricted modus ponens rule".Jaykov Foukzon - 2021 - LAP LAMBERT Academic Publishing.
    In this book set theory INC# based on intuitionistic logic with restricted modus ponens rule is proposed. It proved that intuitionistic logic with restricted modus ponens rule can to safe Cantor naive set theory from a triviality.
    Download  
     
    Export citation  
     
    Bookmark  
  22. Set Theory INC_{∞^{#}}^{#} Based on Infinitary Intuitionistic Logic with Restricted Modus Ponens Rule (Part III).Hyper inductive definitions. Application in transcendental number theory.Jaykov Foukzon - 2021 - Journal of Advances in Mathematics and Computer Science 36 (8):43.
    Main results are: (i) number e^{e} is transcendental; (ii) the both numbers e+π and e-π are irrational.
    Download  
     
    Export citation  
     
    Bookmark  
  23. Review of: Garciadiego, A., "Emergence of...paradoxes...set theory", Historia Mathematica (1985), in Mathematical Reviews 87j:01035.John Corcoran - 1987 - MATHEMATICAL REVIEWS 87 (J):01035.
    DEFINING OUR TERMS A “paradox" is an argumentation that appears to deduce a conclusion believed to be false from premises believed to be true. An “inconsistency proof for a theory" is an argumentation that actually deduces a negation of a theorem of the theory from premises that are all theorems of the theory. An “indirect proof of the negation of a hypothesis" is an argumentation that actually deduces a conclusion known to be false from the hypothesis alone (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Neutrosophic Crisp Set Theory.A. A. Salama & Florentin Smarandache - 2015 - Columbus, OH, USA: Educational Publishers.
    Since the world is full of indeterminacy, the Neutrosophics found their place into contemporary research. We now introduce for the first time the notions of Neutrosophic Crisp Sets and Neutrosophic Topology on Crisp Sets. We develop the 2012 notion of Neutrosophic Topological Spaces and give many practical examples. Neutrosophic Science means development and applications of Neutrosophic Logic, Set, Measure, Integral, Probability etc., and their applications in any field. It is possible to define the neutrosophic measure and consequently the neutrosophic integral (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  25. From Traditional Set Theory – that of Cantor, Hilbert , Gödel, Cohen – to Its Necessary Quantum Extension.Edward G. Belaga - manuscript
    The original purpose of the present study, 2011, started with a preprint «On the Probable Failure of the Uncountable Power Set Axiom», 1988, is to save from the transfinite deadlock of higher set theory the jewel of mathematical Continuum — this genuine, even if mostly forgotten today raison d’être of all traditional set-theoretical enterprises to Infinity and beyond, from Georg Cantor to David Hilbert to Kurt Gödel to W. Hugh Woodin to Buzz Lightyear.
    Download  
     
    Export citation  
     
    Bookmark  
  26. Issues in commonsense set theory.Mujdat Pakkan & Varol Akman - 1995 - Artificial Intelligence Review 8:279-308.
    The success of set theory as a foundation for mathematics inspires its use in artificial intelligence, particularly in commonsense reasoning. In this survey, we briefly review classical set theory from an AI perspective, and then consider alternative set theories. Desirable properties of a possible commonsense set theory are investigated, treating different aspects like cumulative hierarchy, self-reference, cardinality, etc. Assorted examples from the ground-breaking research on the subject are also given.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  27. Indispensability Argument and Set Theory.Karlis Podnieks - 2008 - The Reasoner 2 (11):8--9.
    Most set theorists accept AC, and reject AD, i.e. for them, AC is true in the "world of sets", and AD is false. Applying to set theory the above-mentioned formalistic explanation of the existence of quarks, we could say: if, for a long time in the future, set theorists will continue their believing in AC, then one may think of a unique "world of sets" as existing in the same sense as quarks are believed to exist.
    Download  
     
    Export citation  
     
    Bookmark  
  28. Neutrosophic Crisp Set Theory.A. Salama & Florentin Smarandache - 2014 - Neutrosophic Sets and Systems 5:27-35.
    The purpose of this paper is to introduce new types of neutrosophic crisp sets with three types 1, 2, 3. After given the fundamental definitions and operations, we obtain several properties, and discussed the relationship between neutrosophic crisp sets and others. Also, we introduce and study the neutrosophic crisp point and neutrosophic crisp relations. Possible applications to database are touched upon.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  29. Set Theory INC# Based on Intuitionistic Logic with Restricted Modus Ponens Rule (Part. I).Jaykov Foukzon - 2021 - Journal of Advances in Mathematics and Computer Science 36 (2):73-88.
    In this article Russell’s paradox and Cantor’s paradox resolved successfully using intuitionistic logic with restricted modus ponens rule.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  30. Can Modalities Save Naive Set Theory?Peter Fritz, Harvey Lederman, Tiankai Liu & Dana Scott - 2018 - Review of Symbolic Logic 11 (1):21-47.
    To the memory of Prof. Grigori Mints, Stanford UniversityBorn: June 7, 1939, St. Petersburg, RussiaDied: May 29, 2014, Palo Alto, California.
    Download  
     
    Export citation  
     
    Bookmark  
  31. Plural reference and set theory.Peter Simons - 1982 - In Barry Smith (ed.), Parts and Moments. Studies in Logic and Formal Ontology. Philosophia Verlag. pp. 199--260.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  32. Logic of paradoxes in classical set theories.Boris Čulina - 2013 - Synthese 190 (3):525-547.
    According to Cantor (Mathematische Annalen 21:545–586, 1883 ; Cantor’s letter to Dedekind, 1899 ) a set is any multitude which can be thought of as one (“jedes Viele, welches sich als Eines denken läßt”) without contradiction—a consistent multitude. Other multitudes are inconsistent or paradoxical. Set theoretical paradoxes have common root—lack of understanding why some multitudes are not sets. Why some multitudes of objects of thought cannot themselves be objects of thought? Moreover, it is a logical truth that such multitudes do (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Set Theory.Charles C. Pinter - 1976 - Journal of Symbolic Logic 41 (2):548-549.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  34. Gödel Mathematics Versus Hilbert Mathematics. II Logicism and Hilbert Mathematics, the Identification of Logic and Set Theory, and Gödel’s 'Completeness Paper' (1930).Vasil Penchev - 2023 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 15 (1):1-61.
    The previous Part I of the paper discusses the option of the Gödel incompleteness statement (1931: whether “Satz VI” or “Satz X”) to be an axiom due to the pair of the axiom of induction in arithmetic and the axiom of infinity in set theory after interpreting them as logical negations to each other. The present Part II considers the previous Gödel’s paper (1930) (and more precisely, the negation of “Satz VII”, or “the completeness theorem”) as a necessary condition (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. A Mathematical Model of Quantum Computer by Both Arithmetic and Set Theory.Vasil Penchev - 2020 - Information Theory and Research eJournal 1 (15):1-13.
    A practical viewpoint links reality, representation, and language to calculation by the concept of Turing (1936) machine being the mathematical model of our computers. After the Gödel incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness to be suggested for two ones. That is consistent with the provability of completeness by means of two independent Peano arithmetics discussed in Section I. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Explanation in Descriptive Set Theory.Carolin Antos & Mark Colyvan - 2024 - In Katie Robertson & Alastair Wilson (eds.), Levels of Explanation. Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark  
  37. Relevance, relatedness and restricted set theory.Barry Smith - 1991 - In Georg Schurz (ed.), Advances in Scientific Philosophy. pp. 45-56.
    Relevance logic has become ontologically fertile. No longer is the idea of relevance restricted in its application to purely logical relations among propositions, for as Dunn has shown in his (1987), it is possible to extend the idea in such a way that we can distinguish also between relevant and irrelevant predications, as for example between “Reagan is tall” and “Reagan is such that Socrates is wise”. Dunn shows that we can exploit certain special properties of identity within the context (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  38. Explanation and Plenitude in Non-Well-Founded Set Theories.Ross P. Cameron - 2024 - Philosophia Mathematica 32 (3):275-306.
    Non-well-founded set theories allow set-theoretic exotica that standard ZFC will not allow, such as a set that has itself as its sole member. We can distinguish plenitudinous non-well-founded set theories, such as Boffa set theory, that allow infinitely many such sets, from restrictive theories, such as Finsler-Aczel or AFA, that allow exactly one. Plenitudinous non-well-founded set theories face a puzzle: nothing seems to explain the identity or distinctness of various of the sets they countenance. In this paper I aim (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. The entanglement of logic and set theory, constructively.Laura Crosilla - 2022 - Inquiry: An Interdisciplinary Journal of Philosophy 65 (6).
    ABSTRACT Theories of sets such as Zermelo Fraenkel set theory are usually presented as the combination of two distinct kinds of principles: logical and set-theoretic principles. The set-theoretic principles are imposed ‘on top’ of first-order logic. This is in agreement with a traditional view of logic as universally applicable and topic neutral. Such a view of logic has been rejected by the intuitionists, on the ground that quantification over infinite domains requires the use of intuitionistic rather than classical logic. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  40. On Forms of Justification in Set Theory.Neil Barton, Claudio Ternullo & Giorgio Venturi - 2020 - Australasian Journal of Logic 17 (4):158-200.
    In the contemporary philosophy of set theory, discussion of new axioms that purport to resolve independence necessitates an explanation of how they come to be justified. Ordinarily, justification is divided into two broad kinds: intrinsic justification relates to how `intuitively plausible' an axiom is, whereas extrinsic justification supports an axiom by identifying certain `desirable' consequences. This paper puts pressure on how this distinction is formulated and construed. In particular, we argue that the distinction as often presented is neither well-demarcated (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  41. Wittgenstein And Labyrinth Of ‘Actual Infinity’: The Critique Of Transfinite Set Theory.Valérie Lynn Therrien - 2012 - Ithaque 10:43-65.
    In order to explain Wittgenstein’s account of the reality of completed infinity in mathematics, a brief overview of Cantor’s initial injection of the idea into set- theory, its trajectory and the philosophic implications he attributed to it will be presented. Subsequently, we will first expound Wittgenstein’s grammatical critique of the use of the term ‘infinity’ in common parlance and its conversion into a notion of an actually existing infinite ‘set’. Secondly, we will delve into Wittgenstein’s technical critique of the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  42. ""Lambda theory: Introduction of a constant for" nothing" into set theory, a model of consistency and most noticeable conclusions.Laurent Dubois - 2013 - Logique Et Analyse 56 (222):165-181.
    The purpose of this article is to present several immediate consequences of the introduction of a new constant called Lambda in order to represent the object ``nothing" or ``void" into a standard set theory. The use of Lambda will appear natural thanks to its role of condition of possibility of sets. On a conceptual level, the use of Lambda leads to a legitimation of the empty set and to a redefinition of the notion of set. It lets also clearly (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  43. Causation as Constraints in Causal Set Theory.Marco Forgione - manuscript
    Many approaches to quantum gravity -the theory that should account for quantum and gravitational phenomena under the same theoretical umbrella- seem to point at some form of spacetime emergence, i.e., the fact that spacetime is not a fundamental entity of our physical world. This tenet has sparked many philosophical discussions: from the so-called empirical incoherence problem to different accounts of emergence and mechanisms thereof. In this contribution, I focus on the partial order relation of causal set theory and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. (1 other version)Mathematics is Ontology? A Critique of Badiou's Ontological Framing of Set Theory.Roland Bolz - 2020 - Filozofski Vestnik 2 (41):119-142.
    This article develops a criticism of Alain Badiou’s assertion that “mathematics is ontology.” I argue that despite appearances to the contrary, Badiou’s case for bringing set theory and ontology together is problematic. To arrive at this judgment, I explore how a case for the identification of mathematics and ontology could work. In short, ontology would have to be characterised to make it evident that set theory can contribute to it fundamentally. This is indeed how Badiou proceeds in Being (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Typicality à la Russell in Set Theory.Athanassios Tzouvaras - 2022 - Notre Dame Journal of Formal Logic 63 (2).
    We adjust the notion of typicality originated with Russell, which was introduced and studied in a previous paper for general first-order structures, to make it expressible in the language of set theory. The adopted definition of the class ${\rm NT}$ of nontypical sets comes out as a natural strengthening of Russell's initial definition, which employs properties of small (minority) extensions, when the latter are restricted to the various levels $V_\zeta$ of $V$. This strengthening leads to defining ${\rm NT}$ as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. A taste of set theory for philosophers.Jouko Väänänen - 2011 - Journal of the Indian Council of Philosophical Research (2):143-163.
    Download  
     
    Export citation  
     
    Bookmark  
  47. High-Order Metaphysics as High-Order Abstractions and Choice in Set Theory.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (21):1-3.
    The link between the high-order metaphysics and abstractions, on the one hand, and choice in the foundation of set theory, on the other hand, can distinguish unambiguously the “good” principles of abstraction from the “bad” ones and thus resolve the “bad company problem” as to set theory. Thus it implies correspondingly a more precise definition of the relation between the axiom of choice and “all company” of axioms in set theory concerning directly or indirectly abstraction: the principle (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Choice, Infinity, and Negation: Both Set-Theory and Quantum-Information Viewpoints to Negation.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (14):1-3.
    The concepts of choice, negation, and infinity are considered jointly. The link is the quantity of information interpreted as the quantity of choices measured in units of elementary choice: a bit is an elementary choice between two equally probable alternatives. “Negation” supposes a choice between it and confirmation. Thus quantity of information can be also interpreted as quantity of negations. The disjunctive choice between confirmation and negation as to infinity can be chosen or not in turn: This corresponds to set- (...) or intuitionist approach to the foundation of mathematics and to Peano or Heyting arithmetic. Quantum mechanics can be reformulated in terms of information introducing the concept and quantity of quantum information. A qubit can be equivalently interpreted as that generalization of “bit” where the choice is among an infinite set or series of alternatives. The complex Hilbert space can be represented as both series of qubits and value of quantum information. The complex Hilbert space is that generalization of Peano arithmetic where any natural number is substituted by a qubit. “Negation”, “choice”, and “infinity” can be inherently linked to each other both in the foundation of mathematics and quantum mechanics by the meditation of “information” and “quantum information”. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Reinterpreting the universe-multiverse debate in light of inter-model inconsistency in set theory.Daniel Kuby - manuscript
    In this paper I apply the concept of _inter-Model Inconsistency in Set Theory_ (MIST), introduced by Carolin Antos (this volume), to select positions in the current universe-multiverse debate in philosophy of set theory: I reinterpret H. Woodin’s _Ultimate L_, J. D. Hamkins’ multiverse, S.-D. Friedman’s hyperuniverse and the algebraic multiverse as normative strategies to deal with the situation of de facto inconsistency toleration in set theory as described by MIST. In particular, my aim is to situate these positions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Level Theory, Part 3: A Boolean Algebra of Sets Arranged in Well-Ordered Levels.Tim Button - 2022 - Bulletin of Symbolic Logic 28 (1):1-26.
    On a very natural conception of sets, every set has an absolute complement. The ordinary cumulative hierarchy dismisses this idea outright. But we can rectify this, whilst retaining classical logic. Indeed, we can develop a boolean algebra of sets arranged in well-ordered levels. I show this by presenting Boolean Level Theory, which fuses ordinary Level Theory (from Part 1) with ideas due to Thomas Forster, Alonzo Church, and Urs Oswald. BLT neatly implement Conway’s games and surreal numbers; and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 962