Results for 'NUMBER'

1000+ found
Order:
  1. Log or Linear? Distinct Intuitions of the Number Scale in Western and Amazonian Indigene Cultures.Pierre Pica, Stanislas Dehaene, Elizabeth Spelke & Véronique Izard - 2008 - Science 320 (5880):1217-1220.
    The mapping of numbers onto space is fundamental to measurement and to mathematics. Is this mapping a cultural invention or a universal intuition shared by all humans regardless of culture and education? We probed number-space mappings in the Mundurucu, an Amazonian indigene group with a reduced numerical lexicon and little or no formal education. At all ages, the Mundurucu mapped symbolic and nonsymbolic numbers onto a logarithmic scale, whereas Western adults used linear mapping with small or symbolic numbers and (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   45 citations  
  2. Education Enhances the Acuity of the Nonverbal Approximate Number System.Manuela Piazza, Pierre Pica, Véronique Izard, Elizabeth Spelke & Stanislas Dehaene - 2013 - Psychological Science 24 (4):p.
    All humans share a universal, evolutionarily ancient approximate number system (ANS) that estimates and combines the numbers of objects in sets with ratio-limited precision. Interindividual variability in the acuity of the ANS correlates with mathematical achievement, but the causes of this correlation have never been established. We acquired psychophysical measures of ANS acuity in child and adult members of an indigene group in the Amazon, the Mundurucú, who have a very restricted numerical lexicon and highly variable access to mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  3.  39
    The Small Number System.Eric Margolis - forthcoming - Philosophy of Science.
    I argue that the human mind includes an innate domain-specific system for representing precise small numerical quantities. This theory contrasts with object-tracking theories and with domain-general theories that only make use of mental models. I argue that there is a good amount of evidence for innate representations of small numerical quantities and that such a domain-specific system has explanatory advantages when infants’ poor working memory is taken into account. I also show that the mental models approach requires previously unnoticed domain-specific (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Number Words as Number Names.Friederike Moltmann - 2017 - Linguistics and Philosophy 40 (4):331-345.
    This paper criticizes the view that number words in argument position retain the meaning they have on an adjectival or determiner use, as argued by Hofweber :179–225, 2005) and Moltmann :499–534, 2013a, 2013b). In particular the paper re-evaluates syntactic evidence from German given in Moltmann to that effect.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5.  92
    Infants, Animals, and the Origins of Number.Eric Margolis - 2017 - Behavioral and Brain Sciences 40.
    Where do human numerical abilities come from? This article is a commentary on Leibovich et al.’s “From 'sense of number' to 'sense of magnitude' —The role of continuous magnitudes in numerical cognition”. Leibovich et al. argue against nativist views of numerical development by noting limitations in newborns’ vision and limitations regarding newborns’ ability to individuate objects. I argue that these considerations do not undermine competing nativist views and that Leibovich et al.'s model itself presupposes that infant learners have numerical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Corcoran Recommends Hambourger on the Frege-Russell Number Definition.John Corcoran - 1978 - MATHEMATICAL REVIEWS 56.
    It is widely agreed by philosophers that the so-called “Frege-Russell definition of natural number” is actually an assertion concerning the nature of the numbers and that it cannot be regarded as a definition in the ordinary mathematical sense. On the basis of the reasoning in this paper it is clear that the Frege-Russell definition contradicts the following three principles (taken together): (1) each number is the same entity in each possible world, (2) each number exists in each (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Review of Space, Time, and Number in the Brain. [REVIEW]Carlos Montemayor & Rasmus Grønfeldt Winther - 2015 - Mathematical Intelligencer 37 (2):93-98.
    Albert Einstein once made the following remark about "the world of our sense experiences": "the fact that it is comprehensible is a miracle." (1936, p. 351) A few decades later, another physicist, Eugene Wigner, wondered about the unreasonable effectiveness of mathematics in the natural sciences, concluding his classic article thus: "the miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a wonderful gift which we neither understand nor deserve" (1960, p. 14). (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8.  17
    Quantity and Number.James Franklin - 2014 - In Daniel D. Novotný & Lukáš Novák (eds.), Neo-Aristotelian Perspectives in Metaphysics. New York, USA: Routledge. pp. 221-244.
    Quantity is the first category that Aristotle lists after substance. It has extraordinary epistemological clarity: "2+2=4" is the model of a self-evident and universally known truth. Continuous quantities such as the ratio of circumference to diameter of a circle are as clearly known as discrete ones. The theory that mathematics was "the science of quantity" was once the leading philosophy of mathematics. The article looks at puzzles in the classification and epistemology of quantity.
    Download  
     
    Export citation  
     
    Bookmark  
  9.  28
    A Complex Number Notation of Nature of Time: An Ancient Indian Insight.R. B. Varanasi Varanasi Varanasi Ramabrahmam, Ramabrahmam Varanasi, V. Ramabrahmam - 2013 - In Proceedings of 5th International Conference on Vedic Sciences on “Applications and Challenges in Vedic / Ancient Indian Mathematics". Bangalore, India: Veda Vijnaana Sudha. pp. 386-399.
    The nature of time is perceived by intellectuals variedly. An attempt is made in this paper to reconcile such varied views in the light of the Upanishads and related Indian spiritual and philosophical texts. The complex analysis of modern mathematics is used to represent the nature and presentation physical and psychological times so differentiated. Also the relation between time and energy is probed using uncertainty relations, forms of energy and phases of matter.
    Download  
     
    Export citation  
     
    Bookmark  
  10.  25
    A Process Oriented Definition of Number.Rolfe David - manuscript
    In this paper Russell’s definition of number is criticized. Russell’s assertion that a number is a particular kind of set implies that number has the properties of a set. It is argued that this would imply that a number contains elements and that this does not conform to our intuitive notion of number. An alternative definition is presented in which number is not seen as an object, but rather as a process and is related (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Putting a Number on the Harm of Death.Joseph Millum - 2019 - In Espen Gamlund & Carl Tollef Solberg (eds.), Saving People from the Harm of Death. Oxford University Press. pp. 61-75.
    Donors to global health programs and policymakers within national health systems have to make difficult decisions about how to allocate scarce health care resources. Principled ways to make these decisions all make some use of summary measures of health, which provide a common measure of the value (or disvalue) of morbidity and mortality. They thereby allow comparisons between health interventions with different effects on the patterns of death and ill health within a population. The construction of a summary measure of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Testimony and Children’s Acquisition of Number Concepts.Helen De Cruz - 2018 - In Sorin Bangu (ed.), Naturalizing Logico-Mathematical Knowledge. Approaches from Philosophy, Psychology and Cognitive Science. London, UK: pp. 172-186.
    An enduring puzzle in philosophy and developmental psychology is how young children acquire number concepts, in particular the concept of natural number. Most solutions to this problem conceptualize young learners as lone mathematicians who individually reconstruct the successor function and other sophisticated mathematical ideas. In this chapter, I argue for a crucial role of testimony in children’s acquisition of number concepts, both in the transfer of propositional knowledge (e.g., the cardinality concept), and in knowledge-how (e.g., the counting (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. Intuitions About Large Number Cases.Theron Pummer - 2013 - Analysis 73 (1):37-46.
    Is there some large number of very mild hangnail pains, each experienced by a separate person, which would be worse than two years of excruciating torture, experienced by a single person? Many people have the intuition that the answer to this question is No. However, a host of philosophers have argued that, because we have no intuitive grasp of very large numbers, we should not trust such intuitions. I argue that there is decent intuitive support for the No answer, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  14. Frege, Carnap, and Explication: ‘Our Concern Here Is to Arrive at a Concept of Number Usable for the Purpose of Science’.Gregory Lavers - 2013 - History and Philosophy of Logic 34 (3):225-41.
    This paper argues that Carnap both did not view and should not have viewed Frege's project in the foundations of mathematics as misguided metaphysics. The reason for this is that Frege's project was to give an explication of number in a very Carnapian sense — something that was not lost on Carnap. Furthermore, Frege gives pragmatic justification for the basic features of his system, especially where there are ontological considerations. It will be argued that even on the question of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  15. The Number of Planets, a Number-Referring Term?Friederike Moltmann - 2016 - In Philip A. Ebert & Marcus Rossberg (eds.), Abstractionism: Essays in Philosophy of Mathematics. Oxford University Press. pp. 113-129.
    The question whether numbers are objects is a central question in the philosophy of mathematics. Frege made use of a syntactic criterion for objethood: numbers are objects because there are singular terms that stand for them, and not just singular terms in some formal language, but in natural language in particular. In particular, Frege (1884) thought that both noun phrases like the number of planets and simple numerals like eight as in (1) are singular terms referring to numbers as (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  16. Against Hirose's Argument for Saving the Greater Number.Dong-Kyung Lee - 2016 - Journal of Ethics and Social Philosophy (2):1-7.
    Faced with the choice between saving one person and saving two others, what should we do? It seems intuitively plausible that we ought to save the two, and many forms of consequentialists offer a straightforward rationale for the intuition by appealing to interpersonal aggregation. But still many other philosophers attempt to provide a justification for the duty to save the greater number without combining utilities or claims of separate individuals. I argue against one such attempt proposed by Iwao Hirose. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. On Infinite Number and Distance.Jeremy Gwiazda - 2012 - Constructivist Foundations 7 (2):126-130.
    Context: The infinite has long been an area of philosophical and mathematical investigation. There are many puzzles and paradoxes that involve the infinite. Problem: The goal of this paper is to answer the question: Which objects are the infinite numbers (when order is taken into account)? Though not currently considered a problem, I believe that it is of primary importance to identify properly the infinite numbers. Method: The main method that I employ is conceptual analysis. In particular, I argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  18.  74
    Two Concepts of Completing an Infinite Number of Tasks.Jeremy Gwiazda - 2013 - The Reasoner 7 (6):69-70.
    In this paper, two concepts of completing an infinite number of tasks are considered. After discussing supertasks, equisupertasks are introduced. I suggest that equisupertasks are logically possible.
    Download  
     
    Export citation  
     
    Bookmark  
  19.  30
    The Future of the Concept of Infinite Number.Jeremy Gwiazda - unknown
    In ‘The Train Paradox’, I argued that sequential random selections from the natural numbers would grow through time. I used this claim to present a paradox. In response to this proposed paradox, Jon Pérez Laraudogoitia has argued that random selections from the natural numbers do not grow through time. In this paper, I defend and expand on the argument that random selections from the natural numbers grow through time. I also situate this growth of random selections in the context of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20.  22
    The Prehistory of Number Concept.Karenleigh A. Overmann, Thomas Wynn & Frederick L. Coolidge - 2011 - Behavioral and Brain Sciences 34 (3):142-144.
    Carey leaves unaddressed an important evolutionary puzzle: In the absence of a numeral list, how could a concept of natural number ever have arisen in the first place? Here we suggest that the initial development of natural number must have bootstrapped on a material culture scaffold of some sort, and illustrate how this might have occurred using strings of beads.
    Download  
     
    Export citation  
     
    Bookmark  
  21.  85
    What Is A Number? Re-Thinking Derrida's Concept of Infinity.Joshua Soffer - 2007 - Journal of the British Society for Phenomenology 38 (2):202-220.
    Iterability, the repetition which alters the idealization it reproduces, is the engine of deconstructive movement. The fact that all experience is transformative-dissimulative in its essence does not, however, mean that the momentum of change is the same for all situations. Derrida adapts Husserl's distinction between a bound and a free ideality to draw up a contrast between mechanical mathematical calculation, whose in-principle infinite enumerability is supposedly meaningless, empty of content, and therefore not in itself subject to alteration through contextual change, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Kizel, A. (2016). “Philosophy with Children as an Educational Platform for Self-Determined Learning”. Cogent Education, Vol. 3, Number 1: 1244026.Arie Kizel - 2016 - Cogent Education 3 (1):1244026.
    This article develops a theoretical framework for understanding the applicability and relevance of Philosophy with Children in and out of schools as a platform for self-determined learning in light of the developments of the past 40 years. Based on the philosophical writings of Matthew Lipman, the father of Philosophy for Children, and in particular his ideas regarding the search for meaning, it frames Philosophy with Children in six dimensions that contrast with classic classroom disciplinary learning, advocating a “pedagogy of searching” (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. What Frege Asked Alex the Parrot: Inferentialism, Number Concepts, and Animal Cognition.Erik Nelson - forthcoming - Philosophical Psychology.
    While there has been significant philosophical debate on whether nonlinguistic animals can possess conceptual capabilities, less time has been devoted to considering 'talking' animals, such as parrots. When they are discussed, their capabilities are often downplayed as mere mimicry. The most explicit philosophical example of this can be seen in Brandom's frequent comparisons of parrots and thermostats. Brandom argues that because parrots (like thermostats) cannot grasp the implicit inferential connections between concepts, their vocal articulations do not actually have any conceptual (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Cantor on Infinity in Nature, Number, and the Divine Mind.Anne Newstead - 2009 - American Catholic Philosophical Quarterly 83 (4):533-553.
    The mathematician Georg Cantor strongly believed in the existence of actually infinite numbers and sets. Cantor’s “actualism” went against the Aristotelian tradition in metaphysics and mathematics. Under the pressures to defend his theory, his metaphysics changed from Spinozistic monism to Leibnizian voluntarist dualism. The factor motivating this change was two-fold: the desire to avoid antinomies associated with the notion of a universal collection and the desire to avoid the heresy of necessitarian pantheism. We document the changes in Cantor’s thought with (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  25. Edward N. O'Neil.: Teles (The Cynic Teacher). (Society of Biblical Literature, Texts and Translations Number 11, Graeco-Roman Religion No. 3.) Pp. Xxv + 97. Missoula, Montana: Scholars Press, 1977. Paper. [REVIEW]John Glucker - 1980 - The Classical Review 30 (01):150-151.
    Download  
     
    Export citation  
     
    Bookmark  
  26.  9
    Constructing a Concept of Number.Karenleigh Overmann - 2018 - Journal of Numerical Cognition 2 (4):464–493.
    Numbers are concepts whose content, structure, and organization are influenced by the material forms used to represent and manipulate them. Indeed, as argued here, it is the inclusion of multiple forms (distributed objects, fingers, single- and two-dimensional forms like pebbles and abaci, and written notations) that is the mechanism of numerical elaboration. Further, variety in employed forms explains at least part of the synchronic and diachronic variability that exists between and within cultural number systems. Material forms also impart characteristics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Objectivity And Proof In A Classical Indian Theory Of Number.Jonardon Ganeri - 2001 - Synthese 129 (3):413-437.
    Download  
     
    Export citation  
     
    Bookmark  
  28.  8
    We May Venture to Say, That the Number of Platonic Readers is Considerable: Richard Price, Joseph Priestley and the Platonic Strain in Eighteenth Century Thought.Martha K. Zebrowski - 2000 - Enlightenment and Dissent 19:193-213.
    Download  
     
    Export citation  
     
    Bookmark  
  29.  94
    A Number of Scenes in a Badly Cut Film" : Observation in the Age of Strobe.Jimena Canales - 2011 - In Lorraine Daston & Elizabeth Lunbeck (eds.), Histories of Scientific Observation. University of Chicago Press.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  30.  23
    Towards Interoperability of Biomedical Ontologies - Report Number 07132.Mark Musen, Michael Schroeder & Barry Smith - 2008 - In Towards Interoperability of Biomedical Ontologies. Schloss Dagstuhl-Leibniz-Zentrum Fuer Informatik.
    The meeting focused on uses of ontologies, with a special focus on spatial ontologies, in addressing the ever increasing needs faced by biology and medicine to cope with ever expanding quantities of data. To provide effective solutions computers need to integrate data deriving from myriad heterogeneous sources by bringing the data together within a single framework. The meeting brought together leaders in the field of what are called "top-level ontologies" to address this issue, and to establish strategies among leaders in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31.  44
    Structure and the Concept of Number.Mark Eli Kalderon - 1995 - Dissertation, Princeton University
    The present essay examines and critically discusses Paul Benacerraf's antiplatonist argument of "What Numbers Could Not Be." In the course of defending platonism against Benacerraf's semantic skepticism, I develop a novel platonist analysis of the content of arithmetic on the basis of which the necessary existence of the natural numbers and the nature of numerical reference are explained.
    Download  
     
    Export citation  
     
    Bookmark  
  32. Normativity and Mathematics: A Wittgensteinian Approach to the Study of Number.J. Robert Loftis - 1999 - Dissertation, Northwestern University
    I argue for the Wittgensteinian thesis that mathematical statements are expressions of norms, rather than descriptions of the world. An expression of a norm is a statement like a promise or a New Year's resolution, which says that someone is committed or entitled to a certain line of action. A expression of a norm is not a mere description of a regularity of human behavior, nor is it merely a descriptive statement which happens to entail a norms. The view can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. The Impossibility of an Infinite Number of Elapsed Planck Times.James Goetz - manuscript
    This note briefly discusses the observation of elapsed time in a flat universe while exploring the argument of past-eternal time versus emergent time in cosmology. A flat universe with an incomplete past forever has a finite age. Despite an infinite number of Planck time coordinates independent of phenomena and endless expansion, a flat universe never develops an age with an infinite number of Planck times. This observation indicates the impossibility of infinitely elapsed time in the future or past, (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  34.  17
    Aristotle on Mathematical and Eidetic Number.Daniel P. Maher - 2011 - Hermathena 190:29-51.
    The article examines Greek philosopher Aristotle's understanding of mathematical numbers as pluralities of discreet units and the relations of unity and multiplicity. Topics discussed include Aristotle's view that a mathematical number has determinate properties, a contrast between Aristotle and French philosopher René Descartes in terms of their understanding of number and Aristotle's description of ways to understand eidetic numbers.
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  35. A COMPLEX NUMBER NOTATION OF NATURE OF TIME: AN ANCIENT INDIAN INSIGHT.Varanasi Ramabrahmam - 2013 - In Veda Vijnaana Sudha, Proceedings of 5th International Conference on Vedic Sciences on “Applications and Challenges in Vedic / Ancient Indian Mathematics" on 20, 21 and 22nd of Dec 2013 at Maharani Arts, commerce and Management College for Women, Bang. pp. 386-399.
    The nature of time is perceived by intellectuals variedly. An attempt is made in this paper to reconcile such varied views in the light of the Upanishads and related Indian spiritual and philosophical texts. The complex analysis of modern mathematics is used to represent the nature and presentation physical and psychological times so differentiated. Also the relation between time and energy is probed using uncertainty relations, forms of energy and phases of matter. Implications to time-dependent Schrodinger wave equation and uncertainty (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Walking Cautiously Into the Collatz Wilderness: Algorithmically, Number Theoretically, Randomly.Edward G. Belaga & Maurice Mignotte - 2006 - Discrete Mathematics and Theoretical Computer Science.
    Building on theoretical insights and rich experimental data of our preprints, we present here new theoretical and experimental results in three interrelated approaches to the Collatz problem and its generalizations: algorithmic decidability, random behavior, and Diophantine representation of related discrete dynamical systems, and their cyclic and divergent properties.
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  37.  31
    Exact and Approximate Arithmetic in an Amazonian Indigene Group.Pierre Pica, Cathy Lemer, Véronique Izard & Stanislas Dehaene - 2004 - Science 306 (5695):499-503.
    Is calculation possible without language? Or is the human ability for arithmetic dependent on the language faculty? To clarify the relation between language and arithmetic, we studied numerical cognition in speakers of Mundurukú, an Amazonian language with a very small lexicon of number words. Although the Mundurukú lack words for numbers beyond 5, they are able to compare and add large approximate numbers that are far beyond their naming range. However, they fail in exact arithmetic with numbers larger than (...)
    Download  
     
    Export citation  
     
    Bookmark   126 citations  
  38.  88
    Counting on Strong Composition as Identity to Settle the Special Composition Question.Joshua Spencer - 2017 - Erkenntnis 82 (4):857-872.
    Strong Composition as Identity is the thesis that necessarily, for any xs and any y, those xs compose y iff those xs are non-distributively identical to y. Some have argued against this view as follows: if some many things are non-distributively identical to one thing, then what’s true of the many must be true of the one. But since the many are many in number whereas the one is not, the many cannot be identical to the one. Hence is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  39. Non-Symbolic Halving in an Amazonian Indigene Group.Koleen McCrink, Elizabeth Spelke, Stanislas Dehaene & Pierre Pica - 2013 - Developmental Science 16 (3):451-462.
    Much research supports the existence of an Approximate Number System (ANS) that is recruited by infants, children, adults, and non-human animals to generate coarse, non-symbolic representations of number. This system supports simple arithmetic operations such as addition, subtraction, and ordering of amounts. The current study tests whether an intuition of a more complex calculation, division, exists in an indigene group in the Amazon, the Mundurucu, whose language includes no words for large numbers. Mundurucu children were presented with a (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  40. Semantic Arithmetic: A Preface.John Corcoran - 1995 - Agora 14 (1):149-156.
    SEMANTIC ARITHMETIC: A PREFACE John Corcoran Abstract Number theory, or pure arithmetic, concerns the natural numbers themselves, not the notation used, and in particular not the numerals. String theory, or pure syntax, concems the numerals as strings of «uninterpreted» characters without regard to the numbe~s they may be used to denote. Number theory is purely arithmetic; string theory is purely syntactical... in so far as the universe of discourse alone is considered. Semantic arithmetic is a broad subject which (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   1 citation  
  41. Language Death and Diversity: Philosophical and Linguistic Implications.Lajos L. Brons - 2014 - The Science of Mind 52:243-260.
    This paper presents a simple model to estimate the number of languages that existed throughout history, and considers philosophical and linguistic implications of the findings. The estimated number is 150,000 plus or minus 50,000. Because only few of those remain, and there is no reason to believe that that remainder is a statistically representative sample, we should be very cautious about universalistic claims based on existing linguistic variation.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  42. On Multiverses and Infinite Numbers.Jeremy Gwiazda - 2014 - In Klaas Kraay (ed.), God and the Multiverse. Routledge. pp. 162-173.
    A multiverse is comprised of many universes, which quickly leads to the question: How many universes? There are either finitely many or infinitely many universes. The purpose of this paper is to discuss two conceptions of infinite number and their relationship to multiverses. The first conception is the standard Cantorian view. But recent work has suggested a second conception of infinite number, on which infinite numbers behave very much like finite numbers. I will argue that that this second (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Theoretical Implications of the Study of Numbers and Numerals in Mundurucu.Pierre Pica & Alain Lecomte - 2008 - Philosophical Psychology 21 (4):507 – 522.
    Developing earlier studies of the system of numbers in Mundurucu, this paper argues that the Mundurucu numeral system is far more complex than usually assumed. The Mundurucu numeral system provides indirect but insightful arguments for a modular approach to numbers and numerals. It is argued that distinct components must be distinguished, such as a system of representation of numbers in the format of internal magnitudes, a system of representation for individuals and sets, and one-to-one correspondences between the numerosity expressed by (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  44. Logically Equivalent False Universal Propositions with Different Counterexample Sets.John Corcoran - 2007 - Bulletin of Symbolic Logic 11:554-5.
    This paper corrects a mistake I saw students make but I have yet to see in print. The mistake is thinking that logically equivalent propositions have the same counterexamples—always. Of course, it is often the case that logically equivalent propositions have the same counterexamples: “every number that is prime is odd” has the same counterexamples as “every number that is not odd is not prime”. The set of numbers satisfying “prime but not odd” is the same as the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  45.  63
    “Fuzzy Time”, a Solution of Unexpected Hanging Paradox (a Fuzzy Interpretation of Quantum Mechanics).Farzad Didehvar - manuscript
    Although Fuzzy logic and Fuzzy Mathematics is a widespread subject and there is a vast literature about it, yet the use of Fuzzy issues like Fuzzy sets and Fuzzy numbers was relatively rare in time concept. This could be seen in the Fuzzy time series. In addition, some attempts are done in fuzzing Turing Machines but seemingly there is no need to fuzzy time. Throughout this article, we try to change this picture and show why it is helpful to consider (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  46. Higher Order Numerical Differentiation on the Infinity Computer.Yaroslav Sergeyev - 2011 - Optimization Letters 5 (4):575-585.
    There exist many applications where it is necessary to approximate numerically derivatives of a function which is given by a computer procedure. In particular, all the fields of optimization have a special interest in such a kind of information. In this paper, a new way to do this is presented for a new kind of a computer - the Infinity Computer - able to work numerically with finite, infinite, and infinitesimal number. It is proved that the Infinity Computer is (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   3 citations  
  47. Interpretation of Percolation in Terms of Infinity Computations.Yaroslav Sergeyev, Dmitri Iudin & Masaschi Hayakawa - 2012 - Applied Mathematics and Computation 218 (16):8099-8111.
    In this paper, a number of traditional models related to the percolation theory has been considered by means of new computational methodology that does not use Cantor’s ideas and describes infinite and infinitesimal numbers in accordance with the principle ‘The part is less than the whole’. It gives a possibility to work with finite, infinite, and infinitesimal quantities numerically by using a new kind of a compute - the Infinity Computer – introduced recently in [18]. The new approach does (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark   2 citations  
  48. Maths, Logic and Language.Tetsuaki Iwamoto - 2018 - Geneva: Logic Forum.
    A work on the philosophy of mathematics (2017) -/- ‘Number’, such a simple idea, and yet it fascinated and absorbed the greatest proportion of human geniuses over centuries, not to mention the likes of Pythagoras, Euclid, Newton, Leibniz, Descartes and countless maths giants like Euler, Gauss and Hilbert, etc.. Einstein thought of pure maths as the poetry of logical ideas, the exactitude of which, although independent of experience, strangely seems to benefit the study of the objects of reality. And, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49.  97
    The Cantorian Bubble.Jeremy Gwiazda - manuscript
    The purpose of this paper is to suggest that we are in the midst of a Cantorian bubble, just as, for example, there was a dot com bubble in the late 1990’s.
    Download  
     
    Export citation  
     
    Bookmark  
  50.  63
    Picturing the Infinite.Jeremy Gwiazda - manuscript
    The purpose of this note is to contrast a Cantorian outlook with a non-Cantorian one and to present a picture that provides support for the latter. In particular, I suggest that: i) infinite hyperreal numbers are the (actual, determined) infinite numbers, ii) ω is merely potentially infinite, and iii) infinitesimals should not be used in the di Finetti lottery. Though most Cantorians will likely maintain a Cantorian outlook, the picture is meant to motivate the obvious nature of the non-Cantorian outlook.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 1000