Results for 'Peano axioms'

584 found
Order:
  1. Arithmetic without the successor axiom.Andrew Boucher -
    Second-order Peano Arithmetic minus the Successor Axiom is developed from first principles through Quadratic Reciprocity and a proof of self-consistency. This paper combines 4 other papers of the author in a self-contained exposition.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2. Gödel mathematics versus Hilbert mathematics. I. The Gödel incompleteness (1931) statement: axiom or theorem?Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (9):1-56.
    The present first part about the eventual completeness of mathematics (called “Hilbert mathematics”) is concentrated on the Gödel incompleteness (1931) statement: if it is an axiom rather than a theorem inferable from the axioms of (Peano) arithmetic, (ZFC) set theory, and propositional logic, this would pioneer the pathway to Hilbert mathematics. One of the main arguments that it is an axiom consists in the direct contradiction of the axiom of induction in arithmetic and the axiom of infinity in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. The Gödel Incompleteness Theorems (1931) by the Axiom of Choice.Vasil Penchev - 2020 - Econometrics: Mathematical Methods and Programming eJournal (Elsevier: SSRN) 13 (39):1-4.
    Those incompleteness theorems mean the relation of (Peano) arithmetic and (ZFC) set theory, or philosophically, the relation of arithmetical finiteness and actual infinity. The same is managed in the framework of set theory by the axiom of choice (respectively, by the equivalent well-ordering "theorem'). One may discuss that incompleteness form the viewpoint of set theory by the axiom of choice rather than the usual viewpoint meant in the proof of theorems. The logical corollaries from that "nonstandard" viewpoint the relation (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4.  78
    Inconcistency of ℕ from a not-finitist point of view.Enrico Pier Giorgio Cadeddu - 2023 - International Journal of Modern Research in Engineering and Technology 8 (10):2.
    Considering the set of natural numbers ℕ, then in the context of Peano axioms, starting from inequalities between finite sets, we find a fundamental contradiction, about the existence of ℕ, from a not-finitist point of view.
    Download  
     
    Export citation  
     
    Bookmark  
  5.  85
    Inconsistency of ℕ with the set union operation.Enrico Pier Giorgio Cadeddu - manuscript
    Considering the axiom of infinity, then N and Peano axioms, together a list of N subsets, inclusion relation and union operation, a contradiction is obtained.
    Download  
     
    Export citation  
     
    Bookmark  
  6. A new reading and comparative interpretation of Gödel’s completeness (1930) and incompleteness (1931) theorems.Vasil Penchev - 2016 - Логико-Философские Штудии 13 (2):187-188.
    Peano arithmetic cannot serve as the ground of mathematics for it is inconsistent to infinity, and infinity is necessary for its foundation. Though Peano arithmetic cannot be complemented by any axiom of infinity, there exists at least one (logical) axiomatics consistent to infinity. That is nothing else than a new reading at issue and comparative interpretation of Gödel’s papers (1930; 1931) meant here. Peano arithmetic admits anyway generalizations consistent to infinity and thus to some addable axiom(s) of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Fermat’s last theorem proved in Hilbert arithmetic. I. From the proof by induction to the viewpoint of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (7):1-57.
    In a previous paper, an elementary and thoroughly arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to Fermat himself though without being absolutely and precisely correct. The present paper elucidates the contemporary mathematical background, from which an inductive proof of FLT can be inferred since its proof for the case for “n (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. On Certain Axiomatizations of Arithmetic of Natural and Integer Numbers.Urszula Wybraniec-Skardowska - 2019 - Axioms 2019 (Deductive Systems).
    The systems of arithmetic discussed in this work are non-elementary theories. In this paper, natural numbers are characterized axiomatically in two di erent ways. We begin by recalling the classical set P of axioms of Peano’s arithmetic of natural numbers proposed in 1889 (including such primitive notions as: set of natural numbers, zero, successor of natural number) and compare it with the set W of axioms of this arithmetic (including the primitive notions like: set of natural numbers (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9.  83
    The Physical Numbers: A New Foundational Logic-Numerical Structure For Mathematics And Physics.Gomez-Ramirez Danny A. J. - manuscript
    The boundless nature of the natural numbers imposes paradoxically a high formal bound to the use of standard artificial computer programs for solving conceptually challenged problems in number theory. In the context of the new cognitive foundations for mathematics' and physics' program immersed in the setting of artificial mathematical intelligence, we proposed a refined numerical system, called the physical numbers, preserving most of the essential intuitions of the natural numbers. Even more, this new numerical structure additionally possesses the property of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. The Quantum Strategy of Completeness: On the Self-Foundation of Mathematics.Vasil Penchev - 2020 - Cultural Anthropology eJournal (Elsevier: SSRN) 5 (136):1-12.
    Gentzen’s approach by transfinite induction and that of intuitionist Heyting arithmetic to completeness and the self-foundation of mathematics are compared and opposed to the Gödel incompleteness results as to Peano arithmetic. Quantum mechanics involves infinity by Hilbert space, but it is finitist as any experimental science. The absence of hidden variables in it interpretable as its completeness should resurrect Hilbert’s finitism at the cost of relevant modification of the latter already hinted by intuitionism and Gentzen’s approaches for completeness. This (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. What Is Quantum Information? Information Symmetry and Mechanical Motion.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (20):1-7.
    The concept of quantum information is introduced as both normed superposition of two orthogonal sub-spaces of the separable complex Hilbert space and in-variance of Hamilton and Lagrange representation of any mechanical system. The base is the isomorphism of the standard introduction and the representation of a qubit to a 3D unit ball, in which two points are chosen. The separable complex Hilbert space is considered as the free variable of quantum information and any point in it (a wave function describing (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12.  80
    Inconsistency of ℕ and the question of infinity.Enrico Pier Giorgio Cadeddu - manuscript
    In the article ”Inconsistency of N from a not-finitist point of view” we have shown the inconsistency of N, going through a denial. Here we delete this indirect step and essentially repeat the same proof. Contextually we find a contradiction about natural number definition. Then we discuss around the rejection of infinity.
    Download  
     
    Export citation  
     
    Bookmark  
  13. Three Dogmas of First-Order Logic and some Evidence-based Consequences for Constructive Mathematics of differentiating between Hilbertian Theism, Brouwerian Atheism and Finitary Agnosticism.Bhupinder Singh Anand - manuscript
    We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then adopt what may (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. The Frontier of Time: The Concept of Quantum Information.Vasil Penchev - 2020 - Cosmology and Large-Scale Structure eJournal (Elsevier: SSRN) 2 (17):1-5.
    The concept of formal transcendentalism is utilized. The fundamental and definitive property of the totality suggests for “the totality to be all”, thus, its externality (unlike any other entity) is contained within it. This generates a fundamental (or philosophical) “doubling” of anything being referred to the totality, i.e. considered philosophically. Thus, that doubling as well as transcendentalism underlying it can be interpreted formally as an elementary choice such as a bit of information and a quantity corresponding to the number of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. All science as rigorous science: the principle of constructive mathematizability of any theory.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal 12 (12):1-15.
    A principle, according to which any scientific theory can be mathematized, is investigated. Social science, liberal arts, history, and philosophy are meant first of all. That kind of theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Skolem’s “paradox” as logic of ground: The mutual foundation of both proper and improper interpretations.Vasil Penchev - 2020 - Epistemology eJournal (Elsevier: SSRN) 13 (19):1-16.
    A principle, according to which any scientific theory can be mathematized, is investigated. That theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather a metamathematical axiom about the relation of mathematics and reality. Its investigation needs philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. The Truth Assignments That Differentiate Human Reasoning From Mechanistic Reasoning: The Evidence-Based Argument for Lucas' Goedelian Thesis.Bhupinder Singh Anand - 2016 - Cognitive Systems Research 40:35-45.
    We consider the argument that Tarski's classic definitions permit an intelligence---whether human or mechanistic---to admit finitary evidence-based definitions of the satisfaction and truth of the atomic formulas of the first-order Peano Arithmetic PA over the domain N of the natural numbers in two, hitherto unsuspected and essentially different, ways: (1) in terms of classical algorithmic verifiabilty; and (2) in terms of finitary algorithmic computability. We then show that the two definitions correspond to two distinctly different assignments of satisfaction and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  18. Неразрешимост на първата теорема за непълнотата. Гьоделова и Хилбертова математика.Vasil Penchev - 2010 - Philosophical Alternatives 19 (5):104-119.
    Can the so-ca\led first incompleteness theorem refer to itself? Many or maybe even all the paradoxes in mathematics are connected with some kind of self-reference. Gбdel built his proof on the ground of self-reference: а statement which claims its unprovabllity. So, he demonstrated that undecidaЬle propositions exist in any enough rich axiomatics (i.e. such one which contains Peano arithmetic in some sense). What about the decidabllity of the very first incompleteness theorem? We can display that it fulfills its conditions. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Quantum information as the information of infinite collections or series.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (14):1-8.
    The quantum information introduced by quantum mechanics is equivalent to a certain generalization of classical information: from finite to infinite series or collections. The quantity of information is the quantity of choices measured in the units of elementary choice. The “qubit”, can be interpreted as that generalization of “bit”, which is a choice among a continuum of alternatives. The axiom of choice is necessary for quantum information. The coherent state is transformed into a well-ordered series of results in time after (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Frege meets Belnap: Basic Law V in a Relevant Logic.Shay Logan & Francesca Boccuni - forthcoming - In Andrew Tedder, Shawn Standefer & Igor Sedlar (eds.), New Directions in Relevant Logic. Springer. pp. 381-404.
    Abstractionism in the philosophy of mathematics aims at deriving large fragments of mathematics by combining abstraction principles (i.e. the abstract objects $\S e_1, \S e_2$, are identical if, and only if, an equivalence relation $Eq_\S$ holds between the entities $e_1, e_2$) with logic. Still, as highlighted in work on the semantics for relevant logics, there are different ways theories might be combined. In exactly what ways must logic and abstraction be combined in order to get interesting mathematics? In this paper, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. Schemata: The concept of schema in the history of logic.John Corcoran - 2006 - Bulletin of Symbolic Logic 12 (2):219-240.
    The syllogistic figures and moods can be taken to be argument schemata as can the rules of the Stoic propositional logic. Sentence schemata have been used in axiomatizations of logic only since the landmark 1927 von Neumann paper [31]. Modern philosophers know the role of schemata in explications of the semantic conception of truth through Tarski’s 1933 Convention T [42]. Mathematical logicians recognize the role of schemata in first-order number theory where Peano’s second-order Induction Axiom is approximated by Herbrand’s (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  22. God and the Numbers.Paul Studtmann - manuscript
    According to Augustine, abstract objects are ideas in the Mind of God. Because numbers are a type of abstract object, it would follow that numbers are ideas in the Mind of God. Let us call such a view the Augustinian View of Numbers (AVN). In this paper, I present a formal theory for AVN. The theory stems from the symmetry conception of God as it appears in Studtmann (2021). I show that Robinson’s Arithmetic is a conservative extension of the (...) in Studtmann’s original paper. The extension is made possible by identifying the set of natural numbers with God, 0 with Being, and the successor function with the essence function. The resulting theory can then be augmented to include Peano Arithmetic by adding a set-theoretic version of induction and a comprehension schema restricted to arithmetically definable properties. In addition to these formal matters, the paper provides a characterization of the mind of God. According to the characterization, the Being essences that constitute God’s mind act as both numbers and representations – each (except for Being itself) has all the properties of some number and encodes all the properties of that number’s predecessor. The conception of God that emerges by the end of the discussion is a conception of an infinite, ineffable, axiologically and metaphysically ultimate entity that contains objects that not only serve as numbers but also encode information about each other. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Hilbert Mathematics versus Gödel Mathematics. III. Hilbert Mathematics by Itself, and Gödel Mathematics versus the Physical World within It: both as Its Particular Cases.Vasil Penchev - 2023 - Philosophy of Science eJournal (Elsevier: SSRN) 16 (47):1-46.
    The paper discusses Hilbert mathematics, a kind of Pythagorean mathematics, to which the physical world is a particular case. The parameter of the “distance between finiteness and infinity” is crucial. Any nonzero finite value of it features the particular case in the frameworks of Hilbert mathematics where the physical world appears “ex nihilo” by virtue of an only mathematical necessity or quantum information conservation physically. One does not need the mythical Big Bang which serves to concentrate all the violations of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Representation and Reality by Language: How to make a home quantum computer?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (34):1-14.
    A set theory model of reality, representation and language based on the relation of completeness and incompleteness is explored. The problem of completeness of mathematics is linked to its counterpart in quantum mechanics. That model includes two Peano arithmetics or Turing machines independent of each other. The complex Hilbert space underlying quantum mechanics as the base of its mathematical formalism is interpreted as a generalization of Peano arithmetic: It is a doubled infinite set of doubled Peano arithmetics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. A reductionist reading of Husserl’s phenomenology by Mach’s descriptivism and phenomenalism.Vasil Penchev - 2020 - Continental Philosophy eJournal 13 (9):1-4.
    Husserl’s phenomenology is what is used, and then the conception of “bracketing reality” is modelled to generalize Peano arithmetic in its relation to set theory in the foundation of mathematics. The obtained model is equivalent to the generalization of Peano arithmetic by means of replacing the axiom of induction with that of transfinite induction. A comparison to Mach’s doctrine is used to be revealed the fundamental and philosophical reductionism of Husserl’s phenomenology leading to a kind of Pythagoreanism in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  26. Remarks on Wittgenstein, Gödel, Chaitin, Incompleteness, Impossiblity and the Psychological Basis of Science and Mathematics.Michael Richard Starks - 2019 - In Remarks on Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason in Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, da Costa, Godel, Searle, Rodych, Berto, Floyd, Moyal. Reality Press. pp. 24-38.
    It is commonly thought that such topics as Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason are disparate scientific physical or mathematical issues having little or nothing in common. I suggest that they are largely standard philosophical problems (i.e., language games) which were resolved by Wittgenstein over 80 years ago. -/- Wittgenstein also demonstrated the fatal error in regarding mathematics or language or our behavior in general as a unitary coherent logical ‘system,’ rather than as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Fermat’s last theorem proved in Hilbert arithmetic. II. Its proof in Hilbert arithmetic by the Kochen-Specker theorem with or without induction.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (10):1-52.
    The paper is a continuation of another paper published as Part I. Now, the case of “n=3” is inferred as a corollary from the Kochen and Specker theorem (1967): the eventual solutions of Fermat’s equation for “n=3” would correspond to an admissible disjunctive division of qubit into two absolutely independent parts therefore versus the contextuality of any qubit, implied by the Kochen – Specker theorem. Incommensurability (implied by the absence of hidden variables) is considered as dual to quantum contextuality. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Peano, Frege and Russell’s Logical Influences.Kevin C. Klement - forthcoming - Forthcoming.
    This chapter clarifies that it was the works Giuseppe Peano and his school that first led Russell to embrace symbolic logic as a tool for understanding the foundations of mathematics, not those of Frege, who undertook a similar project starting earlier on. It also discusses Russell’s reaction to Peano’s logic and its influence on his own. However, the chapter also seeks to clarify how and in what ways Frege was influential on Russell’s views regarding such topics as classes, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. Peano e la filosofia della matematica.Enrico Pasini - 2004 - In Elisa Gallo - Livia Giacardi - Clara Silvia Roero (ed.), Conferenze E Seminari 2003-2004. Associazione Subalpina Mathesis. pp. 203-220.
    It is well known that Peano had a reluctant attitude towards philosophy, including philosophy of mathematics. Some scholars have suggested the existence of an 'implicit' philosophy, without being able to describe it. In this paper a first attempt is done to reconstruct, if not a general philosophy of mathematics, at least Peano' epistemology of mathematics and its relation to contemporary positions.
    Download  
     
    Export citation  
     
    Bookmark  
  30. Frege and Peano on definitions.Edoardo Rivello - forthcoming - In Proceedings of the "Frege: Freunde und Feinde" conference, held in Wismar, May 12-15, 2013.
    Frege and Peano started in 1896 a debate where they contrasted the respective conceptions on the theory and practice of mathematical definitions. Which was (if any) the influence of the Frege-Peano debate on the conceptions by the two authors on the theme of defining in mathematics and which was the role played by this debate in the broader context of their scientific interaction?
    Download  
     
    Export citation  
     
    Bookmark  
  31. Restricting Spinoza's Causal Axiom.John Morrison - 2015 - Philosophical Quarterly 65 (258):40-63.
    Spinoza's causal axiom is at the foundation of the Ethics. I motivate, develop and defend a new interpretation that I call the ‘causally restricted interpretation’. This interpretation solves several longstanding puzzles and helps us better understand Spinoza's arguments for some of his most famous doctrines, including his parallelism doctrine and his theory of sense perception. It also undermines a widespread view about the relationship between the three fundamental, undefined notions in Spinoza's metaphysics: causation, conception and inherence.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  32. Axioms for actuality.Harold T. Hodes - 1984 - Journal of Philosophical Logic 13 (1):27 - 34.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  33. Il carteggio fra Peano e Camillo Berneri.Enrico Pasini - 2001 - In Clara Silvia Roero (ed.), Giuseppe Peano. Matematica, Cultura E Società. L’Artistica. pp. 49-59.
    Between Giuseppe Peano and Camillo Berneri, a foremost protagonist of the Italian anarchist movement, an interesting correspondence was exchanged in the years 1925-1929. Along with a presentation of the correspondence, Peano's political attitude and the role of his international language projects in early 20th century Italian left are discussed.
    Download  
     
    Export citation  
     
    Bookmark  
  34.  22
    Axioms, Definitions, and the Pragmatic a priori: Peirce and Dewey on the “Foundations” of Mathematical Science.Bradley C. Dart - 2024 - European Journal of Pragmatism and American Philosophy 16 (1).
    Peirce and Dewey were generally more concerned with the process of scientific activity than purely mathematical work. However, their accounts of knowledge production afford some insights into the epistemology of mathematical postulates, especially definition and axioms. Their rejection of rationalist metaphysics and their emphasis on continuity in inquiry provides the pretext for the pragmatic a priori – hypothetical and operational assumptions whose justification relies on their fruitfulness in the long run. This paper focuses on the application of this idea (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Qualitative Axioms of Uncertainty as a Foundation for Probability and Decision-Making.Patrick Suppes - 2016 - Minds and Machines 26 (2):185-202.
    Although the concept of uncertainty is as old as Epicurus’s writings, and an excellent quantitative theory, with entropy as the measure of uncertainty having been developed in recent times, there has been little exploration of the qualitative theory. The purpose of the present paper is to give a qualitative axiomatization of uncertainty, in the spirit of the many studies of qualitative comparative probability. The qualitative axioms are fundamentally about the uncertainty of a partition of the probability space of events. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. The Axiom of choice in Quine's New Foundations for Mathematical Logic.Ernst P. Specker - 1954 - Journal of Symbolic Logic 19 (2):127-128.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  37. Towards Even More Irresistible Axiom Weakening.Roberto Confalonieri, Pietro Galliani, Oliver Kutz, Daniele Porello, Guendalina Righetti & Nicolas Toquard - 2020 - In Roberto Confalonieri, Pietro Galliani, Oliver Kutz, Daniele Porello, Guendalina Righetti & Nicolas Toquard (eds.), Proceedings of the 33rd International Workshop on Description Logics {(DL} 2020) co-located with the 17th International Conference on Principles of Knowledge Representation and Reasoning {(KR} 2020), Online Event, Rhodes, Greece.
    Axiom weakening is a technique that allows for a fine-grained repair of inconsistent ontologies. Its main advantage is that it repairs on- tologies by making axioms less restrictive rather than by deleting them, employing the use of refinement operators. In this paper, we build on pre- viously introduced axiom weakening for ALC, and make it much more irresistible by extending its definitions to deal with SROIQ, the expressive and decidable description logic underlying OWL 2 DL. We extend the definitions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38. A System of Axioms for Minkowski Spacetime.Lorenzo Cocco & Joshua Babic - 2020 - Journal of Philosophical Logic (1):1-37.
    We present an elementary system of axioms for the geometry of Minkowski spacetime. It strikes a balance between a simple and streamlined set of axioms and the attempt to give a direct formalization in first-order logic of the standard account of Minkowski spacetime in [Maudlin 2012] and [Malament, unpublished]. It is intended for future use in the formalization of physical theories in Minkowski spacetime. The choice of primitives is in the spirit of [Tarski 1959]: a predicate of betwenness (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  39. The axiom of infinity.Bertrand Russell - 1903 - Hibbert Journal 2:809-812.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  40. The Axiom of Infinity.Cassius Jackson Keyser - 1904 - Hibbert Journal 3:380-383.
    Download  
     
    Export citation  
     
    Bookmark  
  41. The axiom of infinity: A new presupposition of thought.Cassius Jackson Keyser - 1903 - Hibbert Journal 2:532-552.
    Download  
     
    Export citation  
     
    Bookmark  
  42. Operational axioms for diagonalizing states.Giulio Chiribella & Carlo Maria Scandolo - 2015 - EPTCS 195:96-115.
    In quantum theory every state can be diagonalized, i.e. decomposed as a convex combination of perfectly distinguishable pure states. This elementary structure plays an ubiquitous role in quantum mechanics, quantum information theory, and quantum statistical mechanics, where it provides the foundation for the notions of majorization and entropy. A natural question then arises: can we reconstruct these notions from purely operational axioms? We address this question in the framework of general probabilistic theories, presenting a set of axioms that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. The Search for New Axioms in the Hyperuniverse Programme.Claudio Ternullo & Sy-David Friedman - 2016 - In Francesca Boccuni & Andrea Sereni (eds.), Objectivity, Realism, and Proof. FilMat Studies in the Philosophy of Mathematics. Cham, Switzerland: Springer International Publishing. pp. 165-188.
    The Hyperuniverse Programme, introduced in Arrigoni and Friedman (2013), fosters the search for new set-theoretic axioms. In this paper, we present the procedure envisaged by the programme to find new axioms and the conceptual framework behind it. The procedure comes in several steps. Intrinsically motivated axioms are those statements which are suggested by the standard concept of set, i.e. the `maximal iterative concept', and the programme identi fies higher-order statements motivated by the maximal iterative concept. The satisfaction (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  44. Formalizing Euclid’s first axiom.John Corcoran - 2014 - Bulletin of Symbolic Logic 20 (3):404-405.
    Formalizing Euclid’s first axiom. Bulletin of Symbolic Logic. 20 (2014) 404–5. (Coauthor: Daniel Novotný) -/- Euclid [fl. 300 BCE] divides his basic principles into what came to be called ‘postulates’ and ‘axioms’—two words that are synonyms today but which are commonly used to translate Greek words meant by Euclid as contrasting terms. -/- Euclid’s postulates are specifically geometric: they concern geometric magnitudes, shapes, figures, etc.—nothing else. The first: “to draw a line from any point to any point”; the last: (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  45. An Elementary System of Axioms for Euclidean Geometry Based on Symmetry Principles.Boris Čulina - 2018 - Axiomathes 28 (2):155-180.
    In this article I develop an elementary system of axioms for Euclidean geometry. On one hand, the system is based on the symmetry principles which express our a priori ignorant approach to space: all places are the same to us, all directions are the same to us and all units of length we use to create geometric figures are the same to us. On the other hand, through the process of algebraic simplification, this system of axioms directly provides (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Maximality and ontology: how axiom content varies across philosophical frameworks.Sy-David Friedman & Neil Barton - 2017 - Synthese 197 (2):623-649.
    Discussion of new axioms for set theory has often focused on conceptions of maximality, and how these might relate to the iterative conception of set. This paper provides critical appraisal of how certain maximality axioms behave on different conceptions of ontology concerning the iterative conception. In particular, we argue that forms of multiversism (the view that any universe of a certain kind can be extended) and actualism (the view that there are universes that cannot be extended in particular (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  47. Are Large Cardinal Axioms Restrictive?Neil Barton - manuscript
    The independence phenomenon in set theory, while pervasive, can be partially addressed through the use of large cardinal axioms. A commonly assumed idea is that large cardinal axioms are species of maximality principles. In this paper, I argue that whether or not large cardinal axioms count as maximality principles depends on prior commitments concerning the richness of the subset forming operation. In particular I argue that there is a conception of maximality through absoluteness, on which large cardinal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Repairing Ontologies via Axiom Weakening.Daniele Porello & Oliver Kutz Nicolas Troquard, Roberto Confalonieri, Pietro Galliani, Rafael Peñaloza, Daniele Porello - 2018 - In Daniele Porello & Roberto Confalonieri Nicolas Troquard (eds.), Proceedings of the Thirty-Second {AAAI} Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th {AAAI} Symposium on Educational Advances in Artificial Intelligence (EAAI-18). pp. 1981--1988.
    Ontology engineering is a hard and error-prone task, in which small changes may lead to errors, or even produce an inconsistent ontology. As ontologies grow in size, the need for automated methods for repairing inconsistencies while preserving as much of the original knowledge as possible increases. Most previous approaches to this task are based on removing a few axioms from the ontology to regain consistency. We propose a new method based on weakening these axioms to make them less (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. Sufficient Reason & The Axiom of Choice, an Ontological Proof for One Unique Transcendental God for Every Possible World.Assem Hamdy - manuscript
    Chains of causes appear when the existence of God is discussed. It is claimed by some that these chains must be finite and terminated by God. But these chains seem endless through our knowledge search. This endlessness for the physical reasons for any world event expresses the greatness and complexity of God’s creation and so the transcendence of God. So, only we can put our hands on physical reasons in an endless forage for knowledge. Yet, the endlessness of the physical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. The Relationship of Arithmetic As Two Twin Peano Arithmetic(s) and Set Theory: A New Glance From the Theory of Information.Vasil Penchev - 2020 - Metaphilosophy eJournal (Elseviers: SSRN) 12 (10):1-33.
    The paper introduces and utilizes a few new concepts: “nonstandard Peano arithmetic”, “complementary Peano arithmetic”, “Hilbert arithmetic”. They identify the foundations of both mathematics and physics demonstrating the equivalence of the newly introduced Hilbert arithmetic and the separable complex Hilbert space of quantum mechanics in turn underlying physics and all the world. That new both mathematical and physical ground can be recognized as information complemented and generalized by quantum information. A few fundamental mathematical problems of the present such (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 584