Philosophers of science since Nagel have been interested in the links between intertheoretic reduction and explanation, understanding and other forms of epistemic progress. Although intertheoretic reduction is widely agreed to occur in pure mathematics as well as empirical science, the relationship between reduction and explanation in the mathematical setting has rarely been investigated in a similarly serious way. This paper examines an important particular case: the reduction of arithmetic to set theory. I claim that the reduction is unexplanatory. In (...) defense of this claim, I offer evidence from mathematical practice, and I respond to contrary suggestions due to Steinhart, Maddy, Kitcher and Quine. I then show how, even if set-theoretic reductions are generally not explanatory, set theory can nevertheless serve as a legitimate foundation for mathematics. Finally, some implications of my thesis for philosophy of mathematics and philosophy of science are discussed. In particular, I suggest that some reductions in mathematics are probably explanatory, and I propose that differing standards of theory acceptance might account for the apparent lack of unexplanatory reductions in the empirical sciences. (shrink)
In this paper intuitionistic set theory INC# in infinitary set theoretical language is considered. External induction principle in nonstandard intuitionistic arithmetic were derived. Non trivial application in number theory is considered.
A possible world is a junky world if and only if each thing in it is a proper part. The possibility of junky worlds contradicts the principle of general fusion. Bohn (2009) argues for the possibility of junky worlds, Watson (2010) suggests that Bohn‘s arguments are flawed. This paper shows that the arguments of both authors leave much to be desired. First, relying on the classical results of Cantor, Zermelo, Fraenkel, and von Neumann, this paper proves the possibility of junky (...) worlds for certain weak set theories. Second, the paradox of Burali-Forti shows that according to the Zermelo-Fraenkel set theory ZF, junky worlds are possible. Finally, it is shown that set theories are not the only sources for designing plausible models of junky worlds: Topology (and possibly other "algebraic" mathematical theories) may be used to construct models of junky worlds. In sum, junkyness is a relatively widespread feature among possible worlds. (shrink)
Instead of the half-century old foundational feud between set theory and category theory, this paper argues that they are theories about two different complementary types of universals. The set-theoretic antinomies forced naïve set theory to be reformulated using some iterative notion of a set so that a set would always have higher type or rank than its members. Then the universal u_{F}={x|F(x)} for a property F() could never be self-predicative in the sense of u_{F}∈u_{F}. But the mathematical (...)theory of categories, dating from the mid-twentieth century, includes a theory of always-self-predicative universals--which can be seen as forming the "other bookend" to the never-self-predicative universals of set theory. The self-predicative universals of category theory show that the problem in the antinomies was not self-predication per se, but negated self-predication. They also provide a model (in the Platonic Heaven of mathematics) for the self-predicative strand of Plato's Theory of Forms as well as for the idea of a "concrete universal" in Hegel and similar ideas of paradigmatic exemplars in ordinary thought. (shrink)
Boolean-valued models of set theory were independently introduced by Scott, Solovay and Vopěnka in 1965, offering a natural and rich alternative for describing forcing. The original method was adapted by Takeuti, Titani, Kozawa and Ozawa to lattice-valued models of set theory. After this, Löwe and Tarafder proposed a class of algebras based on a certain kind of implication which satisfy several axioms of ZF. From this class, they found a specific 3-valued model called PS3 which satisfies all the (...) axioms of ZF, and can be expanded with a paraconsistent negation *, thus obtaining a paraconsistent model of ZF. The logic (PS3 ,*) coincides (up to language) with da Costa and D'Ottaviano logic J3, a 3-valued paraconsistent logic that have been proposed independently in the literature by several authors and with different motivations such as CluNs, LFI1 and MPT. We propose in this paper a family of algebraic models of ZFC based on LPT0, another linguistic variant of J3 introduced by us in 2016. The semantics of LPT0, as well as of its first-order version QLPT0, is given by twist structures defined over Boolean agebras. From this, it is possible to adapt the standard Boolean-valued models of (classical) ZFC to twist-valued models of an expansion of ZFC by adding a paraconsistent negation. We argue that the implication operator of LPT0 is more suitable for a paraconsistent set theory than the implication of PS3, since it allows for genuinely inconsistent sets w such that [(w = w)] = 1/2 . This implication is not a 'reasonable implication' as defined by Löwe and Tarafder. This suggests that 'reasonable implication algebras' are just one way to define a paraconsistent set theory. Our twist-valued models are adapted to provide a class of twist-valued models for (PS3,*), thus generalizing Löwe and Tarafder result. It is shown that they are in fact models of ZFC (not only of ZF). (shrink)
The notion of equality between two observables will play many important roles in foundations of quantum theory. However, the standard probabilistic interpretation based on the conventional Born formula does not give the probability of equality between two arbitrary observables, since the Born formula gives the probability distribution only for a commuting family of observables. In this paper, quantum set theory developed by Takeuti and the present author is used to systematically extend the standard probabilistic interpretation of quantum (...) class='Hi'>theory to define the probability of equality between two arbitrary observables in an arbitrary state. We apply this new interpretation to quantum measurement theory, and establish a logical basis for the difference between simultaneous measurability and simultaneous determinateness. (shrink)
Here, we analyse some recent applications of set theory to topology and argue that set theory is not only the closed domain where mathematics is usually founded, but also a flexible framework where imperfect intuitions can be precisely formalized and technically elaborated before they possibly migrate toward other branches. This apparently new role is mostly reminiscent of the one played by other external fields like theoretical physics, and we think that it could contribute to revitalize the interest in (...) set theory in the future. (shrink)
Relevance logic has become ontologically fertile. No longer is the idea of relevance restricted in its application to purely logical relations among propositions, for as Dunn has shown in his (1987), it is possible to extend the idea in such a way that we can distinguish also between relevant and irrelevant predications, as for example between “Reagan is tall” and “Reagan is such that Socrates is wise”. Dunn shows that we can exploit certain special properties of identity within the context (...) of standard relevance logic in a way which allows us to discriminate further between relevant and irrelevant properties, as also between relevant and irrelevant relations. The idea yields a family of ontologically interesting results concerning the different ways in which attributes and objects may hang together. Because of certain notorious peculiarities of relevance logic, however,1 Dunn’s idea breaks down where the attempt is made to have it bear fruit in application to relations among entities which are of homogeneous type. (shrink)
Cognitive Set Theory is a mathematical model of cognition which equates sets with concepts, and uses mereological elements. It has a holistic emphasis, as opposed to a reductionistic emphasis, and it therefore begins with a single universe (as opposed to an infinite collection of infinitesimal points).
We consider the foundational relation between arithmetic and set theory. Our goal is to criticize the construction of standard arithmetic models as providing grounds for arithmetic truth (even in a relative sense). Our method is to emphasize the incomplete picture of both theories and treat models as their syntactical counterparts. Insisting on the incomplete picture will allow us to argue in favor of the revisability of the standard model interpretation. We then show that it is hopeless to expect that (...) the relative grounding provided by a standard interpretation can resist being revisable. We start briefly characterizing the expansion of arithmetic `truth' provided by the interpretation in a set theory. Further, we show that, for every well-founded interpretation of recursive extensions of PA in extensions of ZF, the interpreted version of arithmetic has more theorems than the original. This theorem expansion is not complete however. We continue by defining the coordination problem. The problem can be summarized as follows. We consider two independent communities of mathematicians responsible for deciding over new axioms for ZF and PA. How likely are they to be coordinated regarding PA’s interpretation in ZF? We prove that it is possible to have extensions of PA not interpretable in a given set theory ST. We further show that the probability of a random extension of arithmetic being interpretable in ST is zero. (shrink)
Set-theoretic and category-theoretic foundations represent different perspectives on mathematical subject matter. In particular, category-theoretic language focusses on properties that can be determined up to isomorphism within a category, whereas set theory admits of properties determined by the internal structure of the membership relation. Various objections have been raised against this aspect of set theory in the category-theoretic literature. In this article, we advocate a methodological pluralism concerning the two foundational languages, and provide a theory that fruitfully interrelates (...) a `structural' perspective to a set-theoretic one. We present a set-theoretic system that is able to talk about structures more naturally, and argue that it provides an important perspective on plausibly structural properties such as cardinality. We conclude the language of set theory can provide useful information about the notion of mathematical structure. (shrink)
The purpose of this article is to present several immediate consequences of the introduction of a new constant called Lambda in order to represent the object ``nothing" or ``void" into a standard set theory. The use of Lambda will appear natural thanks to its role of condition of possibility of sets. On a conceptual level, the use of Lambda leads to a legitimation of the empty set and to a redefinition of the notion of set. It lets also clearly (...) appear the distinction between the empty set, the nothing and the ur-elements. On a technical level, we introduce the notion of pre-element and we suggest a formal definition of the nothing distinct of that of the null-class. Among other results, we get a relative resolution of the anomaly of the intersection of a family free of sets and the possibility of building the empty set from ``nothing". The theory is presented with equi-consistency results . On both conceptual and technical levels, the introduction of Lambda leads to a resolution of the Russell's puzzle of the null-class. (shrink)
The original purpose of the present study, 2011, started with a preprint «On the Probable Failure of the Uncountable Power Set Axiom», 1988, is to save from the transfinite deadlock of higher set theory the jewel of mathematical Continuum — this genuine, even if mostly forgotten today raison d’être of all traditional set-theoretical enterprises to Infinity and beyond, from Georg Cantor to David Hilbert to Kurt Gödel to W. Hugh Woodin to Buzz Lightyear.
In the paper we will employ set theory to study the formal aspects of quantum mechanics without explicitly making use of space-time. It is demonstrated that von Neuman and Zermelo numeral sets, previously efectively used in the explanation of Hardy’s paradox, follow a Heisenberg quantum form. Here monadic union plays the role of time derivative. The logical counterpart of monadic union plays the part of the Hamiltonian in the commutator. The use of numerals and monadic union in the classical (...) probability resolution of Hardy’s paradox [1] is supported with the present derivation of a commutator for sets. (shrink)
Plato’s philosophy is important to Badiou for a number of reasons, chief among which is that Badiou considered Plato to have recognised that mathematics provides the only sound or adequate basis for ontology. The mathematical basis of ontology is central to Badiou’s philosophy, and his engagement with Plato is instrumental in determining how he positions his philosophy in relation to those approaches to the philosophy of mathematics that endorse an orthodox Platonic realism, i.e. the independent existence of a realm of (...) mathematical objects. The Platonism that Badiou makes claim to bears little resemblance to this orthodoxy. Like Plato, Badiou insists on the primacy of the eternal and immu- table abstraction of the mathematico-ontological Idea; however, Badiou’s reconstructed Platonism champions the mathematics of post-Cantorian set theory, which itself af rms the irreducible multiplicity of being. Badiou in this way recon gures the Platonic notion of the relation between the one and the multiple in terms of the multiple-without-one as represented in the axiom of the void or empty set. Rather than engage with the Plato that is gured in the ontological realism of the orthodox Platonic approach to the philosophy of mathematics, Badiou is intent on characterising the Plato that responds to the demands of a post-Cantorian set theory, and he considers Plato’s philosophy to provide a response to such a challenge. In effect, Badiou reorients mathematical Platonism from an epistemological to an ontological problematic, a move that relies on the plausibility of rejecting the empiricist ontology underlying orthodox mathematical Platonism. To draw a connec- tion between these two approaches to Platonism and to determine what sets them radically apart, this paper focuses on the use that they each make of model theory to further their respective arguments. (shrink)
In order to explain Wittgenstein’s account of the reality of completed infinity in mathematics, a brief overview of Cantor’s initial injection of the idea into set- theory, its trajectory and the philosophic implications he attributed to it will be presented. Subsequently, we will first expound Wittgenstein’s grammatical critique of the use of the term ‘infinity’ in common parlance and its conversion into a notion of an actually existing infinite ‘set’. Secondly, we will delve into Wittgenstein’s technical critique of the (...) concept of ‘denumerability’ as it is presented in set theory as well as his philosophic refutation of Cantor’s Diagonal Argument and the implications of such a refutation onto the problems of the Continuum Hypothesis and Cantor’s Theorem. Throughout, the discussion will be placed within the historical and philosophical framework of the Grundlagenkrise der Mathematik and Hilbert’s problems. (shrink)
Most set theorists accept AC, and reject AD, i.e. for them, AC is true in the "world of sets", and AD is false. Applying to set theory the above-mentioned formalistic explanation of the existence of quarks, we could say: if, for a long time in the future, set theorists will continue their believing in AC, then one may think of a unique "world of sets" as existing in the same sense as quarks are believed to exist.
A practical viewpoint links reality, representation, and language to calculation by the concept of Turing (1936) machine being the mathematical model of our computers. After the Gödel incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness to be suggested for two ones. That is consistent with the provability of completeness by means of two independent Peano arithmetics discussed in Section I. (...) Many modifications of Turing machines cum quantum ones are researched in Section II for the Halting problem and completeness, and the model of two independent Turing machines seems to generalize them. Then, that pair can be postulated as the formal definition of reality therefore being complete unlike any of them standalone, remaining incomplete without its complementary counterpart. Representation is formal defined as a one-to-one mapping between the two Turing machines, and the set of all those mappings can be considered as “language” therefore including metaphors as mappings different than representation. Section III investigates that formal relation of “reality”, “representation”, and “language” modeled by (at least two) Turing machines. The independence of (two) Turing machines is interpreted by means of game theory and especially of the Nash equilibrium in Section IV. Choice and information as the quantity of choices are involved. That approach seems to be equivalent to that based on set theory and the concept of actual infinity in mathematics and allowing of practical implementations. (shrink)
DEFINING OUR TERMS A “paradox" is an argumentation that appears to deduce a conclusion believed to be false from premises believed to be true. An “inconsistency proof for a theory" is an argumentation that actually deduces a negation of a theorem of the theory from premises that are all theorems of the theory. An “indirect proof of the negation of a hypothesis" is an argumentation that actually deduces a conclusion known to be false from the hypothesis alone (...) or, more commonly, from the hypothesis augmented by a set of premises known to be true. A “direct proof of a hypothesis" is an argumentation that actually deduces the hypothesis itself from premises known to be true. Since `appears', `believes' and `knows' all make elliptical reference to a participant, it is clear that `paradox', `indirect proof' and `direct proof' are all participant-relative. PARTICIPANT RELATIVITY In normal mathematical writing the participant is presumed to be “the community of mathematicians" or some more or less well-defined subcommunity and, therefore, omission of explicit reference to the participant is often warranted. However, in historical, critical, or philosophical writing focused on emerging branches of mathematics such omission often invites confusion. One and the same argumentation has been a paradox for one mathematician, an inconsistency proof for another, and an indirect proof to a third. One and the same argumentation-text can appear to one mathematician to express an indirect proof while appearing to another mathematician to express a direct proof. WHAT IS A PARADOX’S SOLUTION? Of the above four sorts of argumentation only the paradox invites “solution" or “resolution", and ordinarily this is to be accomplished either by discovering a logical fallacy in the “reasoning" of the argumentation or by discovering that the conclusion is not really false or by discovering that one of the premises is not really true. Resolution of a paradox by a participant amounts to reclassifying a formerly paradoxical argumentation either as a “fallacy", as a direct proof of its conclusion, as an indirect proof of the negation of one of its premises, as an inconsistency proof, or as something else depending on the participant's state of knowledge or belief. This illustrates why an argumentation which is a paradox to a given mathematician at a given time may well not be a paradox to the same mathematician at a later time. -/- The present article considers several set-theoretic argumentations that appeared in the period 1903-1908. The year 1903 saw the publication of B. Russell's Principles of mathematics, [Cambridge Univ. Press, Cambridge, 1903; Jbuch 34, 62]. The year 1908 saw the publication of Russell's article on type theory as well as Ernst Zermelo's two watershed articles on the axiom of choice and the foundations of set theory. The argumentations discussed concern “the largest cardinal", “the largest ordinal", the well-ordering principle, “the well-ordering of the continuum", denumerability of ordinals and denumerability of reals. The article shows that these argumentations were variously classified by various mathematicians and that the surrounding atmosphere was one of confusion and misunderstanding, partly as a result of failure to make or to heed distinctions similar to those made above. The article implies that historians have made the situation worse by not observing or not analysing the nature of the confusion. -/- RECOMMENDATION This well-written and well-documented article exemplifies the fact that clarification of history can be achieved through articulation of distinctions that had not been articulated (or were not being heeded) at the time. The article presupposes extensive knowledge of the history of mathematics, of mathematics itself (especially set theory) and of philosophy. It is therefore not to be recommended for casual reading. AFTERWORD: This review was written at the same time Corcoran was writing his signature “Argumentations and logic”[249] that covers much of the same ground in much more detail. https://www.academia.edu/14089432/Argumentations_and_Logic . (shrink)
This is a chapter of the planned monograph "Out of Nowhere: The Emergence of Spacetime in Quantum Theories of Gravity", co-authored by Nick Huggett and Christian Wüthrich and under contract with Oxford University Press. (More information at www<dot>beyondspacetime<dot>net.) This chapter introduces causal set theory and identifies and articulates a 'problem of space' in this theory.
Set-theoretic pluralism is an increasingly influential position in the philosophy of set theory (Balaguer [1998], Linksy and Zalta [1995], Hamkins [2012]). There is considerable room for debate about how best to formulate set-theoretic pluralism, and even about whether the view is coherent. But there is widespread agreement as to what there is to recommend the view (given that it can be formulated coherently). Unlike set-theoretic universalism, set-theoretic pluralism affords an answer to Benacerraf’s epistemological challenge. The purpose of this paper (...) is to determine what Benacerraf’s challenge could be such that this view is warranted. I argue that it could not be any of the challenges with which it has been traditionally identified by its advocates, like of Benacerraf and Field. Not only are none of the challenges easier for the pluralist to meet. None satisfies a key constraint that has been placed on Benacerraf’s challenge. However, I argue that Benacerraf’s challenge could be the challenge to show that our set-theoretic beliefs are safe – i.e., to show that we could not have easily had false ones. Whether the pluralist is, in fact, better positioned to show that our set-theoretic beliefs are safe turns on a broadly empirical conjecture which is outstanding. If this conjecture proves to be false, then it is unclear what the epistemological argument for set-theoretic pluralism is supposed to be. (shrink)
In the contemporary philosophy of set theory, discussion of new axioms that purport to resolve independence necessitates an explanation of how they come to be justified. Ordinarily, justification is divided into two broad kinds: intrinsic justification relates to how `intuitively plausible' an axiom is, whereas extrinsic justification supports an axiom by identifying certain `desirable' consequences. This paper puts pressure on how this distinction is formulated and construed. In particular, we argue that the distinction as often presented is neither well-demarcated (...) nor sufficiently precise. Instead, we suggest that the process of justification in set theory should not be thought of as neatly divisible in this way, but should rather be understood as a conceptually indivisible notion linked to the goal of explanation. (shrink)
The concepts of choice, negation, and infinity are considered jointly. The link is the quantity of information interpreted as the quantity of choices measured in units of elementary choice: a bit is an elementary choice between two equally probable alternatives. “Negation” supposes a choice between it and confirmation. Thus quantity of information can be also interpreted as quantity of negations. The disjunctive choice between confirmation and negation as to infinity can be chosen or not in turn: This corresponds to set- (...) class='Hi'>theory or intuitionist approach to the foundation of mathematics and to Peano or Heyting arithmetic. Quantum mechanics can be reformulated in terms of information introducing the concept and quantity of quantum information. A qubit can be equivalently interpreted as that generalization of “bit” where the choice is among an infinite set or series of alternatives. The complex Hilbert space can be represented as both series of qubits and value of quantum information. The complex Hilbert space is that generalization of Peano arithmetic where any natural number is substituted by a qubit. “Negation”, “choice”, and “infinity” can be inherently linked to each other both in the foundation of mathematics and quantum mechanics by the meditation of “information” and “quantum information”. (shrink)
The link between the high-order metaphysics and abstractions, on the one hand, and choice in the foundation of set theory, on the other hand, can distinguish unambiguously the “good” principles of abstraction from the “bad” ones and thus resolve the “bad company problem” as to set theory. Thus it implies correspondingly a more precise definition of the relation between the axiom of choice and “all company” of axioms in set theory concerning directly or indirectly abstraction: the principle (...) of abstraction, axiom of comprehension, axiom scheme of specification, axiom scheme of separation, subset axiom scheme, axiom scheme of replacement, axiom of unrestricted comprehension, axiom of extensionality, etc. (shrink)
The paper introduces and utilizes a few new concepts: “nonstandard Peano arithmetic”, “complementary Peano arithmetic”, “Hilbert arithmetic”. They identify the foundations of both mathematics and physics demonstrating the equivalence of the newly introduced Hilbert arithmetic and the separable complex Hilbert space of quantum mechanics in turn underlying physics and all the world. That new both mathematical and physical ground can be recognized as information complemented and generalized by quantum information. A few fundamental mathematical problems of the present such as Fermat’s (...) last theorem, four-color theorem as well as its new-formulated generalization as “four-letter theorem”, Poincaré’s conjecture, “P vs NP” are considered over again, from and within the new-founding conceptual reference frame of information, as illustrations. Simple or crucially simplifying solutions and proofs are demonstrated. The link between the consistent completeness of the system mathematics-physics on the ground of information and all the great mathematical problems of the present (rather than the enumerated ones) is suggested. (shrink)
A Cantorian argument that there is no set of all truths. There is, for the same reason, no possible world as a maximal set of propositions. And omniscience is logically impossible.
It is a striking fact from reverse mathematics that almost all theorems of countable and countably representable mathematics are equivalent to just five subsystems of second order arithmetic. The standard view is that the significance of these equivalences lies in the set existence principles that are necessary and sufficient to prove those theorems. In this article I analyse the role of set existence principles in reverse mathematics, and argue that they are best understood as closure conditions on the powerset of (...) the natural numbers. (shrink)
Scientific antirealists run the argument from underconsideration against scientific realism. I argue that the argument from underconsideration backfires on antirealists’ positive philosophical theories, such as the contextual theory of explanation (van Fraassen, 1980), the English model of rationality (van Fraassen, 1989), the evolutionary explanation of the success of science (Wray, 2008; 2012), and explanatory idealism (Khalifa, 2013). Antirealists strengthen the argument from underconsideration with the pessimistic induction against current scientific theories. In response, I construct a pessimistic induction against antirealists (...) that since antirealists generated problematic philosophical theories in the past, they must be generating problematic philosophical theories now. (shrink)
This essay examines the philosophical significance of Ω-logic in Zermelo-Fraenkel set theory with choice (ZFC). The dual isomorphism between algebra and coalgebra permits Boolean-valued algebraic models of ZFC to be interpreted as coalgebras. The modal profile of Ω-logical validity can then be countenanced within a coalgebraic logic, and Ω-logical validity can be defined via deterministic automata. I argue that the philosophical significance of the foregoing is two-fold. First, because the epistemic and modal profiles of Ω-logical validity correspond to those (...) of second-order logical consequence, Ω-logical validity is genuinely logical, and thus vindicates a neo-logicist conception of mathematical truth in the set-theoretic multiverse. Second, the foregoing provides a modal-computational account of the interpretation of mathematical vocabulary, adducing in favor of a realist conception of the cumulative hierarchy of sets. (shrink)
Neutrosophy has been introduced by Smarandache [7, 8] as a new branch of philosophy. The purpose of this paper is to construct a new set theory called the neutrosophic set. After given the fundamental definitions of neutrosophic set operations, we obtain several properties, and discussed the relationship between neutrosophic sets and others. Finally, we extend the concepts of fuzzy topological space [4], and intuitionistic fuzzy topological space [5, 6] to the case of neutrosophic sets. Possible application to superstrings and (...) space–time are touched upon. (shrink)
Decision theory has at its core a set of mathematical theorems that connect rational preferences to functions with certain structural properties. The components of these theorems, as well as their bearing on questions surrounding rationality, can be interpreted in a variety of ways. Philosophy’s current interest in decision theory represents a convergence of two very different lines of thought, one concerned with the question of how one ought to act, and the other concerned with the question of what (...) action consists in and what it reveals about the actor’s mental states. As a result, the theory has come to have two different uses in philosophy, which we might call the normative use and the interpretive use. It also has a related use that is largely within the domain of psychology, the descriptive use. This essay examines the historical development of decision theory and its uses; the relationship between the norm of decision theory and the notion of rationality; and the interdependence of the uses of decision theory. (shrink)
The word ‘equality’ often requires disambiguation, which is provided by context or by an explicit modifier. For each sort of magnitude, there is at least one sense of ‘equals’ with its correlated senses of ‘is greater than’ and ‘is less than’. Given any two magnitudes of the same sort—two line segments, two plane figures, two solids, two time intervals, two temperature intervals, two amounts of money in a single currency, and the like—the one equals the other or the one is (...) greater than the other or the one is greater than the other [sc. in appropriate correlated senses of ‘equals’, ‘is greater than’ and ‘is less than’]. In case there are two or more appropriate senses of ‘equals’, the one intended is often indicated by an adverb. For example, one plane figure may be said to be equal in area to another and, in certain cases, one plane figure may be said to be equal in length to another. Each sense of ‘equality’ is tied to a specific domain and is therefore non-logical. Notice that in every cases ‘equality’ is definable in terms of ‘is greater than’ and also in terms of ‘is less than’ both of which are routinely considered domain specific, non-logical. The word ‘identity’ in the logical sense does not require disambiguation. Moreover, it is not correlated ‘is greater than’ and ‘is less than’. If it is not the case that a certain designated triangle is [sc. is identical to] an otherwise designated triangle, it is not necessary for the one to be greater than or less than the other. Moreover, if two magnitudes are equal then a unit of measure can be chosen and, no matter what unit is chosen, each magnitude is the same multiple of the unit that the other is. But identity does not require units. In this regard, congruence is like identity and unlike equality. In arithmetic, the logical concept of identity is coextensive with the arithmetic concept of equality. The logical concept of identity admits of an analytically adequate definition in terms of logical concepts: given any number x and any number y, x is y iff x has every property that y has. The arithmetical concept of equality admits of an analytically adequate definition in terms of arithmetical concepts: given any number x and any number y, x equals y iff x is neither less than nor greater than y. As Aristotle told us and as Frege retold us, just because one relation is coextensive with another is no reason to conclude that they are one. (shrink)
According to Cantor (Mathematische Annalen 21:545–586, 1883 ; Cantor’s letter to Dedekind, 1899 ) a set is any multitude which can be thought of as one (“jedes Viele, welches sich als Eines denken läßt”) without contradiction—a consistent multitude. Other multitudes are inconsistent or paradoxical. Set theoretical paradoxes have common root—lack of understanding why some multitudes are not sets. Why some multitudes of objects of thought cannot themselves be objects of thought? Moreover, it is a logical truth that such multitudes do (...) exist. However we do not understand this logical truth so well as we understand, for example, the logical truth $${\forall x \, x = x}$$ . In this paper we formulate a logical truth which we call the productivity principle. Rusell (Proc Lond Math Soc 4(2):29–53, 1906 ) was the first one to formulate this principle, but in a restricted form and with a different purpose. The principle explicates a logical mechanism that lies behind paradoxical multitudes, and is understandable as well as any simple logical truth. However, it does not explain the concept of set. It only sets logical bounds of the concept within the framework of the classical two valued $${\in}$$ -language. The principle behaves as a logical regulator of any theory we formulate to explain and describe sets. It provides tools to identify paradoxical classes inside the theory. We show how the known paradoxical classes follow from the productivity principle and how the principle gives us a uniform way to generate new paradoxical classes. In the case of ZFC set theory the productivity principle shows that the limitation of size principles are of a restrictive nature and that they do not explain which classes are sets. The productivity principle, as a logical regulator, can have a definite heuristic role in the development of a consistent set theory. We sketch such a theory—the cumulative cardinal theory of sets. The theory is based on the idea of cardinality of collecting objects into sets. Its development is guided by means of the productivity principle in such a way that its consistency seems plausible. Moreover, the theory inherits good properties from cardinal conception and from cumulative conception of sets. Because of the cardinality principle it can easily justify the replacement axiom, and because of the cumulative property it can easily justify the power set axiom and the union axiom. It would be possible to prove that the cumulative cardinal theory of sets is equivalent to the Morse–Kelley set theory. In this way we provide a natural and plausibly consistent axiomatization for the Morse–Kelley set theory. (shrink)
The thesis of theory-ladenness of observations, in its various guises, is widely considered as either ill-conceived or harmless to the rationality of science. The latter view rests partly on the work of the proponents of New Experimentalism who have argued, among other things, that experimental practices are efficient in guarding against any epistemological threat posed by theory-ladenness. In this paper I show that one can generate a thesis of theory-ladenness for experimental practices from an influential New Experimentalist (...) account. The notion I introduce for this purpose is the concept of ‘theory-driven data reliability judgments’, according to which theories which are sought to be tested with a particular set of data guide reliability judgments about those very same data. I provide various prominent historical examples to show that TDRs are used by scientists to resolve data conflicts. I argue that the rationality of the practices which employ TDRs can be saved if the independent support of the theories driving TDRs is construed in a particular way. (shrink)
Penelope Maddy’s Second Philosophy is one of the most well-known ap- proaches in recent philosophy of mathematics. She applies her second-philosophical method to analyze mathematical methodology by reconstructing historical cases in a setting of means-ends relations. However, outside of Maddy’s own work, this kind of methodological analysis has not yet been extensively used and analyzed. In the present work, we will make a first step in this direction. We develop a general framework that allows us to clarify the procedure and (...) aims of the Second Philosopher’s investigation into set-theoretic methodology; pro- vides a platform to analyze the Second Philosopher’s methods themselves; and can be applied to further questions in the philosophy of set theory. (shrink)
Ortega y Gasset is known for his philosophy of life and his effort to propose an alternative to both realism and idealism. The goal of this article is to focus on an unfamiliar aspect of his thought. The focus will be given to Ortega’s interpretation of the advancements in modern mathematics in general and Cantor’s theory of transfinite numbers in particular. The main argument is that Ortega acknowledged the historical importance of the Cantor’s Set Theory, analyzed it and (...) articulated a response to it. In his writings he referred many times to the advancements in modern mathematics and argued that mathematics should be based on the intuition of counting. In response to Cantor’s mathematics Ortega presented what he defined as an ‘absolute positivism’. In this theory he did not mean to naturalize cognition or to follow the guidelines of the Comte’s positivism, on the contrary. His aim was to present an alternative to Cantor’s mathematics by claiming that mathematicians are allowed to deal only with objects that are immediately present and observable to intuition. Ortega argued that the infinite set cannot be present to the intuition and therefore there is no use to differentiate between cardinals of different infinite sets. (shrink)
The paper considers contemporary models of presumption in terms of their ability to contribute to a working theory of presumption for argumentation. Beginning with the Whatelian model, we consider its contemporary developments and alternatives, as proposed by Sidgwick, Kauffeld, Cronkhite, Rescher, Walton, Freeman, Ullmann-Margalit, and Hansen. Based on these accounts, we present a picture of presumptions characterized by their nature, function, foundation and force. On our account, presumption is a modal status that is attached to a claim and has (...) the effect of shifting, in a dialogue, a burden of proof set at a local level. Presumptions can be analysed and evaluated inferentially as components of rule-based structures. Presumptions are defeasible, and the force of a presumption is a function of its normative foundation. This picture seeks to provide a framework to guide the development of specific theories of presumption. (shrink)
Philosophical debate about the meaning of normative terms has long been pulled in two directions by the apparently competing ideas: (i) ‘ought’s do not describe what is actually the case but rather prescribe possible action, thought, or feeling, (ii) all declarative sentences deserve the same general semantic treatment, e.g. in terms of compositionally specified truth conditions. In this paper, I pursue resolution of this tension by rehearsing the case for a relatively standard truth-conditionalist semantics for ‘ought’ conceived as a necessity (...) modal and proposing a revision to it motivated by the distinctively prescriptive character of some deontic modals. In my view, this puts pressure on a popular conception of one of the core debates of metanormative theory between realists and antirealists. To make good on this claim, I go on to explore two very general ways we might interpret the results of compositional semantics—“representationalism” and “inferentialism”—in order to argue that, contrary to what is generally assumed, both can capture the special prescriptivity of ‘ought’ and both can countenance compositionally specified and informative truth-conditions for ought-sentences. Hence, my main thesis is that the deciding factor between them should not be which of ideas (i) and (ii) we are more impressed by but rather what we think of the relative merits of how representationalism and inferentialism respect these ideas. I’m inclined to favor an antirealist form of inferentialism, but the task I’ve set myself here is mainly to articulate the view in the context of metanormative theory and the semantics of deontic modals rather than try to defend it fully. To this purpose, towards the end I also briefly compare and contrast inferentialism with a third “ideationalist” metasemantic view, which may be an attractive home for some sophisticated versions of metanormative expressivism. Depending on how expressivism is worked out, it may be completely compatible with and so perhaps usefully combined with inferentialism or it may offer a competing way to respect ideas (i) and (ii). (shrink)
Most moral theories share certain features in common with other theories. They consist of a set of propositions that are universal, general, and hence impartial. The propositions that constitute a typical moral theory are (1) universal, in that they apply to all subjects designated as within their scope. They are (2) general, in that they include no proper names or definite descriptions. They are therefore (3) impartial, in that they accord no special privilege to any particular agent's situation which (...) cannot be justified under (2) and (3). These three features do not distinguish moral theories from other theories, nor indeed from most general categorical propositions we assert. Yet, in recent years, these features of moral theories have been the target of a certain concerted and sustained criticism, namely, that to be committed to such a moral theory, or to aspire to act in accordance with its requirements, results in what has come to be known as moral alienation. Moral alienation, according to this criticism, consists in (i) viewing one's ground projects from an impersonal, "moral point of view" engendered by one's acceptance of the theory; (ii) being prepared to sacrifice these projects to the requirements of moral principle; and (iii) making such a sacrifice specifically and self-consciously in order to conform to these requirements. Moral alienation is said to manifest itself in one (or both) of two ways, depending on the nature of the project thus susceptible to sacrifice. One may be alienated from oneself, if the project consists of tastes, convictions, or aspirations that are centrally definitive of one's self. In this case one's commitment to the project can be at best conditional on its congruence with one's moral theory. It is claimed that this must make for a rather tepid and unenthusiastic commitment indeed. Alternatively, one may be alienated from others, if the project is an interpersonal relationship such as a friendship, marriage, or collegial relationship. In this case one's responses to the other are motivated by one's awareness of what one's moral theory requires. It is claimed that this obstructs a genuine and unmediated emotional response to the other as such. My aim here will be to argue that this very compelling criticism - call it the moral-alienation criticism - is nevertheless misdirected. The real culprit is not any particular moral theory, but rather a certain familiar personality type that may or may not adopt it. (shrink)
The dispute in philosophical decision theory between causalists and evidentialists remains unsettled. Many are attracted to the causal view’s endorsement of a species of dominance reasoning, and to the intuitive verdicts it gets on a range of cases with the structure of the infamous Newcomb’s Problem. But it also faces a rising wave of purported counterexamples and theoretical challenges. In this paper I will describe a novel decision theory which saves what is appealing about the causal view while (...) avoiding its most worrying objections, and which promises to generalize to solve a set of related problems in other normative domains. (shrink)
In this paper, I develop an essentialist model of the semantics of slurs. I defend the view that slurs are a species of kind terms: Slur concepts encode mini-theories which represent an essence-like element that is causally connected to a set of negatively-valenced stereotypical features of a social group. The truth-conditional contribution of slur nouns can then be captured by the following schema: For a given slur S of a social group G and a person P, S is true of (...) P iff P bears the “essence” of G—whatever this essence is—which is causally responsible for stereotypical negative features associated with G and predicted of P. Since there is no essence that is causally responsible for stereotypical negative features of a social group, slurs have null-extension, and consequently, many sentences containing them are either meaningless or false. After giving a detailed outline of my theory, I show that it receives strong linguistic support. In particular, it can account for a wide range of linguistic cases that are regarded as challenging, central data for any theory of slurs. Finally, I show that my theory also receives convergent support from cognitive psychology and psycholinguistics. (shrink)
It is illegitimate to read any ontology about "race" off of biological theory or data. Indeed, the technical meaning of "genetic variation" is fluid, and there is no single theoretical agreed-upon criterion for defining and distinguishing populations (or groups or clusters) given a particular set of genetic variation data. Thus, by analyzing three formal senses of "genetic variation"—diversity, differentiation, and heterozygosity—we argue that the use of biological theory for making epistemic claims about "race" can only seem plausible when (...) it relies on the user’s own assumptions about race; the move from biological measures to claims about “race” inevitably amounts to a pernicious reification. We also excavate assumptions in the history of the technical discourse over the concept of "race" (e.g., Livingstone's and Dobzhansky's 1962 exchange, Edwards' 2003 response to Lewontin 1972, as well as contemporary discussions of cladistic "race", and "races" as clusters). We show that claims about the existence (or non-existence) of "race" are underdetermined by biological facts, methods, and theories. Biological theory does not force the concept of "race" upon us; our social discourse, social ontology, and social expectations do. We become prisoners of our abstractions at our own hands, and at our own expense. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.