Results for 'Strongly classical logic'

1000+ found
Order:
  1. Strong normalization of a symmetric lambda calculus for second-order classical logic.Yoriyuki Yamagata - 2002 - Archive for Mathematical Logic 41 (1):91-99.
    We extend Barbanera and Berardi's symmetric lambda calculus [2] to second-order classical propositional logic and prove its strong normalization.
    Download  
     
    Export citation  
     
    Bookmark  
  2. Supervaluationism, Modal Logic, and Weakly Classical Logic.Joshua Schechter - 2024 - Journal of Philosophical Logic 53 (2):411-61.
    A consequence relation is strongly classical if it has all the theorems and entailments of classical logic as well as the usual meta-rules (such as Conditional Proof). A consequence relation is weakly classical if it has all the theorems and entailments of classical logic but lacks the usual meta-rules. The most familiar example of a weakly classical consequence relation comes from a simple supervaluational approach to modelling vague language. This approach is formally (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Non-classical Metatheory for Non-classical Logics.Andrew Bacon - 2013 - Journal of Philosophical Logic 42 (2):335-355.
    A number of authors have objected to the application of non-classical logic to problems in philosophy on the basis that these non-classical logics are usually characterised by a classical metatheory. In many cases the problem amounts to more than just a discrepancy; the very phenomena responsible for non-classicality occur in the field of semantics as much as they do elsewhere. The phenomena of higher order vagueness and the revenge liar are just two such examples. The aim (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  4. Some Strong Conditionals for Sentential Logics.Jason Zarri - manuscript
    In this article I define a strong conditional for classical sentential logic, and then extend it to three non-classical sentential logics. It is stronger than the material conditional and is not subject to the standard paradoxes of material implication, nor is it subject to some of the standard paradoxes of C. I. Lewis’s strict implication. My conditional has some counterintuitive consequences of its own, but I think its pros outweigh its cons. In any case, one can always (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Challenging Logical Monism.Aurna Mukherjee - manuscript
    Logic is loosely regarded as a key factor that drives our decisions. However, logic is actually separated into different systems, such as intuitionistic logic and classical logic. These systems can be explained by different theories, such as logical monism and logical pluralism. This paper aims to challenge logical monism, which posits that only a single logical system adheres to the principles of validity. It explains this on the basis of different systems held as equally strong (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Translations between logical systems: a manifesto.Walter A. Carnielli & Itala Ml D'Ottaviano - 1997 - Logique Et Analyse 157:67-81.
    The main objective o f this descriptive paper is to present the general notion of translation between logical systems as studied by the GTAL research group, as well as its main results, questions, problems and indagations. Logical systems here are defined in the most general sense, as sets endowed with consequence relations; translations between logical systems are characterized as maps which preserve consequence relations (that is, as continuous functions between those sets). In this sense, logics together with translations form a (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  7. How Strong Is a Counterfactual?David Boylan & Ginger Schultheis - 2021 - Journal of Philosophy 118 (7):373-404.
    The literature on counterfactuals is dominated by strict accounts and variably strict accounts. Counterexamples to the principle of Antecedent Strengthening were thought to be fatal to SA; but it has been shown that by adding dynamic resources to the view, such examples can be accounted for. We broaden the debate between VSA and SA by focusing on a new strengthening principle, Strengthening with a Possibility. We show dynamic SA classically validates this principle. We give a counterexample to it and show (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  8. Logic, mathematics, physics: from a loose thread to the close link: Or what gravity is for both logic and mathematics rather than only for physics.Vasil Penchev - 2023 - Astrophysics, Cosmology and Gravitation Ejournal 2 (52):1-82.
    Gravitation is interpreted to be an “ontomathematical” force or interaction rather than an only physical one. That approach restores Newton’s original design of universal gravitation in the framework of “The Mathematical Principles of Natural Philosophy”, which allows for Einstein’s special and general relativity to be also reinterpreted ontomathematically. The entanglement theory of quantum gravitation is inherently involved also ontomathematically by virtue of the consideration of the qubit Hilbert space after entanglement as the Fourier counterpart of pseudo-Riemannian space. Gravitation can be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Existence Assumptions and Logical Principles: Choice Operators in Intuitionistic Logic.Corey Edward Mulvihill - 2015 - Dissertation, University of Waterloo
    Hilbert’s choice operators τ and ε, when added to intuitionistic logic, strengthen it. In the presence of certain extensionality axioms they produce classical logic, while in the presence of weaker decidability conditions for terms they produce various superintuitionistic intermediate logics. In this thesis, I argue that there are important philosophical lessons to be learned from these results. To make the case, I begin with a historical discussion situating the development of Hilbert’s operators in relation to his evolving (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  10. Modeling the concept of truth using the largest intrinsic fixed point of the strong Kleene three valued semantics (in Croatian language).Boris Culina - 2004 - Dissertation, University of Zagreb
    The thesis deals with the concept of truth and the paradoxes of truth. Philosophical theories usually consider the concept of truth from a wider perspective. They are concerned with questions such as - Is there any connection between the truth and the world? And, if there is - What is the nature of the connection? Contrary to these theories, this analysis is of a logical nature. It deals with the internal semantic structure of language, the mutual semantic connection of sentences, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  11. Some strongly undecidable natural arithmetical problems, with an application to intuitionistic theories.Panu Raatikainen - 2003 - Journal of Symbolic Logic 68 (1):262-266.
    A natural problem from elementary arithmetic which is so strongly undecidable that it is not even Trial and Error decidable (in other words, not decidable in the limit) is presented. As a corollary, a natural, elementary arithmetical property which makes a difference between intuitionistic and classical theories is isolated.
    Download  
     
    Export citation  
     
    Bookmark  
  12. Kripke Semantics for Fuzzy Logics.Saeed Salehi - 2018 - Soft Computing 22 (3):839–844.
    Kripke frames (and models) provide a suitable semantics for sub-classical logics; for example, intuitionistic logic (of Brouwer and Heyting) axiomatizes the reflexive and transitive Kripke frames (with persistent satisfaction relations), and the basic logic (of Visser) axiomatizes transitive Kripke frames (with persistent satisfaction relations). Here, we investigate whether Kripke frames/models could provide a semantics for fuzzy logics. For each axiom of the basic fuzzy logic, necessary and sufficient conditions are sought for Kripke frames/models which satisfy them. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  13. Intuitionistic logic versus paraconsistent logic. Categorical approach.Mariusz Kajetan Stopa - 2023 - Dissertation, Jagiellonian University
    The main research goal of the work is to study the notion of co-topos, its correctness, properties and relations with toposes. In particular, the dualization process proposed by proponents of co-toposes has been analyzed, which transforms certain Heyting algebras of toposes into co-Heyting ones, by which a kind of paraconsistent logic may appear in place of intuitionistic logic. It has been shown that if certain two definitions of topos are to be equivalent, then in one of them, in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Epistemic Friction: An Essay on Knowledge, Truth, and Logic.Gila Sher - 2016 - Oxford: Oxford University Press UK.
    Gila Sher approaches knowledge from the perspective of the basic human epistemic situation—the situation of limited yet resourceful beings, living in a complex world and aspiring to know it in its full complexity. What principles should guide them? Two fundamental principles of knowledge are epistemic friction and freedom. Knowledge must be substantially constrained by the world (friction), but without active participation of the knower in accessing the world (freedom) theoretical knowledge is impossible. This requires a grounding of all knowledge, empirical (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  15. Alienation. Recuperating the Classical Discussion of Marx et al.Asger Sørensen - manuscript
    After years of neglect, alienation has again reached the agenda of critical thought. In my case, I recognize alienation as a challenge for education in contemporary societies. To obtain conceptual resources to overcome this challenge, I have revisited the comprehensive 20 th century discussion of alienation. Today, alienation is naturally discussed as an existential condition of human being, but still in the 1980s, there was a strong Marxist current that claimed alienation to be implied by capitalism, in particular by the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  16. Classical Logic Is Connexive.Camillo Fiore - 2024 - Australasian Journal of Logic (2):91-99.
    Connexive logics are based on two ideas: that no statement entails or is entailed by its own negation (this is Aristotle’s thesis) and that no statement entails both something and the negation of this very thing (this is Boethius' thesis). Usually, connexive logics are contra-classical. In this note, I introduce a reading of the connexive theses that makes them compatible with classical logic. According to this reading, the theses in question do not talk about validity alone; rather, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. How to Conquer the Liar and Enthrone the Logical Concept of Truth.Boris Culina - 2023 - Croatian Journal of Philosophy 23 (67):1-31.
    This article informally presents a solution to the paradoxes of truth and shows how the solution solves classical paradoxes (such as the original Liar) as well as the paradoxes that were invented as counterarguments for various proposed solutions (“the revenge of the Liar”). This solution complements the classical procedure of determining the truth values of sentences by its own failure and, when the procedure fails, through an appropriate semantic shift allows us to express the failure in a (...) two-valued language. Formally speaking, the solution is a language with one meaning of symbols and two valuations of the truth values of sentences. The primary valuation is a classical valuation that is partial in the presence of the truth predicate. It enables us to determine the classical truth value of a sentence or leads to the failure of that determination. The language with the primary valuation is precisely the largest intrinsic fixed point of the strong Kleene three-valued semantics (LIFPSK3). The semantic shift that allows us to express the failure of the primary valuation is precisely the classical closure of LIFPSK3: it extends LIFPSK3 to a classical language in parts where LIFPSK3 is undetermined. Thus, this article provides an argumentation, which has not been present in contemporary debates so far, for the choice of LIFPSK3 and its classical closure as the right model for the truth predicate. In the end, an erroneous critique of Kripke-Feferman axiomatic theory of truth, which is present in contemporary literature, is pointed out. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Juxtaposition: A New Way to Combine Logics.Joshua Schechter - 2011 - Review of Symbolic Logic 4 (4):560-606.
    This paper develops a new framework for combining propositional logics, called "juxtaposition". Several general metalogical theorems are proved concerning the combination of logics by juxtaposition. In particular, it is shown that under reasonable conditions, juxtaposition preserves strong soundness. Under reasonable conditions, the juxtaposition of two consequence relations is a conservative extension of each of them. A general strong completeness result is proved. The paper then examines the philosophically important case of the combination of classical and intuitionist logics. Particular attention (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  19. Probability, Evidential Support, and the Logic of Conditionals.Vincenzo Crupi & Andrea Iacona - 2021 - Argumenta 6:211-222.
    Once upon a time, some thought that indicative conditionals could be effectively analyzed as material conditionals. Later on, an alternative theoretical construct has prevailed and received wide acceptance, namely, the conditional probability of the consequent given the antecedent. Partly following critical remarks recently ap- peared in the literature, we suggest that evidential support—rather than conditional probability alone—is key to understand indicative conditionals. There have been motivated concerns that a theory of evidential conditionals (unlike their more tra- ditional counterparts) cannot generate (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  20.  98
    Meta-Classical Non-Classical Logics.Eduardo Alejandro Barrio, Camillo Fiore & Federico Pailos - forthcoming - Review of Symbolic Logic.
    Recently, it has been proposed to understand a logic as containing not only a validity canon for inferences but also a validity canon for metainferences of any finite level. Then, it has been shown that it is possible to construct infinite hierarchies of "increasingly classical" logics—that is, logics that are classical at the level of inferences and of increasingly higher metainferences—all of which admit a transparent truth predicate. In this paper, we extend this line of investigation by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. A Classical Logic of Existence and Essence.Sergio Galvan & Alessandro Giordani - 2020 - Logic and Logical Philosophy 29 (4):541-570.
    The purpose of this paper is to provide a new system of logic for existence and essence, in which the traditional distinctions between essential and accidental properties, abstract and concrete objects, and actually existent and possibly existent objects are described and related in a suitable way. In order to accomplish this task, a primitive relation of essential identity between different objects is introduced and connected to a first order existence property and a first order abstractness property. The basic idea (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  22. Recapture Results and Classical Logic.Camillo Fiore & Lucas Rosenblatt - 2023 - Mind 132 (527):762–788.
    An old and well-known objection to non-classical logics is that they are too weak; in particular, they cannot prove a number of important mathematical results. A promising strategy to deal with this objection consists in proving so-called recapture results. Roughly, these results show that classical logic can be used in mathematics and other unproblematic contexts. However, the strategy faces some potential problems. First, typical recapture results are formulated in a purely logical language, and do not generalize nicely (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  23.  93
    Classical Logic and Neutrosophic Logic. Answers to K. Georgiev.Florentin Smarandache - 2016 - Neutrosophic Sets and Systems 13:79-83.
    In this paper, we make distinctions between Classical Logic (where the propositions are 100% true, or 100 false) and the Neutrosophic Logic (where one deals with partially true, partially indeterminate and partially false propositions) in order to respond to K. Georgiev’s criticism [1]. We recall that if an axiom is true in a classical logic system, it is not necessarily that the axiom be valid in a modern (fuzzy, intuitionistic fuzzy, neutrosophic etc.) logic system.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  24. Embedding Classical Logic in S4.Sophie Nagler - 2019 - Dissertation, Munich Center for Mathematical Philosophy (Mcmp), Lmu Munich
    In this thesis, we will study the embedding of classical first-order logic in first-order S4, which is based on the translation originally introduced in Fitting (1970). The initial main part is dedicated to a detailed model-theoretic proof of the soundness of the embedding. This will follow the proof sketch in Fitting (1970). We will then outline a proof procedure for a proof-theoretic replication of the soundness result. Afterwards, a potential proof of faithfulness of the embedding, read in terms (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Conservatively extending classical logic with transparent truth.David Ripley - 2012 - Review of Symbolic Logic 5 (2):354-378.
    This paper shows how to conservatively extend classical logic with a transparent truth predicate, in the face of the paradoxes that arise as a consequence. All classical inferences are preserved, and indeed extended to the full (truth—involving) vocabulary. However, not all classical metainferences are preserved; in particular, the resulting logical system is nontransitive. Some limits on this nontransitivity are adumbrated, and two proof systems are presented and shown to be sound and complete. (One proof system allows (...)
    Download  
     
    Export citation  
     
    Bookmark   118 citations  
  26. Normalisation for Bilateral Classical Logic with some Philosophical Remarks.Nils Kürbis - 2021 - Journal of Applied Logics 2 (8):531-556.
    Bilateralists hold that the meanings of the connectives are determined by rules of inference for their use in deductive reasoning with asserted and denied formulas. This paper presents two bilateral connectives comparable to Prior's tonk, for which, unlike for tonk, there are reduction steps for the removal of maximal formulas arising from introducing and eliminating formulas with those connectives as main operators. Adding either of them to bilateral classical logic results in an incoherent system. One way around this (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  27. Classical Logic.Seykora Maria L. - 2022 - San Diego: Cognella, Inc..
    Peer Review Book Description - Maria Seykora (female, published age 28) -/- -/- Classical Logic will attempt to give a comprehensive and rigorous introduction and more advanced overview of the area of logic widely known as “classical logic,” as distinguished from modern-day “non-classical logic,” for undergraduate students in general. It will cover the topics of Informal Logic (including logical fallacies, deduction, induction, and abductive reasoning) and Formal Logic. (Because it aims to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Reasoning with Imperatives Using Classical Logic.Joseph S. Fulda - 1995 - Sorites 3:7-11.
    As the journal is effectively defunct, I am uploading a full-text copy, but only of my abstract and article, and some journal front matter. -/- Note that the pagination in the PDF version differs from the official pagination because A4 and 8.5" x 11" differ. -/- Traditionally, imperatives have been handled with deontic logics, not the logic of propositions which bear truth values. Yet, an imperative is issued by the speaker to cause (stay) actions which change the state of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  29. Supervaluationism and Classical Logic.Pablo Cobreros - 2011 - In Rick Nouwen, Robert van Rooij, Uli Sauerland & Hans-Christian Schmitz (eds.), Vagueness in Communication. Springer.
    This paper is concerned with the claim that supervaluationist consequence is not classical for a language including an operator for definiteness. Although there is some sense in which this claim is uncontroversial, there is a sense in which the claim must be qualified. In particular I defend Keefe's position according to which supervaluationism is classical except when the inference from phi to Dphi is involved. The paper provides a precise content to this claim showing that we might provide (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  30. The (Greatest) Fragment of Classical Logic that Respects the Variable-Sharing Principle (in the FMLA-FMLA Framework).Damian E. Szmuc - 2021 - Bulletin of the Section of Logic 50 (4):421-453.
    We examine the set of formula-to-formula valid inferences of Classical Logic, where the premise and the conclusion share at least a propositional variable in common. We review the fact, already proved in the literature, that such a system is identical to the first-degree entailment fragment of R. Epstein's Relatedness Logic, and that it is a non-transitive logic of the sort investigated by S. Frankowski and others. Furthermore, we provide a semantics and a calculus for this (...). The semantics is defined in terms of a \-matrix built on top of a 5-valued extension of the 3-element weak Kleene algebra, whereas the calculus is defined in terms of a Gentzen-style sequent system where the left and right negation rules are subject to linguistic constraints. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  31. Judgement aggregation in non-classical logics.Daniele Porello - 2017 - Journal of Applied Non-Classical Logics 27 (1-2):106-139.
    This work contributes to the theory of judgement aggregation by discussing a number of significant non-classical logics. After adapting the standard framework of judgement aggregation to cope with non-classical logics, we discuss in particular results for the case of Intuitionistic Logic, the Lambek calculus, Linear Logic and Relevant Logics. The motivation for studying judgement aggregation in non-classical logics is that they offer a number of modelling choices to represent agents’ reasoning in aggregation problems. By studying (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  32. A non-classical logical foundation for naturalised realism.Emma Ruttkamp-Bloem, Giovanni Casini & Thomas Meyer - 2015 - In Pavel Arazim & Michal Dancak (eds.), Logica Yearbook 2014. College Publications. pp. 249-266.
    In this paper, by suggesting a formal representation of science based on recent advances in logic-based Artificial Intelligence (AI), we show how three serious concerns around the realisation of traditional scientific realism (the theory/observation distinction, over-determination of theories by data, and theory revision) can be overcome such that traditional realism is given a new guise as ‘naturalised’. We contend that such issues can be dealt with (in the context of scientific realism) by developing a formal representation of science based (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Normalisation and subformula property for a system of classical logic with Tarski’s rule.Nils Kürbis - 2021 - Archive for Mathematical Logic 61 (1):105-129.
    This paper considers a formalisation of classical logic using general introduction rules and general elimination rules. It proposes a definition of ‘maximal formula’, ‘segment’ and ‘maximal segment’ suitable to the system, and gives reduction procedures for them. It is then shown that deductions in the system convert into normal form, i.e. deductions that contain neither maximal formulas nor maximal segments, and that deductions in normal form satisfy the subformula property. Tarski’s Rule is treated as a general introduction rule (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  34. Computational logic. Vol. 1: Classical deductive computing with classical logic. 2nd ed.Luis M. Augusto - 2022 - London: College Publications.
    This is the 3rd edition. Although a number of new technological applications require classical deductive computation with non-classical logics, many key technologies still do well—or exclusively, for that matter—with classical logic. In this first volume, we elaborate on classical deductive computing with classical logic. The objective of the main text is to provide the reader with a thorough elaboration on both classical computing – a.k.a. formal languages and automata theory – and (...) deduction with the classical first-order predicate calculus with a view to computational implementations, namely in automated theorem proving and logic programming. The present third edition improves on the previous ones by providing an altogether more algorithmic approach: There is now a wholly new section on algorithms and there are in total fourteen clearly isolated algorithms designed in pseudo-code. Other improvements are, for instance, an emphasis on functions in Chapter 1 and more exercises with Turing machines. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Correction regarding 'Normalisation and Subformula Property for a System of Classical Logic with Tarski's Rule'.Nils Kürbis - manuscript
    This note corrects an error in my paper 'Normalisation and Subformula Property for a System of Classical Logic with Tarski's Rule' (Archive for Mathematical Logic 61 (2022): 105-129, DOI 10.1007/s00153-021-00775-6): Theorem 2 is mistaken, and so is a corollary drawn from it as well as a corollary that was concluded by the same mistake. Luckily this does not affect the main result of the paper.
    Download  
     
    Export citation  
     
    Bookmark  
  36. Conceptual structure of classical logic.John Corcoran - 1972 - Philosophy and Phenomenological Research 33 (1):25-47.
    One innovation in this paper is its identification, analysis, and description of a troubling ambiguity in the word ‘argument’. In one sense ‘argument’ denotes a premise-conclusion argument: a two-part system composed of a set of sentences—the premises—and a single sentence—the conclusion. In another sense it denotes a premise-conclusion-mediation argument—later called an argumentation: a three-part system composed of a set of sentences—the premises—a single sentence—the conclusion—and complex of sentences—the mediation. The latter is often intended to show that the conclusion follows from (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  37. Beyond Negation and Excluded Middle: An exploration to Embrace the Otherness Beyond Classical Logic System and into Neutrosophic Logic.Florentin Smarandache & Victor Christianto - 2023 - Prospects for Applied Mathematics and Data Analysis 2 (2):34-40.
    As part of our small contribution in dialogue toward better peace development and reconciliation studies, and following Toffler & Toffler’s War and Antiwar (1993), the present article delves into a realm of logic beyond the traditional confines of negation and the excluded middle principle, exploring the nuances of "Otherness" that transcend classical and Nagatomo logics. Departing from the foundational premises of classical Aristotelian logic systems, this exploration ventures into alternative realms of reasoning, specifically examining Neutrosophic (...) and Klein bottle logic (cf. Smarandache, 2005). The study challenges conventional boundaries and explores the implications of embracing paradoxes and self-reference in logic systems, aiming to redefine approaches to understanding truth and reasoning. The paper investigates how these alternative logics open avenues for philosophical inquiry, redefining entropy, and potentially influencing innovative perspectives in free energy systems. Through this exploration, it seeks to expand the discourse on logic, welcoming a broader spectrum of thought beyond established frameworks; and we also discuss shortly a number of possible implementations including in risk management and also Klein bottle entropy redefinition (Tang et al, 2018). (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  38. Note on 'Normalisation for Bilateral Classical Logic with some Philosophical Remarks'.Nils Kürbis - 2021 - Journal of Applied Logics 7 (8):2259-2261.
    This brief note corrects an error in one of the reduction steps in my paper 'Normalisation for Bilateral Classical Logic with some Philosophical Remarks' published in the Journal of Applied Logics 8/2 (2021): 531-556.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  39. Bilateralist Detours: From Intuitionist to Classical Logic and Back.Nils Kürbis - 2017 - Logique Et Analyse 60 (239):301-316.
    There is widespread agreement that while on a Dummettian theory of meaning the justified logic is intuitionist, as its constants are governed by harmonious rules of inference, the situation is reversed on Huw Price's bilateralist account, where meanings are specified in terms of primitive speech acts assertion and denial. In bilateral logics, the rules for classical negation are in harmony. However, as it is possible to construct an intuitionist bilateral logic with harmonious rules, there is no formal (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  40. Topics in the Proof Theory of Non-classical Logics. Philosophy and Applications.Fabio De Martin Polo - 2023 - Dissertation, Ruhr-Universität Bochum
    Chapter 1 constitutes an introduction to Gentzen calculi from two perspectives, logical and philosophical. It introduces the notion of generalisations of Gentzen sequent calculus and the discussion on properties that characterize good inferential systems. Among the variety of Gentzen-style sequent calculi, I divide them in two groups: syntactic and semantic generalisations. In the context of such a discussion, the inferentialist philosophy of the meaning of logical constants is introduced, and some potential objections – mainly concerning the choice of working with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  41. On Three-Valued Presentations of Classical Logic.Bruno da Ré, Damian Szmuc, Emmanuel Chemla & Paul Égré - forthcoming - Review of Symbolic Logic:1-23.
    Given a three-valued definition of validity, which choice of three-valued truth tables for the connectives can ensure that the resulting logic coincides exactly with classical logic? We give an answer to this question for the five monotonic consequence relations $st$, $ss$, $tt$, $ss\cap tt$, and $ts$, when the connectives are negation, conjunction, and disjunction. For $ts$ and $ss\cap tt$ the answer is trivial (no scheme works), and for $ss$ and $tt$ it is straightforward (they are the collapsible (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. What is Nominalistic Mereology?Jeremy Meyers - 2012 - Journal of Philosophical Logic 43 (1):71-108.
    Hybrid languages are introduced in order to evaluate the strength of “minimal” mereologies with relatively strong frame definability properties. Appealing to a robust form of nominalism, I claim that one investigated language \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}_{\textsf {m}}$\end{document} is maximally acceptable for nominalistic mereology. In an extension \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}_{\textsf {gem}}$\end{document} of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}_{\textsf {m}}$\end{document}, a modal analog (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  43. Making Sense of Paraconsistent Logic: The Nature of Logic, Classical Logic and Paraconsistent Logic.Koji Tanaka - 2013 - In Francesco Berto, Edwin Mares, Koji Tanaka & Francesco Paoli (eds.), Paraconsistency: Logic and Applications. Springer. pp. 15--25.
    Max Cresswell and Hilary Putnam seem to hold the view, often shared by classical logicians, that paraconsistent logic has not been made sense of, despite its well-developed mathematics. In this paper, I examine the nature of logic in order to understand what it means to make sense of logic. I then show that, just as one can make sense of non-normal modal logics (as Cresswell demonstrates), we can make `sense' of paraconsistent logic. Finally, I turn (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  44. Many-Valued And Fuzzy Logic Systems From The Viewpoint Of Classical Logic.Ekrem Sefa Gül - 2018 - Tasavvur - Tekirdag Theology Journal 4 (2):624 - 657.
    The thesis that the two-valued system of classical logic is insufficient to explanation the various intermediate situations in the entity, has led to the development of many-valued and fuzzy logic systems. These systems suggest that this limitation is incorrect. They oppose the law of excluded middle (tertium non datur) which is one of the basic principles of classical logic, and even principle of non-contradiction and argue that is not an obstacle for things both to exist (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. On the notion of validity for the bilateral classical logic.Ukyo Suzuki & Yoriyuki Yamagata - manuscript
    This paper considers Rumfitt’s bilateral classical logic (BCL), which is proposed to counter Dummett’s challenge to classical logic. First, agreeing with several authors, we argue that Rumfitt’s notion of harmony, used to justify logical rules by a purely proof theoretical manner, is not sufficient to justify coordination rules in BCL purely proof-theoretically. For the central part of this paper, we propose a notion of proof-theoretical validity similar to Prawitz for BCL and proves that BCL is sound (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Logical Entropy: Introduction to Classical and Quantum Logical Information theory.David Ellerman - 2018 - Entropy 20 (9):679.
    Logical information theory is the quantitative version of the logic of partitions just as logical probability theory is the quantitative version of the dual Boolean logic of subsets. The resulting notion of information is about distinctions, differences and distinguishability and is formalized using the distinctions of a partition. All the definitions of simple, joint, conditional and mutual entropy of Shannon information theory are derived by a uniform transformation from the corresponding definitions at the logical level. The purpose of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  47. Theories of truth for countable languages which conform to classical logic.Seppo Heikkilä - forthcoming - Nonlinear Studies.
    Every countable language which conforms to classical logic is shown to have an extension which has a consistent definitional theory of truth. That extension has a consistent semantical theory of truth, if every sentence of the object language is valuated by its meaning either as true or as false. These theories contain both a truth predicate and a non-truth predicate. Theories are equivalent when sentences of the object lqanguage are valuated by their meanings.
    Download  
     
    Export citation  
     
    Bookmark  
  48. Formal logic: Classical problems and proofs.Luis M. Augusto - 2019 - London, UK: College Publications.
    Not focusing on the history of classical logic, this book provides discussions and quotes central passages on its origins and development, namely from a philosophical perspective. Not being a book in mathematical logic, it takes formal logic from an essentially mathematical perspective. Biased towards a computational approach, with SAT and VAL as its backbone, this is an introduction to logic that covers essential aspects of the three branches of logic, to wit, philosophical, mathematical, and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  49. Minimally Nonstandard K3 and FDE.Rea Golan & Ulf Hlobil - 2022 - Australasian Journal of Logic 19 (5):182-213.
    Graham Priest has formulated the minimally inconsistent logic of paradox (MiLP), which is paraconsistent like Priest’s logic of paradox (LP), while staying closer to classical logic. We present logics that stand to (the propositional fragments of) strong Kleene logic (K3) and the logic of first-degree entailment (FDE) as MiLP stands to LP. That is, our logics share the paracomplete and the paraconsistent-cum-paracomplete nature of K3 and FDE, respectively, while keeping these features to a minimum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Paradoxes and Failures of Cut.David Ripley - 2013 - Australasian Journal of Philosophy 91 (1):139 - 164.
    This paper presents and motivates a new philosophical and logical approach to truth and semantic paradox. It begins from an inferentialist, and particularly bilateralist, theory of meaning---one which takes meaning to be constituted by assertibility and deniability conditions---and shows how the usual multiple-conclusion sequent calculus for classical logic can be given an inferentialist motivation, leaving classical model theory as of only derivative importance. The paper then uses this theory of meaning to present and motivate a logical system---ST---that (...)
    Download  
     
    Export citation  
     
    Bookmark   157 citations  
1 — 50 / 1000