The aim of this paper is to comprehensively question the validity of the standard way of interpreting Chaitin's famous incompleteness theorem, which says that for every formalized theory of arithmetic there is a finite constant c such that the theory in question cannot prove any particular number to have Kolmogorov complexity larger than c. The received interpretation of theorem claims that the limiting constant is determined by the complexity of the theory itself, which is assumed to be good measure (...) of the strength of the theory. I exhibit certain strong counterexamples and establish conclusively that the received view is false. Moreover, I show that the limiting constants provided by the theorem do not in any way reflect the power of formalized theories, but that the values of these constants are actually determined by the chosen coding of Turing machines, and are thus quite accidental. (shrink)
This chapter describes Kurt Gödel's paper on the incompleteness theorems. Gödel's incompleteness results are two of the most fundamental and important contributions to logic and the foundations of mathematics. It had been assumed that first-order number theory is complete in the sense that any sentence in the language of number theory would be either provable from the axioms or refutable. Gödel's first incompleteness theorem showed that this assumption was false: it states that there are sentences of number (...) theory that are neither provable nor refutable. The first theorem is general in the sense that it applies to any axiomatic theory, which is ω-consistent, has an effective proof procedure, and is strong enough to represent basic arithmetic. Their importance lies in their generality: although proved specifically for extensions of system, the method Gödel used is applicable in a wide variety of circumstances. Gödel's results had a profound influence on the further development of the foundations of mathematics. It pointed the way to a reconceptualization of the view of axiomatic foundations. (shrink)
Textbook on Gödel’s incompleteness theorems and computability theory, based on the Open Logic Project. Covers recursive function theory, arithmetization of syntax, the first and second incompleteness theorem, models of arithmetic, second-order logic, and the lambda calculus.
It is commonly thought that such topics as Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason are disparate scientific physical or mathematical issues having little or nothing in common. I suggest that they are largely standard philosophical problems (i.e., language games) which were resolved by Wittgenstein over 80 years ago. -/- Wittgenstein also demonstrated the fatal error in regarding mathematics or language or our behavior in general as a unitary coherent logical ‘system,’ rather than (...) as a motley of pieces assembled by the random processes of natural selection. “Gödel shows us an unclarity in the concept of ‘mathematics’, which is indicated by the fact that mathematics is taken to be a system” and we can say (contra nearly everyone) that is all that Gödel and Chaitin show. Wittgenstein commented many times that ‘truth’ in math means axioms or the theorems derived from axioms, and ‘false’ means that one made a mistake in using the definitions, and this is utterly different from empirical matters where one applies a test. Wittgenstein often noted that to be acceptable as mathematics in the usual sense, it must be useable in other proofs and it must have real world applications, but neither is the case with Godel’s Incompleteness. Since it cannot be proved in a consistent system (here Peano Arithmetic but a much wider arena for Chaitin), it cannot be used in proofs and, unlike all the ‘rest’ of PA it cannot be used in the real world either. As Rodych notes “…Wittgenstein holds that a formal calculus is only a mathematical calculus (i.e., a mathematical language-game) if it has an extra- systemic application in a system of contingent propositions (e.g., in ordinary counting and measuring or in physics) …” Another way to say this is that one needs a warrant to apply our normal use of words like ‘proof’, ‘proposition’, ‘true’, ‘incomplete’, ‘number’, and ‘mathematics’ to a result in the tangle of games created with ‘numbers’ and ‘plus’ and ‘minus’ signs etc., and with -/- ‘Incompleteness’ this warrant is lacking. Rodych sums it up admirably. “On Wittgenstein’s account, there is no such thing as an incomplete mathematical calculus because ‘in mathematics, everything is algorithm [and syntax] and nothing is meaning [semantics]…” -/- I make some brief remarks which note the similarities of these ‘mathematical’ issues to economics, physics, game theory, and decision theory. -/- Those wishing further comments on philosophy and science from a Wittgensteinian two systems of thought viewpoint may consult my other writings -- Talking Monkeys--Philosophy, Psychology, Science, Religion and Politics on a Doomed Planet--Articles and Reviews 2006-2019 3rd ed (2019), The Logical Structure of Philosophy, Psychology, Mind and Language in Ludwig Wittgenstein and John Searle 2nd ed (2019), Suicide by Democracy 4th ed (2019), The Logical Structure of Human Behavior (2019), The Logical Structure of Consciousness (2019, Understanding the Connections between Science, Philosophy, Psychology, Religion, Politics, and Economics and Suicidal Utopian Delusions in the 21st Century 5th ed (2019), Remarks on Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason in Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, da Costa, Godel, Searle, Rodych, Berto, Floyd, Moyal-Sharrock and Yanofsky (2019), and The Logical Structure of Philosophy, Psychology, Sociology, Anthropology, Religion, Politics, Economics, Literature and History (2019). (shrink)
To eliminate incompleteness, undecidability and inconsistency from formal systems we only need to convert the formal proofs to theorem consequences of symbolic logic to conform to the sound deductive inference model. -/- Within the sound deductive inference model there is a (connected sequence of valid deductions from true premises to a true conclusion) thus unlike the formal proofs of symbolic logic provability cannot diverge from truth.
I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv dot org) on the limits to inference (computation) that are so general they are independent of the device doing the (...) computation, and even independent of the laws of physics, so they apply across computers, physics, and human behavior. They make use of Cantor's diagonalization, the liar paradox and worldlines to provide what may be the ultimate theorem in Turing Machine Theory, and seemingly provide insights into impossibility, incompleteness, the limits of computation, and the universe as computer, in all possible universes and all beings or mechanisms, generating, among other things, a non- quantum mechanical uncertainty principle and a proof of monotheism. There are obvious connections to the classic work of Chaitin, Solomonoff, Komolgarov and Wittgenstein and to the notion that no program (and thus no device) can generate a sequence (or device) with greater complexity than it possesses. One might say this body of work implies atheism since there cannot be any entity more complex than the physical universe and from the Wittgensteinian viewpoint, ‘more complex’ is meaningless (has no conditions of satisfaction, i.e., truth-maker or test). Even a ‘God’ (i.e., a ‘device’with limitless time/space and energy) cannot determine whether a given ‘number’ is ‘random’, nor find a certain way to show that a given ‘formula’, ‘theorem’ or ‘sentence’ or ‘device’ (all these being complex language games) is part of a particular ‘system’. -/- Those wishing a comprehensive up to date framework for human behavior from the modern two systems view may consult my book ‘The Logical Structure of Philosophy, Psychology, Mind and Language in Ludwig Wittgenstein and John Searle’ 2nd ed (2019). Those interested in more of my writings may see ‘Talking Monkeys--Philosophy, Psychology, Science, Religion and Politics on a Doomed Planet--Articles and Reviews 2006-2019 2nd ed (2019) and Suicidal Utopian Delusions in the 21st Century 4th ed (2019) . (shrink)
I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv.org) on the limits to inference (computation) that are so general they are independent of the device doing the computation, and (...) even independent of the laws of physics, so they apply across computers, physics, and human behavior. They make use of Cantor's diagonalization, the liar paradox and worldlines to provide what may be the ultimate theorem in Turing Machine Theory, and seemingly provide insights into impossibility,incompleteness, the limits of computation,and the universe as computer, in all possible universes and all beings or mechanisms, generating, among other things,a non-quantum mechanical uncertainty principle and a proof of monotheism. (shrink)
The determinism-free will debate is perhaps as old as philosophy itself and has been engaged in from a great variety of points of view including those of scientific, theological, and logical character. This chapter focuses on two arguments from logic. First, there is an argument in support of determinism that dates back to Aristotle, if not farther. It rests on acceptance of the Law of Excluded Middle, according to which every proposition is either true or false, no matter whether the (...) proposition is about the past, present or future. In particular, the argument goes, whatever one does or does not do in the future is determined in the present by the truth or falsity of the corresponding proposition. The second argument coming from logic is much more modern and appeals to Gödel's incompleteness theorems to make the case against determinism and in favour of free will, insofar as that applies to the mathematical potentialities of human beings. The claim more precisely is that as a consequence of the incompleteness theorems, those potentialities cannot be exactly circumscribed by the output of any computing machine even allowing unlimited time and space for its work. The chapter concludes with some new considerations that may be in favour of a partial mechanist account of the mathematical mind. (shrink)
According to Field’s influential incompleteness objection, Tarski’s semantic theory of truth is unsatisfactory since the definition that forms its basis is incomplete in two distinct senses: (1) it is physicalistically inadequate, and for this reason, (2) it is conceptually deficient. In this paper, I defend the semantic theory of truth against the incompleteness objection by conceding (1) but rejecting (2). After arguing that Davidson and McDowell’s reply to the incompleteness objection fails to pass muster, I argue that, (...) within the constraints of a non-reductive physicalism and a holism concerning the concepts of truth, reference and meaning, conceding Field’s physicalistic inadequacy conclusion while rejecting his conceptual deficiency conclusion is a promising reply to the incompleteness objection. (shrink)
In spite of the many efforts made to clarify von Neumann’s methodology of science, one crucial point seems to have been disregarded in recent literature: his closeness to Hilbert’s spirit. In this paper I shall claim that the scientific methodology adopted by von Neumann in his later foundational reflections originates in the attempt to revaluate Hilbert’s axiomatics in the light of Gödel’s incompleteness theorems. Indeed, axiomatics continues to be pursued by the Hungarian mathematician in the spirit of Hilbert’s school. (...) I shall argue this point by examining four basic ideas embraced by von Neumann in his foundational considerations: a) the conservative attitude to assume in mathematics; b) the role that mathematics and the axiomatic approach have to play in all that is science; c) the notion of success as an alternative methodological criterion to follow in scientific research; d) the empirical and, at the same time, abstract nature of mathematical thought. Once these four basic ideas have been accepted, Hilbert’s spirit in von Neumann’s methodology of science will become clear. (shrink)
Ignited by Einstein and Bohr a century ago, the philosophical struggle about Reality is yet unfinished, with no signs of a swift resolution. Despite vast technological progress fueled by the iconic EPR paper (EPR), the intricate link between ontic and epistemic aspects of Quantum Theory (QT) has greatly hindered our grip on Reality and further progress in physical theory. Fallacies concealed by tortuous logical negations made EPR comprehension much harder than it could have been had Einstein written it himself in (...) German. It is plagued with preconceptions about what a physical property is, the 'Uncertainty Principle', and the Principle of Locality. Numerous interpretations of QT vis à vis Reality exist and are keenly disputed. This is the first of a series of articles arguing for a physical interpretation called ‘The Ontic Probability Interpretation’ (TOPI). A gradual explanation of TOPI is given intertwined with a meticulous logico-philosophical scrutiny of EPR. Part I focuses on the meaning of Einstein’s ‘Incompleteness’ claim. A conceptual confusion, a preconception about Reality, and a flawed dichotomy are shown to be severe obstacles for the EPR argument to succeed. Part II analyzes Einstein’s ‘Incompleteness/Nonlocality Dilemma’. Future articles will further explain TOPI, demonstrating its soundness and potential for nurturing theoretical progress. (shrink)
After pinpointing a conceptual confusion (TCC), a Reality preconception (TRP1), and a fallacious dichotomy (TFD), the famous EPR/EPRB argument for correlated ‘particles’ is studied in the light of the Ontic Probability Interpretation (TOPI) of Quantum Theory (QT). Another Reality preconception (TRP2) is identified, showing that EPR used and ignored QT predictions in a single paralogism. Employing TFD and TRP2, EPR unveiled a contradiction veiled in its premises. By removing nonlocality from QT’s Ontology by fiat, EPR preordained its incompleteness. The (...) Petitio Principii fallacy was at work from the outset. Einstein surmised the solution to his incompleteness/nonlocality dilemma in 1949, but never abandoned his philosophical stance. It is concluded that there are no definitions of Reality: we have to accept that Reality may not conform to our prejudices and, if an otherwise successful theory predicts what we do not believe in, no gedankenexperiment will help because our biases may slither through. Only actual experiments could assist in solving Einstein’s dilemma, as proven in the last 50 years. Notwithstanding, EPR is one of the most influential papers in history and has immensely sparked both conceptual and technological progress. Future articles will further explain TOPI, demonstrating its soundness and potential for nurturing theoretical advance. (shrink)
It is shown that the infinite-valued first-order Gödel logic G° based on the set of truth values {1/k: k ε w {0}} U {0} is not r.e. The logic G° is the same as that obtained from the Kripke semantics for first-order intuitionistic logic with constant domains and where the order structure of the model is linear. From this, the unaxiomatizability of Kröger's temporal logic of programs (even of the fragment without the nexttime operator O) and of the authors' temporal (...) logic of linear discrete time with gaps follows. (shrink)
Luck egalitarianism makes a fundamental distinction between inequalities for which agents are responsible and inequalities stemming from luck. I give several reasons to find luck egalitarianism a compelling view of distributive justice. I then argue that it is an incomplete theory of equality. Luck egalitarianism lacks the normative resources to achieve its ends. It is unable to specify the prior conditions under which persons are situated equivalently such that their choices can bear this tremendous weight. This means that luck egalitarians (...) need to become pluralists who understand equality not merely in terms of choice, luck, and responsibility. After developing my critical argument that luck egalitarianism is incomplete, I sketch a strategy for rehabilitating and filling out the theory. (shrink)
Within the (Haskell Curry) notion of a formal system we complete Tarski's formal correctness: ∀x True(x) ↔ ⊢ x and use this finally formalized notion of Truth to refute his own Undefinability Theorem (based on the Liar Paradox), the Liar Paradox, and the (Panu Raatikainen) essence of the conclusion of the 1931 Incompleteness Theorem.
I have read many recent discussions of the limits of computation and the universe as computer, hoping to find some comments on the amazing work of polymath physicist and decision theorist David Wolpert but have not found a single citation and so I present this very brief summary. Wolpert proved some stunning impossibility or incompleteness theorems (1992 to 2008-see arxiv.org) on the limits to inference (computation) that are so general they are independent of the device doing the computation, and (...) even independent of the laws of physics, so they apply across computers, physics, and human behavior. They make use of Cantor's diagonalization, the liar paradox and worldlines to provide what may be the ultimate theorem in Turing Machine Theory, and seemingly provide insights into impossibility, incompleteness, the limits of computation,and the universe as computer, in all possible universes and all beings or mechanisms, generating, among other things,a non- quantum mechanical uncertainty principle and a proof of monotheism. There are obvious connections to the classic work of Chaitin, Solomonoff, Komolgarov and Wittgenstein and to the notion that no program (and thus no device) can generate a sequence (or device) with greater complexity than it possesses. One might say this body of work implies atheism since there cannot be any entity more complex than the physical universe and from the Wittgensteinian viewpoint, ‘more complex’ is meaningless (has no conditions of satisfaction, i.e., truth-maker or test). Even a ‘God’ (i.e., a ‘device’ with limitless time/space and energy) cannot determine whether a given ‘number’ is ‘random’ nor can find a certain way to show that a given ‘formula’, ‘theorem’ or ‘sentence’ or ‘device’ (all these being complex language games) is part of a particular ‘system’. -/- Those wishing a comprehensive up to date framework for human behavior from the modern two systems view may consult my article The Logical Structure of Philosophy, Psychology, Mind and Language as Revealed in Wittgenstein and Searle 59p(2016). For all my articles on Wittgenstein and Searle see my e-book ‘The Logical Structure of Philosophy, Psychology, Mind and Language in Wittgenstein and Searle 367p (2016). Those interested in all my writings in their most recent versions may consult my e-book Philosophy, Human Nature and the Collapse of Civilization - Articles and Reviews 2006-2016’ 662p (2016). -/- All of my papers and books have now been published in revised versions both in ebooks and in printed books. -/- Talking Monkeys: Philosophy, Psychology, Science, Religion and Politics on a Doomed Planet - Articles and Reviews 2006-2017 (2017) https://www.amazon.com/dp/B071HVC7YP. -/- The Logical Structure of Philosophy, Psychology, Mind and Language in Ludwig Wittgenstein and John Searle--Articles and Reviews 2006-2016 (2017) https://www.amazon.com/dp/B071P1RP1B. -/- Suicidal Utopian Delusions in the 21st century: Philosophy, Human Nature and the Collapse of Civilization - Articles and Reviews 2006-2017 (2017) https://www.amazon.com/dp/B0711R5LGX . (shrink)
Classical interpretations of Goedels formal reasoning, and of his conclusions, implicitly imply that mathematical languages are essentially incomplete, in the sense that the truth of some arithmetical propositions of any formal mathematical language, under any interpretation, is, both, non-algorithmic, and essentially unverifiable. However, a language of general, scientific, discourse, which intends to mathematically express, and unambiguously communicate, intuitive concepts that correspond to scientific investigations, cannot allow its mathematical propositions to be interpreted ambiguously. Such a language must, therefore, define mathematical truth (...) verifiably. We consider a constructive interpretation of classical, Tarskian, truth, and of Goedel's reasoning, under which any formal system of Peano Arithmetic---classically accepted as the foundation of all our mathematical Languages---is verifiably complete in the above sense. We show how some paradoxical concepts of Quantum mechanics can, then, be expressed, and interpreted, naturally under a constructive definition of mathematical truth. (shrink)
We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in functional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S , all definable sets of reals are (...) Lebesgue measurable, suggesting that Connes views a theory as being “virtual” if it is not definable in a suitable model of ZFC. If so, Connes’ claim that a theory of the hyperreals is “virtual” is refuted by the existence of a definable model of the hyperreal field due to Kanovei and Shelah. Free ultrafilters aren’t definable, yet Connes exploited such ultrafilters both in his own earlier work on the classification of factors in the 1970s and 80s, and in Noncommutative Geometry, raising the question whether the latter may not be vulnerable to Connes’ criticism of virtuality. We analyze the philosophical underpinnings of Connes’ argument based on Gödel’s incompleteness theorem, and detect an apparent circularity in Connes’ logic. We document the reliance on non-constructive foundational material, and specifically on the Dixmier trace −∫ (featured on the front cover of Connes’ magnum opus) and the Hahn–Banach theorem, in Connes’ own framework. We also note an inaccuracy in Machover’s critique of infinitesimal-based pedagogy. (shrink)
An interpretation of Wittgenstein’s much criticized remarks on Gödel’s First Incompleteness Theorem is provided in the light of paraconsistent arithmetic: in taking Gödel’s proof as a paradoxical derivation, Wittgenstein was drawing the consequences of his deliberate rejection of the standard distinction between theory and metatheory. The reasoning behind the proof of the truth of the Gödel sentence is then performed within the formal system itself, which turns out to be inconsistent. It is shown that the features of paraconsistent arithmetics (...) match with some intuitions underlying Wittgenstein’s philosophy of mathematics, such as its strict finitism and the insistence on the decidability of any mathematical question. (shrink)
The viewpoint that consciousness, including feeling, could be fully expressed by a computational device is known as strong artificial intelligence or strong AI. Here I offer a defense of strong AI based on machine-state functionalism at the quantum level, or quantum-state functionalism. I consider arguments against strong AI, then summarize some counterarguments I find compelling, including Torkel Franzén’s work which challenges Roger Penrose’s claim, based on Gödel incompleteness, that mathematicians have nonalgorithmic levels of “certainty.” Some consequences of strong AI (...) are then considered. A resolution is offered of some problems including John Searle’s Chinese Room problem and the problem of consciousness propagation under isomorphism. (shrink)
Bioethics tends to be dominated by discourses concerned with the ethical dimension of medical practice, the organization of medical care, and the integrity of biomedical research involving human subjects and animal testing. Jacques Derrida has explored the fundamental question of the “limit” that identifies and differentiates the human animal from the nonhuman animal. However, to date his work has not received any reception in the field of biomedical ethics. In this paper, I examine what Derrida’s thought about this limit might (...) mean for the use/misuse/abuse of animals in contemporary biomedical research. For this, I review Derrida’s analysis and examine what it implies for scientific responsibility, introducing what I have coined the “Incompleteness Theorem of Bioethics.”. (shrink)
In order to understand that Wittgenstein's refutation of Gödel's 1931 Incompleteness Theorem is correct we must fill in some details of the notion of a formal system that Wittgenstein had in mind. Expressions of language encoding analytical knowledge are only true if they have been defined to be true or valid deductions from true premises prove that they are true. When these relations are formalized as formal proofs to theorem consequences then Provable(x) cannot possibly diverge from True(x).
I give a detailed review of 'The Outer Limits of Reason' by Noson Yanofsky 403(2013) from a unified perspective of Wittgenstein and evolutionary psychology. I indicate that the difficulty with such issues as paradox in language and math, incompleteness, undecidability, computability, the brain and the universe as computers etc., all arise from the failure to look carefully at our use of language in the appropriate context and hence the failure to separate issues of scientific fact from issues of how (...) language works. I discuss Wittgenstein's views on incompleteness, paraconsistency and undecidability and the work of Wolpert on the limits to computation. -/- Those wishing a comprehensive up to date account of Wittgenstein, Searle and their analysis of behavior from the modern two systems view may consult my article The Logical Structure of Philosophy, Psychology, Mind and Language as Revealed in Wittgenstein and Searle (2016). Those interested in all my writings in their most recent versions may download from this site my e-book ‘Philosophy, Human Nature and the Collapse of Civilization Michael Starks (2016)- Articles and Reviews 2006-2016’ by Michael Starks First Ed. 662p (2016). -/- All of my papers and books have now been published in revised versions both in ebooks and in printed books. -/- Talking Monkeys: Philosophy, Psychology, Science, Religion and Politics on a Doomed Planet - Articles and Reviews 2006-2017 (2017) https://www.amazon.com/dp/B071HVC7YP. -/- The Logical Structure of Philosophy, Psychology, Mind and Language in Ludwig Wittgenstein and John Searle--Articles and Reviews 2006-2016 (2017) https://www.amazon.com/dp/B071P1RP1B. -/- Suicidal Utopian Delusions in the 21st century: Philosophy, Human Nature and the Collapse of Civilization - Articles and Reviews 2006-2017 (2017) https://www.amazon.com/dp/B0711R5LGX . (shrink)
It is commonly thought that Impossibility, Incompleteness, Paraconsistency, Undecidability, Randomness, Computability, Paradox, Uncertainty and the Limits of Reason are disparate scientific physical or mathematical issues having little or nothing in common. I suggest that they are largely standard philosophical problems (i.e., language games) which were mostly resolved by Wittgenstein over 80years ago. -/- “What we are ‘tempted to say’ in such a case is, of course, not philosophy, but it is its raw material. Thus, for example, what a mathematician (...) is inclined to say about the objectivity and reality of mathematical facts, is not a philosophy of mathematics, but something for philosophical treatment.” Wittgenstein PI 234 -/- "Philosophers constantly see the method of science before their eyes and are irresistibly tempted to ask and answer questions in the way science does. This tendency is the real source of metaphysics and leads the philosopher into complete darkness." Wittgenstein -/- I provide a brief summary of some of the major findings of two of the most eminent students of behavior of modern times, Ludwig Wittgenstein and John Searle, on the logical structure of intentionality (mind, language, behavior), taking as my starting point Wittgenstein’s fundamental discovery –that all truly ‘philosophical’ problems are the same—confusions about how to use language in a particular context, and so all solutions are the same—looking at how language can be used in the context at issue so that its truth conditions (Conditions of Satisfaction or COS) are clear. The basic problem is that one can say anything, but one cannot mean (state clear COS for) any arbitrary utterance and meaning is only possible in a very specific context. -/- I dissect some writings of a few of the major commentators on these issues from a Wittgensteinian viewpoint in the framework of the modern perspective of the two systems of thought (popularized as ‘thinking fast, thinking slow’), employing a new table of intentionality and new dual systems nomenclature. I show that this is a powerful heuristic for describing the true nature of these putative scientific, physical or mathematical issues which are really best approached as standard philosophical problems of how language is to be used (language games in Wittgenstein’s terminology). -/- It is my contention that the table of intentionality (rationality, mind, thought, language, personality etc.) that features prominently here describes more or less accurately, or at least serves as an heuristic for, how we think and behave, and so it encompasses not merely philosophy and psychology, but everything else (history, literature, mathematics, politics etc.). Note especially that intentionality and rationality as I (along with Searle, Wittgenstein and others) view it, includes both conscious deliberative linguistic System 2 and unconscious automated prelinguistic System 1 actions or reflexes. (shrink)
Introduction to mathematical logic, part 2.Textbook for students in mathematical logic and foundations of mathematics. Platonism, Intuition, Formalism. Axiomatic set theory. Around the Continuum Problem. Axiom of Determinacy. Large Cardinal Axioms. Ackermann's Set Theory. First order arithmetic. Hilbert's 10th problem. Incompleteness theorems. Consequences. Connected results: double incompleteness theorem, unsolvability of reasoning, theorem on the size of proofs, diophantine incompleteness, Loeb's theorem, consistent universal statements are provable, Berry's paradox, incompleteness and Chaitin's theorem. Around Ramsey's theorem.
In ‘Godel’s Way’ three eminent scientists discuss issues such as undecidability, incompleteness, randomness, computability and paraconsistency. I approach these issues from the Wittgensteinian viewpoint that there are two basic issues which have completely different solutions. There are the scientific or empirical issues, which are facts about the world that need to be investigated observationally and philosophical issues as to how language can be used intelligibly (which include certain questions in mathematics and logic), which need to be decided by looking (...) at how we actually use words in particular contexts. When we get clear about which language game we are playing, these topics are seen to be ordinary scientific and mathematical questions like any others. Wittgenstein’s insights have seldom been equaled and never surpassed and are as pertinent today as they were 80 years ago when he dictated the Blue and Brown Books. In spite of its failings—really a series of notes rather than a finished book—this is a unique source of the work of these three famous scholars who have been working at the bleeding edges of physics, math and philosophy for over half a century. Da Costa and Doria are cited by Wolpert (see below or my articles on Wolpert and my review of Yanofsky’s ‘The Outer Limits of Reason’) since they wrote on universal computation, and among his many accomplishments, Da Costa is a pioneer in paraconsistency. -/- Those wishing a comprehensive up to date framework for human behavior from the modern two systems view may consult my book ‘The Logical Structure of Philosophy, Psychology, Mind and Language in Ludwig Wittgenstein and John Searle’ 2nd ed (2019). Those interested in more of my writings may see ‘Talking Monkeys--Philosophy, Psychology, Science, Religion and Politics on a Doomed Planet--Articles and Reviews 2006-2019 3rd ed (2019), The Logical Structure of Human Behavior (2019), and Suicidal Utopian Delusions in the 21st Century 4th ed (2019) . (shrink)
I give a detailed review of 'The Outer Limits of Reason' by Noson Yanofsky from a unified perspective of Wittgenstein and evolutionary psychology. I indicate that the difficulty with such issues as paradox in language and math, incompleteness, undecidability, computability, the brain and the universe as computers etc., all arise from the failure to look carefully at our use of language in the appropriate context and hence the failure to separate issues of scientific fact from issues of how language (...) works. I discuss Wittgenstein's views on incompleteness, paraconsistency and undecidability and the work of Wolpert on the limits to computation. To sum it up: The Universe According to Brooklyn---Good Science, Not So Good Philosophy. -/- Those wishing a comprehensive up to date framework for human behavior from the modern two systems view may consult my book ‘The Logical Structure of Philosophy, Psychology, Mind and Language in Ludwig Wittgenstein and John Searle’ 2nd ed (2019). Those interested in more of my writings may see ‘Talking Monkeys--Philosophy, Psychology, Science, Religion and Politics on a Doomed Planet--Articles and Reviews 2006-2019 3rd ed (2019) and Suicidal Utopian Delusions in the 21st Century 4th ed (2019) . (shrink)
In his proof of the first incompleteness theorem, Kurt Gödel provided a method of showing the truth of specific arithmetical statements on the condition that all the axioms of a certain formal theory of arithmetic are true. Furthermore, the statement whose truth is shown in this way cannot be proved in the theory in question. Thus it may seem that the relation of logical consequence is wider than the relation of derivability by a pre-defined set of rules. The aim (...) of this paper is to explore under which assumptions the Gödelian statement can rightly be considered a logical consequence of the axioms of the theory in question. It is argued that this is the case only when the all the theorems of the theory in question are understood as statements of the same kind as statements of arithmetic and statements about provability in the theory, and only if the language of the theory contains logical expressions allowing to include certain predicates of meta-language in the language of the theory. (shrink)
REVIEW OF: Automated Development of Fundamental Mathematical Theories by Art Quaife. (1992: Kluwer Academic Publishers) 271pp. Using the theorem prover OTTER Art Quaife has proved four hundred theorems of von Neumann-Bernays-Gödel set theory; twelve hundred theorems and definitions of elementary number theory; dozens of Euclidean geometry theorems; and Gödel's incompleteness theorems. It is an impressive achievement. To gauge its significance and to see what prospects it offers this review looks closely at the book and the proofs it presents.
We give two social aggregation theorems under conditions of risk, one for constant population cases, the other an extension to variable populations. Intra and interpersonal welfare comparisons are encoded in a single ‘individual preorder’. The theorems give axioms that uniquely determine a social preorder in terms of this individual preorder. The social preorders described by these theorems have features that may be considered characteristic of Harsanyi-style utilitarianism, such as indifference to ex ante and ex post equality. However, the theorems are (...) also consistent with the rejection of all of the expected utility axioms, completeness, continuity, and independence, at both the individual and social levels. In that sense, expected utility is inessential to Harsanyi-style utilitarianism. In fact, the variable population theorem imposes only a mild constraint on the individual preorder, while the constant population theorem imposes no constraint at all. We then derive further results under the assumption of our basic axioms. First, the individual preorder satisfies the main expected utility axiom of strong independence if and only if the social preorder has a vector-valued expected total utility representation, covering Harsanyi’s utilitarian theorem as a special case. Second, stronger utilitarian-friendly assumptions, like Pareto or strong separability, are essentially equivalent to strong independence. Third, if the individual preorder satisfies a ‘local expected utility’ condition popular in non-expected utility theory, then the social preorder has a ‘local expected total utility’ representation. Fourth, a wide range of non-expected utility theories nevertheless lead to social preorders of outcomes that have been seen as canonically egalitarian, such as rank-dependent social preorders. Although our aggregation theorems are stated under conditions of risk, they are valid in more general frameworks for representing uncertainty or ambiguity. (shrink)
This paper proposes a new Separabilist account of thick concepts, called the Expansion View (or EV). According to EV, thick concepts are expanded contents of thin terms. An expanded content is, roughly, the semantic content of a predicate along with modifiers. Although EV is a form of Separabilism, it is distinct from the only kind of Separabilism discussed in the literature, and it has many features that Inseparabilists want from an account of thick concepts. EV can also give non-cognitivists a (...) novel escape from the Anti-Disentangling Argument. §I explains the approach of all previous Separabilists, and argues that there’s no reason for Separabilists to take this approach. §II explains EV. §III fends off objections. And §IV explains how non-cognitivist proponents of EV can escape the Anti-Disentangling Argument. (shrink)
The physical singularity of life phenomena is analyzed by means of comparison with the driving concepts of theories of the inert. We outline conceptual analogies, transferals of methodologies and theoretical instruments between physics and biology, in addition to indicating significant differences and sometimes logical dualities. In order to make biological phenomenalities intelligible, we introduce theoretical extensions to certain physical theories. In this synthetic paper, we summarize and propose a unified conceptual framework for the main conclusions drawn from work spanning a (...) book and several articles, quoted throughout. (shrink)
These remarks take up the reflexive problematics of Being and Nothingness and related texts from a metalogical perspective. A mutually illuminating translation is posited between, on the one hand, Sartre’s theory of pure reflection, the linchpin of the works of Sartre’s early period and the site of their greatest difficulties, and, on the other hand, the quasi-formalism of diagonalization, the engine of the classical theorems of Cantor, Godel, Tarski, Turing, etc. Surprisingly, the dialectic of mathematical logic from its inception through (...) the discovery of the diagonal theorems can be recognized as a particularly clear instance of the drama of reflection according to Sartre, especially in the positing and overcoming of its proper value-ideal, viz. the synthesis of consistency and completeness. Conversely, this translation solves a number of systematic problems about pure reflection’s relations to accessory reflection, phenomenological reflection, pre-reflective self-consciousness, conversion, and value. Negative foundations, the metaphysical position emerging from this translation between existential philosophy and metalogic, concurs by different paths with Badiou’s Being and Event in rejecting both ontotheological foundationalisms and constructivist antifoundationalisms. (shrink)
Tarski's Undefinability of Truth Theorem comes in two versions: that no consistent theory which interprets Robinson's Arithmetic (Q) can prove all instances of the T-Scheme and hence define truth; and that no such theory, if sound, can even express truth. In this note, I prove corresponding limitative results for validity. While Peano Arithmetic already has the resources to define a predicate expressing logical validity, as Jeff Ketland has recently pointed out (2012, Validity as a primitive. Analysis 72: 421-30), no theory (...) which interprets Q closed under the standard structural rules can define nor express validity, on pain of triviality. The results put pressure on the widespread view that there is an asymmetry between truth and validity, viz. that while the former cannot be defined within the language, the latter can. I argue that Vann McGee's and Hartry Field's arguments for the asymmetry view are problematic. (shrink)
We provide conditions under which an incomplete strongly independent preorder on a convex set X can be represented by a set of mixture preserving real-valued functions. We allow X to be infi nite dimensional. The main continuity condition we focus on is mixture continuity. This is sufficient for such a representation provided X has countable dimension or satisfi es a condition that we call Polarization.
A strongly independent preorder on a possibly in finite dimensional convex set that satisfi es two of the following conditions must satisfy the third: (i) the Archimedean continuity condition; (ii) mixture continuity; and (iii) comparability under the preorder is an equivalence relation. In addition, if the preorder is nontrivial (has nonempty asymmetric part) and satisfi es two of the following conditions, it must satisfy the third: (i') a modest strengthening of the Archimedean condition; (ii') mixture continuity; and (iii') completeness. Applications (...) to decision making under conditions of risk and uncertainty are provided. (shrink)
On a few occasions F.A. Hayek made reference to the famous Gödel theorems in mathematical logic in the context of expounding his cognitive and social theory. The exact meaning of the supposed relationship between Gödel's theorems and the essential proposition of Hayek's theory of mind remains subject to interpretation, however. The author of this article argues that the relationship between Hayek's thesis that the human brain can never fully explain itself and the essential insight provided by Gödel's theorems in mathematical (...) logic has the character of an analogy, or a metaphor. Furthermore the anti-mechanistic interpretation of Hayek's theory of mind is revealed as highly questionable. Implications for the Socialist Calculation Debate are highlighted. It is in particular concluded that Hayek's arguments for methodological dualism, when compared with those of Ludwig von Mises, actually amount to a strengthening of the case for methodological dualism. (shrink)
Arguments against the Russellian theory of definite descriptions based on cases that involve failures of uniqueness are a recurrent theme in the relevant literature. In this paper, I discuss a number of such arguments, from Strawson (1950), Ramachandran (1993) and Szabo (2005). I argue that the Russellian has resources to account for these data by deploying a variety of mechanisms of quantifier domain restrictions. Finally, I present a case that is more problematic for the Russellian. While the previous cases all (...) involve referential uses of descriptions (or some variations of such uses), the most effective objection to the uniqueness condition draws on genuine attributive uses. (shrink)
Minimal Type Theory (MTT) is based on type theory in that it is agnostic about Predicate Logic level and expressly disallows the evaluation of incompatible types. It is called Minimal because it has the fewest possible number of fundamental types, and has all of its syntax expressed entirely as the connections in a directed acyclic graph.
En ' Godel’s Way ', tres eminentes científicos discuten temas como la indecisión, la incompleta, la aleatoriedad, la computabilidad y la paraconsistencia. Me acerco a estas cuestiones desde el punto de vista de Wittgensteinian de que hay dos cuestiones básicas que tienen soluciones completamente diferentes. Existen las cuestiones científicas o empíricas, que son hechos sobre el mundo que necesitan ser investigados observacionalmente y cuestiones filosóficas en cuanto a cómo el lenguaje se puede utilizar inteligiblemente (que incluyen ciertas preguntas en matemáticas (...) y lógica), que necesitan decidirse por unt cómo realmente usar palabras en contextos concretos. Cuando tenemos claro sobre qué juego de idiomas estamos jugando, estos temas son vistos como preguntas científicas y matemáticas ordinarias como cualquier otra. Las percepciones de Wittgenstein rara vez se han igualado y nunca superado y son tan pertinentes hoy como lo fueron hace 80 años cuando dictó los libros azul y marrón. A pesar de sus fallas — realmente una serie de notas en lugar de un libro terminado —, esta es una fuente única de la obra de estos tres eruditos famosos que han estado trabajando en los bordes sangrantes de la física, las matemáticas y la filosofía durante más de medio siglo. Da Costa y Doria son citados por Wolpert (ver abajo o mis artículos sobre Wolpert y mi reseña de ' los límites de la razón ' de Yanofsky) desde que escribieron en el cómputo universal, y entre sus muchos logros, da Costa es pionera en paraconsistencia. Aquellos que deseen un marco completo hasta la fecha para el comportamiento humano de la moderna dos sistemas punto de vista puede consultar mi libros Talking Monkeys 3ª ed (2019), Estructura Logica de Filosofia, Psicología, Mente y Lenguaje en Ludwig Wittgenstein y John Searle 2a ed (2019), Suicidio pela Democracia 4ª ed (2019), La Estructura Logica del Comportamiento Humano (2019), The Logical Structure de la Conciencia (2019, Entender las Conexiones entre Ciencia, Filosofía, Psicología, Religión, Política y Economía y Delirios Utópicos Suicidas en el siglo 21 5ª ed (2019), Observaciones sobre Imposibilidad, Incompletitud, Paraconsistencia, Indecidibilidad, Aleatoriedad, Computabilidad, Paradoja e Incertidumbre en Chaitin, Wittgenstein,. (shrink)
Could the intersection of [formal proofs of mathematical logic] and [sound deductive inference] specify formal systems having [deductively sound formal proofs of mathematical logic]? -/- All that we have to do to provide [deductively sound formal proofs of mathematical logic] is select the subset of conventional [formal proofs of mathematical logic] having true premises and now we have [deductively sound formal proofs of mathematical logic].
Doy una revisión detallada de ' los límites externos de la razón ' por Noson Yanofsky desde una perspectiva unificada de Wittgenstein y la psicología evolutiva. Yo indiqué que la dificultad con cuestiones como la paradoja en el lenguaje y las matemáticas, la incompletitud, la indeterminación, la computabilidad, el cerebro y el universo como ordenadores, etc., surgen de la falta de mirada cuidadosa a nuestro uso del lenguaje en el adecuado contexto y, por tanto, el Error al separar los problemas (...) de hecho científico de las cuestiones de cómo funciona el lenguaje. Discuto las opiniones de Wittgenstein sobre la incompletitud, la paracoherencia y la indecisión y el trabajo de Wolpert en los límites de la computación. Resumiendo: el universo según Brooklyn---buena ciencia, no tan buena filosofía. Aquellos que deseen un marco completo hasta la fecha para el comportamiento humano de la moderna dos sistemas punto de vista puede consultar mi libros Talking Monkeys 3ª ed (2019), Estructura Logica de Filosofia, Psicología, Mente y Lenguaje en Ludwig Wittgenstein y John Searle 2ª ed (2019), Suicidio pela Democracia 4ª ed (2019), La Estructura Logica del Comportamiento Humano (2019), The Logical Structure de la Conciencia (2019, Entender las Conexiones entre Ciencia, Filosofía, Psicología, Religión, Política y Economía (2019), Delirios Utópicos Suicidas en el siglo 21 5ª ed (2019), Observaciones sobre Imposibilidad, Incompletitud, Paraconsistencia, Indecidibilidad, Aleatoriedad, Computabilidad, Paradoja e Incertidumbre en Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, da Costa, Godel, Searle, Rodych Berto, Floyd, Moyal-Sharrock y Yanofsky y otros. (shrink)
Último sermón de la iglesia del naturalismo fundamentalista por el pastor Hofstadter. Al igual que su mucho más famoso (o infame por sus incesantemente errores filosóficos) trabajo Godel, Escher, Bach, tiene una plausibilidad superficial, pero si se entiende que se trata de un científico rampante que mezcla problemas científicos reales con los filosóficos (es decir, el sólo los problemas reales son los juegos de idiomas que debemos jugar) entonces casi todo su interés desaparece. Proporciono un marco para el análisis basado (...) en la psicología evolutiva y el trabajo de Wittgenstein (ya actualizado en mis escritos más recientes). -/- Aquellos que deseen un marco completo hasta la fecha para el comportamiento humano de la moderna dos sistemas punta de vista puede consultar mi libro 'La estructura lógica de la filosofía, la psicología, la mente y lenguaje En Ludwig Wittgenstein y John Searle ' 2a ED (2019). Los interesados en más de mis escritos pueden ver 'Monos parlantes--filosofía, psicología, ciencia, religión y política en un planeta condenado--artículos y reseñas 2006-2019 3a ED (2019) y Delirios utópicos suicidas en el siglo 21 4a Ed (2019) y otras. -/- "Podría ser justamente preguntado qué importancia tiene la prueba de Gödel para nuestro trabajo. Para un pedazo de matemáticas no puede resolver problemas del tipo que nos molesten. --La respuesta es que la situación, en la que tal prueba nos trae, es de interés para nosotros. ' ¿Qué vamos a decir ahora? ' --Ese es nuestro tema. Sin embargo, extraña que suene, mi tarea en lo que concierne a la prueba de Gödelparece meramente consistir en aclarar lo que tal proposición como: "Supongamos que esto se puede demostrar" significa en matemáticas. " Wittgenstein "Comentarios sobre los fundamentos de las matemáticas" p337 (1956) (escrito en 1937). (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.