Results for 'mathematical application'

949 found
Order:
  1. Mathematical application and the no confirmation thesis.Kenneth Boyce - 2020 - Analysis 80 (1):11-20.
    Some proponents of the indispensability argument for mathematical realism maintain that the empirical evidence that confirms our best scientific theories and explanations also confirms their pure mathematical components. I show that the falsity of this view follows from three highly plausible theses, two of which concern the nature of mathematical application and the other the nature of empirical confirmation. The first is that the background mathematical theories suitable for use in science are conservative in the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2.  80
    Mathematics and its Applications: A Transcendental-Idealist Perspective.Jairo José da Silva - 2017 - Cham: Springer Verlag.
    This monograph offers a fresh perspective on the applicability of mathematics in science. It explores what mathematics must be so that its applications to the empirical world do not constitute a mystery. In the process, readers are presented with a new version of mathematical structuralism. The author details a philosophy of mathematics in which the problem of its applicability, particularly in physics, in all its forms can be explained and justified. Chapters cover: mathematics as a formal science, mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  3. The Applicability of Mathematics to Physical Modality.Nora Berenstain - 2017 - Synthese 194 (9):3361-3377.
    This paper argues that scientific realism commits us to a metaphysical determination relation between the mathematical entities that are indispensible to scientific explanation and the modal structure of the empirical phenomena those entities explain. The argument presupposes that scientific realism commits us to the indispensability argument. The viewpresented here is that the indispensability of mathematics commits us not only to the existence of mathematical structures and entities but to a metaphysical determination relation between those entities and the modal (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  4. Comparing Mathematics Achievement: Control vs. Experimental Groups in the Context of Mobile Educational Applications.Charlotte Canilao & Melanie Gurat - 2023 - American Journal of Educational Research 11 (6):348-358.
    This study primarily assessed students' achievement in mathematics using a mobile educational application to help them learn and adapt to changes in education. The study involved selected Grade 9 students at a public high school in Nueva Vizcaya, Philippines. This study used a quasi-experimental method, particularly a post-test control group design. Descriptive statistics such as frequencies, percent, mean, and standard deviation were used to describe the achievement of the students in mathematics. A t-test for independent samples was also computed (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. (1 other version)Mathematical Pluralism and Indispensability.Silvia Jonas - 2023 - Erkenntnis 1:1-25.
    Pluralist mathematical realism, the view that there exists more than one mathematical universe, has become an influential position in the philosophy of mathematics. I argue that, if mathematical pluralism is true (and we have good reason to believe that it is), then mathematical realism cannot (easily) be justified by arguments from the indispensability of mathematics to science. This is because any justificatory chain of inferences from mathematical applications in science to the total body of (...) theorems can cover at most one mathematical universe. Indispensability arguments may thus lose their central role in the debate about mathematical ontology. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. A mathematical theory of truth and an application to the regress problem.S. Heikkilä - forthcoming - Nonlinear Studies 22 (2).
    In this paper a class of languages which are formal enough for mathematical reasoning is introduced. Its languages are called mathematically agreeable. Languages containing a given MA language L, and being sublanguages of L augmented by a monadic predicate, are constructed. A mathematical theory of truth (shortly MTT) is formulated for some of those languages. MTT makes them fully interpreted MA languages which posses their own truth predicates. MTT is shown to conform well with the eight norms formulated (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  7. ’s Gravesande on the Application of Mathematics in Physics and Philosophy.Jip Van Besouw - 2017 - Noctua 4 (1-2):17-55.
    Willem Jacob ’s Gravesande is widely remembered as a leading advocate of Isaac Newton’s work. In the first half of the eighteenth century, ’s Gravesande was arguably Europe’s most important proponent of what would become known as Newtonian physics. ’s Gravesande himself minimally described this discipline, which he called «physica», as studying empirical regularities mathematically while avoiding hypotheses. Commentators have as yet not progressed much beyond this view of ’s Gravesande’s physics. Therefore, much of its precise nature, its methodology, and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  8. The Epistemological Question of the Applicability of Mathematics.Paola Cantù - 2018 - Journal for the History of Analytical Philosophy 6 (3).
    The question of the applicability of mathematics is an epistemological issue that was explicitly raised by Kant, and which has played different roles in the works of neo-Kantian philosophers, before becoming an essential issue in early analytic philosophy. This paper will first distinguish three main issues that are related to the application of mathematics: indispensability arguments that are aimed at justifying mathematics itself; philosophical justifications of the successful application of mathematics to scientific theories; and discussions on the (...) of real numbers to the measurement of physical magnitudes. A refinement of this tripartition is suggested and supported by a historical investigation of the differences between Kant’s position on the problem, several neo-Kantian perspectives, early analytic philosophy, and late 19th century mathematicians. Finally, the debate on the cogency of an application constraint in the definition of real numbers is discussed in relation to a contemporary debate in neo-logicism, in order to suggest a comparison not only with Frege’s original positions, but also with the ideas of several neo-Kantian scholars, including Hölder, Cassirer, and Helmholtz. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  9. Mathematics - an imagined tool for rational cognition.Boris Culina - manuscript
    Analysing several characteristic mathematical models: natural and real numbers, Euclidean geometry, group theory, and set theory, I argue that a mathematical model in its final form is a junction of a set of axioms and an internal partial interpretation of the corresponding language. It follows from the analysis that (i) mathematical objects do not exist in the external world: they are our internally imagined objects, some of which, at least approximately, we can realize or represent; (ii) (...) truths are not truths about the external world but specifications (formulations) of mathematical conceptions; (iii) mathematics is first and foremost our imagined tool by which, with certain assumptions about its applicability, we explore nature and synthesize our rational cognition of it. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  10. Circularities In The Contemporary Philosophical Accounts Of The Applicability Of Mathematics In The Physical Universe.Catalin Barboianu - 2015 - Revista de Filosofie 61 (5):517-542.
    Contemporary philosophical accounts of the applicability of mathematics in physical sciences and the empirical world are based on formalized relations between the mathematical structures and the physical systems they are supposed to represent within the models. Such relations were constructed both to ensure an adequate representation and to allow a justification of the validity of the mathematical models as means of scientific inference. This article puts in evidence the various circularities (logical, epistemic, and of definition) that are present (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Mark Steiner: The Applicability of Mathematics as a Philosophical Problem. [REVIEW]Rinat Nugayev - 2003 - Philosophy of Science 70 (3):628-631.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  12. A Mathematical Definition of the Present and its Duration.Paul Merriam - manuscript
    We give a mathematical definition of the present or 'what is real' and its duration on McTaggart's A-series future/present/past. This is applicable to at least one conception of the block-world, the growing-block, and presentism.
    Download  
     
    Export citation  
     
    Bookmark  
  13. Mathematics as Metaphysical and Constructive.Eric Schmid - 2024 - Rue Americaine 13.
    Andr ́e Weil viewed mathematics as deeply intertwined with metaphysics. In his essay ”From Metaphysics to Mathematics,” he illustrates how mathematical ideas often arise from vague, metaphysical analogies and reflections that guide researchers toward new theories. For instance, Weil discusses how analogies between different areas, such as number theory and algebraic functions, have led to significant breakthroughs. These metaphysical underpinnings provide a fertile ground for mathematical creativity, eventually transforming into rigorous mathematical structures. -/- Alexander Grothendieck’s work, particularly (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Are mathematical explanations causal explanations in disguise?A. Jha, Douglas Campbell, Clemency Montelle & Phillip L. Wilson - 2024 - Philosophy of Science (NA):1-19.
    There is a major debate as to whether there are non-causal mathematical explanations of physical facts that show how the facts under question arise from a degree of mathematical necessity considered stronger than that of contingent causal laws. We focus on Marc Lange’s account of distinctively mathematical explanations to argue that purported mathematical explanations are essentially causal explanations in disguise and are no different from ordinary applications of mathematics. This is because these explanations work not by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15.  22
    Exploring Mathematics and Noumenal Realm through Kant and Hegel.Jae Jeong Lee - manuscript
    This paper discusses the philosophical basis of mathematics by examining the perspectives of Kant and Hegel. It explores how Kant’s concept of the synthetic a priori, grounded in the intuitions of space and time, serves as a foundation for understanding mathematics. The paper then integrates Hegelian dialectics to propose a broader conception of mathematics, suggesting that the relationship between space and time is dialectically embedded in reality. By introducing the idea of a hypothetical transcendental subject, the paper attempts to overcome (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Mathematical Wit and Mathematical Cognition.Andrew Aberdein - 2013 - Topics in Cognitive Science 5 (2):231-250.
    The published works of scientists often conceal the cognitive processes that led to their results. Scholars of mathematical practice must therefore seek out less obvious sources. This article analyzes a widely circulated mathematical joke, comprising a list of spurious proof types. An account is proposed in terms of argumentation schemes: stereotypical patterns of reasoning, which may be accompanied by critical questions itemizing possible lines of defeat. It is argued that humor is associated with risky forms of inference, which (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  17. Wisdom Mathematics.Nicholas Maxwell - 2010 - Friends of Wisdom Newsletter (6):1-6.
    For over thirty years I have argued that all branches of science and scholarship would have both their intellectual and humanitarian value enhanced if pursued in accordance with the edicts of wisdom-inquiry rather than knowledge-inquiry. I argue that this is true of mathematics. Viewed from the perspective of knowledge-inquiry, mathematics confronts us with two fundamental problems. (1) How can mathematics be held to be a branch of knowledge, in view of the difficulties that view engenders? What could mathematics be knowledge (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  18. Mathematical necessity and reality.James Franklin - 1989 - Australasian Journal of Philosophy 67 (3):286 – 294.
    Einstein, like most philosophers, thought that there cannot be mathematical truths which are both necessary and about reality. The article argues against this, starting with prima facie examples such as "It is impossible to tile my bathroom floor with regular pentagonal tiles." Replies are given to objections based on the supposedly purely logical or hypothetical nature of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  19. Marriages of Mathematics and Physics: A Challenge for Biology.Arezoo Islami & Giuseppe Longo - 2017 - Progress in Biophysics and Molecular Biology 131:179-192.
    The human attempts to access, measure and organize physical phenomena have led to a manifold construction of mathematical and physical spaces. We will survey the evolution of geometries from Euclid to the Algebraic Geometry of the 20th century. The role of Persian/Arabic Algebra in this transition and its Western symbolic development is emphasized. In this relation, we will also discuss changes in the ontological attitudes toward mathematics and its applications. Historically, the encounter of geometric and algebraic perspectives enriched the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  20. Applications of (Neutro/Anti)sophications to Semihypergroups.A. Rezaei, Florentin Smarandache & S. Mirvakili - 2021 - Journal of Mathematics 2021 (1):1-7.
    A hypergroup, as a generalization of the notion of a group, was introduced by F. Marty in 1934. The first book in hypergroup theory was published by Corsini. Nowadays, hypergroups have found applications to many subjects of pure and applied mathematics, for example, in geometry, topology, cryptography and coding theory, graphs and hypergraphs, probability theory, binary relations, theory of fuzzy and rough sets and automata theory, physics, and also in biological inheritance.
    Download  
     
    Export citation  
     
    Bookmark  
  21. Mathematical and Non-causal Explanations: an Introduction.Daniel Kostić - 2019 - Perspectives on Science 1 (27):1-6.
    In the last couple of years, a few seemingly independent debates on scientific explanation have emerged, with several key questions that take different forms in different areas. For example, the questions what makes an explanation distinctly mathematical and are there any non-causal explanations in sciences (i.e., explanations that don’t cite causes in the explanans) sometimes take a form of the question of what makes mathematical models explanatory, especially whether highly idealized models in science can be explanatory and in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. Computational reverse mathematics and foundational analysis.Benedict Eastaugh - manuscript
    Reverse mathematics studies which subsystems of second order arithmetic are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main philosophical application of reverse mathematics proposed thus far is foundational analysis, which explores the limits of different foundations for mathematics in a formally precise manner. This paper gives a detailed account of the motivations and methodology of foundational analysis, which have heretofore been largely left implicit in the practice. It then shows how this account can be fruitfully applied in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. A Dilemma for Mathematical Constructivism.Samuel Kahn - 2021 - Axiomathes 31 (1):63-72.
    In this paper I argue that constructivism in mathematics faces a dilemma. In particular, I maintain that constructivism is unable to explain (i) the application of mathematics to nature and (ii) the intersubjectivity of mathematics unless (iii) it is conjoined with two theses that reduce it to a form of mathematical Platonism. The paper is divided into five sections. In the first section of the paper, I explain the difference between mathematical constructivism and mathematical Platonism and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  24. Abstract mathematical tools and machines for mathematics.Jean-Pierre Marquis - 1997 - Philosophia Mathematica 5 (3):250-272.
    In this paper, we try to establish that some mathematical theories, like K-theory, homology, cohomology, homotopy theories, spectral sequences, modern Galois theory (in its various applications), representation theory and character theory, etc., should be thought of as (abstract) machines in the same way that there are (concrete) machines in the natural sciences. If this is correct, then many epistemological and ontological issues in the philosophy of mathematics are seen in a different light. We concentrate on one problem which immediately (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  25. A New Role for Mathematics in Empirical Sciences.Atoosa Kasirzadeh - 2021 - Philosophy of Science 88 (4):686-706.
    Mathematics is often taken to play one of two roles in the empirical sciences: either it represents empirical phenomena or it explains these phenomena by imposing constraints on them. This article identifies a third and distinct role that has not been fully appreciated in the literature on applicability of mathematics and may be pervasive in scientific practice. I call this the “bridging” role of mathematics, according to which mathematics acts as a connecting scheme in our explanatory reasoning about why and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  26. Argumentation in Mathematical Practice.Andrew Aberdein & Zoe Ashton - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 2665-2687.
    Formal logic has often been seen as uniquely placed to analyze mathematical argumentation. While formal logic is certainly necessary for a complete understanding of mathematical practice, it is not sufficient. Important aspects of mathematical reasoning closely resemble patterns of reasoning in nonmathematical domains. Hence the tools developed to understand informal reasoning, collectively known as argumentation theory, are also applicable to much mathematical argumentation. This chapter investigates some of the details of that application. Consideration is given (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. History & Mathematics: Trends and Cycles.Leonid Grinin & Andrey Korotayev - 2014 - Volgograd: "Uchitel" Publishing House.
    The present yearbook (which is the fourth in the series) is subtitled Trends & Cycles. It is devoted to cyclical and trend dynamics in society and nature; special attention is paid to economic and demographic aspects, in particular to the mathematical modeling of the Malthusian and post-Malthusian traps' dynamics. An increasingly important role is played by new directions in historical research that study long-term dynamic processes and quantitative changes. This kind of history can hardly develop without the application (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Avoiding reification: Heuristic effectiveness of mathematics and the prediction of the omega minus particle.Michele Ginammi - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 53:20-27.
    According to Steiner (1998), in contemporary physics new important discoveries are often obtained by means of strategies which rely on purely formal mathematical considerations. In such discoveries, mathematics seems to have a peculiar and controversial role, which apparently cannot be accounted for by means of standard methodological criteria. M. Gell-Mann and Y. Ne׳eman׳s prediction of the Ω− particle is usually considered a typical example of application of this kind of strategy. According to Bangu (2008), this prediction is apparently (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29. What is mathematics for the youngest?Boris Culina - 2022 - Uzdanica 19 (special issue):199-219.
    While there are satisfactory answers to the question “How should we teach children mathematics?”, there are no satisfactory answers to the question “What mathematics should we teach children?”. This paper provides an answer to the last question for preschool children (early childhood), although the answer is also applicable to older children. This answer, together with an appropriate methodology on how to teach mathematics, gives a clear conception of the place of mathematics in the children’s world and our role in helping (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  30. Applied Mathematics without Numbers.Jack Himelright - 2023 - Philosophia Mathematica 31 (2):147-175.
    In this paper, I develop a "safety result" for applied mathematics. I show that whenever a theory in natural science entails some non-mathematical conclusion via an application of mathematics, there is a counterpart theory that carries no commitment to mathematical objects, entails the same conclusion, and the claims of which are true if the claims of the original theory are "correct": roughly, true given the assumption that mathematical objects exist. The framework used for proving the safety (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. A theory of truth for a class of mathematical languages and an application.S. Heikkilä - manuscript
    In this paprer a class of so called mathematically acceptable (shortly MA) languages is introduced First-order formal languages containing natural numbers and numerals belong to that class. MA languages which are contained in a given fully interpreted MA language augmented by a monadic predicate are constructed. A mathematical theory of truth (shortly MTT) is formulated for some of these languages. MTT makes them fully interpreted MA languages which posses their own truth predicates, yielding consequences to philosophy of mathematics. MTT (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Apriori Knowledge in an Era of Computational Opacity: The Role of AI in Mathematical Discovery.Eamon Duede & Kevin Davey - forthcoming - Philosophy of Science.
    Computation is central to contemporary mathematics. Many accept that we can acquire genuine mathematical knowledge of the Four Color Theorem from Appel and Haken's program insofar as it is simply a repetitive application of human forms of mathematical reasoning. Modern LLMs / DNNs are, by contrast, opaque to us in significant ways, and this creates obstacles in obtaining mathematical knowledge from them. We argue, however, that if a proof-checker automating human forms of proof-checking is attached to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. The Mathematical Roots of Semantic Analysis.Axel Arturo Barcelo Aspeitia - manuscript
    Semantic analysis in early analytic philosophy belongs to a long tradition of adopting geometrical methodologies to the solution of philosophical problems. In particular, it adapts Descartes’ development of formalization as a mechanism of analytic representation, for its application in natural language semantics. This article aims to trace the mathematical roots of Frege, Russel and Carnap’s analytic method. Special attention is paid to the formal character of modern analysis introduced by Descartes. The goal is to identify the particular conception (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34. Brain functors: A mathematical model for intentional perception and action.David Ellerman - 2016 - Brain: Broad Research in Artificial Intelligence and Neuroscience 7 (1):5-17.
    Category theory has foundational importance because it provides conceptual lenses to characterize what is important and universal in mathematics—with adjunctions being the primary lens. If adjunctions are so important in mathematics, then perhaps they will isolate concepts of some importance in the empirical sciences. But the applications of adjunctions have been hampered by an overly restrictive formulation that avoids heteromorphisms or hets. By reformulating an adjunction using hets, it is split into two parts, a left and a right semiadjunction. Semiadjunctions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. The Indefinite within Descartes' Mathematical Physics.Françoise Monnoyeur-Broitman - 2013 - Eidos: Revista de Filosofía de la Universidad Del Norte 19:107-122.
    Descartes' philosophy contains an intriguing notion of the infinite, a concept labeled by the philosopher as indefinite. Even though Descartes clearly defined this term on several occasions in the correspondence with his contemporaries, as well as in his Principles of Philosophy, numerous problems about its meaning have arisen over the years. Most commentators reject the view that the indefinite could mean a real thing and, instead, identify it with an Aristotelian potential infinite. In the first part of this article, I (...)
    Download  
     
    Export citation  
     
    Bookmark  
  36. Virtue theory of mathematical practices: an introduction.Andrew Aberdein, Colin Jakob Rittberg & Fenner Stanley Tanswell - 2021 - Synthese 199 (3-4):10167-10180.
    Until recently, discussion of virtues in the philosophy of mathematics has been fleeting and fragmentary at best. But in the last few years this has begun to change. As virtue theory has grown ever more influential, not just in ethics where virtues may seem most at home, but particularly in epistemology and the philosophy of science, some philosophers have sought to push virtues out into unexpected areas, including mathematics and its philosophy. But there are some mathematicians already there, ready to (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  37. Purifying applied mathematics and applying pure mathematics: how a late Wittgensteinian perspective sheds light onto the dichotomy.José Antonio Pérez-Escobar & Deniz Sarikaya - 2021 - European Journal for Philosophy of Science 12 (1):1-22.
    In this work we argue that there is no strong demarcation between pure and applied mathematics. We show this first by stressing non-deductive components within pure mathematics, like axiomatization and theory-building in general. We also stress the “purer” components of applied mathematics, like the theory of the models that are concerned with practical purposes. We further show that some mathematical theories can be viewed through either a pure or applied lens. These different lenses are tied to different communities, which (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  38. Historicity, Value and Mathematics.Barry Smith - 1976 - In A. T. Tymieniecka (ed.), Ingardeniana. pp. 219-239.
    At the beginning of the present century, a series of paradoxes were discovered within mathematics which suggested a fundamental unclarity in traditional mathemati­cal methods. These methods rested on the assumption of a realm of mathematical idealities existing independently of our thinking activity, and in order to arrive at a firmly grounded mathematics different attempts were made to formulate a conception of mathematical objects as purely human constructions. It was, however, realised that such formulations necessarily result in a mathematics (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  39. Observations on Sick Mathematics.Andrew Aberdein - 2010 - In Bart Van Kerkhove, Jean Paul Van Bendegem & Jonas De Vuyst (eds.), Philosophical Perspectives on Mathematical Practice. College Publications. pp. 269--300.
    This paper argues that new light may be shed on mathematical reasoning in its non-pathological forms by careful observation of its pathologies. The first section explores the application to mathematics of recent work on fallacy theory, specifically the concept of an ‘argumentation scheme’: a characteristic pattern under which many similar inferential steps may be subsumed. Fallacies may then be understood as argumentation schemes used inappropriately. The next section demonstrates how some specific mathematical fallacies may be characterized in (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  40. Objectivity in Mathematics, Without Mathematical Objects†.Markus Pantsar - 2021 - Philosophia Mathematica 29 (3):318-352.
    I identify two reasons for believing in the objectivity of mathematical knowledge: apparent objectivity and applications in science. Focusing on arithmetic, I analyze platonism and cognitive nativism in terms of explaining these two reasons. After establishing that both theories run into difficulties, I present an alternative epistemological account that combines the theoretical frameworks of enculturation and cumulative cultural evolution. I show that this account can explain why arithmetical knowledge appears to be objective and has scientific applications. Finally, I will (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  41. The Mathematics of Slots: Configurations, Combinations, Probabilities.Catalin Barboianu - 2013 - Craiova, Romania: Infarom.
    This eighth book of the author on gambling math presents in accessible terms the cold mathematics behind the sparkling slot machines, either physical or virtual. It contains all the mathematical facts grounding the configuration, functionality, outcome, and profits of the slot games. Therefore, it is not a so-called how-to-win book, but a complete, rigorous mathematical guide for the slot player and also for game producers, being unique in this respect. As it is primarily addressed to the slot player, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  42. The Mathematics of Lottery: Odds, Combinations, Systems.Catalin Barboianu - 2009 - Craiova, Romania: Infarom.
    This work is a complete mathematical guide to lottery games, covering all of the problems related to probability, combinatorics, and all parameters describing the lottery matrices, as well as the various playing systems. The mathematics sections describe the mathematical model of the lottery, which is in fact the essence of the lotto game. The applications of this model provide players with all the mathematical data regarding the parameters attached to the gaming events and personal playing systems. By (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Extreme Science: Mathematics as the Science of Relations as such.R. S. D. Thomas - 2008 - In Bonnie Gold & Roger A. Simons (eds.), Proof and Other Dilemmas: Mathematics and Philosophy. Mathematical Association of America. pp. 245.
    This paper sets mathematics among the sciences, despite not being empirical, because it studies relations of various sorts, like the sciences. Each empirical science studies the relations among objects, which relations determining which science. The mathematical science studies relations as such, regardless of what those relations may be or be among, how relations themselves are related. This places it at the extreme among the sciences with no objects of its own (A Subject with no Object, by J.P. Burgess and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  44. Probabilistic Proofs, Lottery Propositions, and Mathematical Knowledge.Yacin Hamami - 2021 - Philosophical Quarterly 72 (1):77-89.
    In mathematics, any form of probabilistic proof obtained through the application of a probabilistic method is not considered as a legitimate way of gaining mathematical knowledge. In a series of papers, Don Fallis has defended the thesis that there are no epistemic reasons justifying mathematicians’ rejection of probabilistic proofs. This paper identifies such an epistemic reason. More specifically, it is argued here that if one adopts a conception of mathematical knowledge in which an epistemic subject can know (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  45. Mathematical Representation and Explanation: structuralism, the similarity account, and the hotchpotch picture.Ziren Yang - 2020 - Dissertation, University of Leeds
    This thesis starts with three challenges to the structuralist accounts of applied mathematics. Structuralism views applied mathematics as a matter of building mapping functions between mathematical and target-ended structures. The first challenge concerns how it is possible for a non-mathematical target to be represented mathematically when the mapping functions per se are mathematical objects. The second challenge arises out of inconsistent early calculus, which suggests that mathematical representation does not require rigorous mathematical structures. The third (...)
    Download  
     
    Export citation  
     
    Bookmark  
  46. Mathematical Cognition: Brain and Cognitive Research and Its Implications for Education.Qi Dong, Hong-Chuan Zhang & Xin-lin Zhou - 2019 - Journal of Human Cognition 3 (1):25-40.
    Mathematical cognition is one of the most important cognitive functions of human beings. The latest brain and cognitive research have shown that mathematical cognition is a system with multiple components and subsystems. It has phylogenetic root, also is related to ontogenetic development and learning, relying on a large-scale cerebral network including parietal, frontal and temporal regions. Especially, the parietal cortex plays an important role during mathematical cognitive processes. This indicates that language and visuospatial functions are both key (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Many-valued logics. A mathematical and computational introduction.Luis M. Augusto - 2020 - London: College Publications.
    2nd edition. Many-valued logics are those logics that have more than the two classical truth values, to wit, true and false; in fact, they can have from three to infinitely many truth values. This property, together with truth-functionality, provides a powerful formalism to reason in settings where classical logic—as well as other non-classical logics—is of no avail. Indeed, originally motivated by philosophical concerns, these logics soon proved relevant for a plethora of applications ranging from switching theory to cognitive modeling, and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  48. Managing Informal Mathematical Knowledge: Techniques from Informal Logic.Andrew Aberdein - 2006 - Lecture Notes in Artificial Intelligence 4108:208--221.
    Much work in MKM depends on the application of formal logic to mathematics. However, much mathematical knowledge is informal. Luckily, formal logic only represents one tradition in logic, specifically the modeling of inference in terms of logical form. Many inferences cannot be captured in this manner. The study of such inferences is still within the domain of logic, and is sometimes called informal logic. This paper explores some of the benefits informal logic may have for the management of (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  49. The "Unreasonable" Effectiveness of Mathematics: The Foundational Approach of the Theoretic Alternatives.Catalin Barboianu - 2015 - Revista de Filosofie 62 (1):58-71.
    The attempts of theoretically solving the famous puzzle-dictum of physicist Eugene Wigner regarding the “unreasonable” effectiveness of mathematics as a problem of analytical philosophy, started at the end of the 19th century, are yet far from coming out with an acceptable theoretical solution. The theories developed for explaining the empirical “miracle” of applied mathematics vary in nature, foundation and solution, from denying the existence of a genuine problem to structural theories with an advanced level of mathematical formalism. Despite this (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. Code-Switching and Mother-Tongue-Based Instruction in Grade-One Mathematics: A Comparative Analysis (15th edition).Mylin Iñigo & Arlene Loquias - 2023 - Psychology and Education: A Multidisciplinary Journal 15 (4): 366-374.
    This research delves into the intricate relationship between language and mathematics education, particularly within the context of mother-tongue-based instruction. It addresses the challenge of reconciling the language of instruction, the learners' mother tongue, and the language of mathematical concepts, emphasizing the need for synchronization to enhance the teaching and learning process. Drawing from international experiences and the Philippine educational landscape, which transitioned to the K-12 curriculum, this study investigates the role of code-switching in Grade-One mathematics education. By conducting a (...)
    Download  
     
    Export citation  
     
    Bookmark  
1 — 50 / 949