Results for 'Many-valued logics'

1000+ found
Order:
  1. Many-Valued Logics. A Mathematical and Computational Introduction.Luis M. Augusto - 2017 - London: College Publications.
    Many-valued logics are those logics that have more than the two classical truth values, to wit, true and false; in fact, they can have from three to infinitely many truth values. This property, together with truth-functionality, provides a powerful formalism to reason in settings where classical logic—as well as other non-classical logics—is of no avail. Indeed, originally motivated by philosophical concerns, these logics soon proved relevant for a plethora of applications ranging from switching theory to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2.  31
    Dual Systems of Sequents and Tableaux for Many-Valued Logics.Matthias Baaz, Christian G. Fermüller & Richard Zach - 1993 - Bulletin of the EATCS 51:192-197.
    The aim of this paper is to emphasize the fact that for all finitely-many-valued logics there is a completely systematic relation between sequent calculi and tableau systems. More importantly, we show that for both of these systems there are al- ways two dual proof sytems (not just only two ways to interpret the calculi). This phenomenon may easily escape one’s attention since in the classical (two-valued) case the two systems coincide. (In two-valued logic the assignment of a truth (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3.  30
    Systematic Construction of Natural Deduction Systems for Many-Valued Logics.Matthias Baaz, Christian G. Fermüller & Richard Zach - 1993 - In Proceedings of The Twenty-Third International Symposium on Multiple-Valued Logic, 1993. Los Alamitos, CA: IEEE Press. pp. 208-213.
    A construction principle for natural deduction systems for arbitrary, finitely-many-valued first order logics is exhibited. These systems are systematically obtained from sequent calculi, which in turn can be automatically extracted from the truth tables of the logics under consideration. Soundness and cut-free completeness of these sequent calculi translate into soundness, completeness, and normal-form theorems for natural deduction systems.
    Download  
     
    Export citation  
     
    Bookmark  
  4.  18
    Approximating Propositional Calculi by Finite-Valued Logics.Matthias Baaz & Richard Zach - 1994 - In 24th International Symposium on Multiple-valued Logic, 1994. Proceedings. Los Alamitos: IEEE Press. pp. 257–263.
    The problem of approximating a propositional calculus is to find many-valued logics which are sound for the calculus (i.e., all theorems of the calculus are tautologies) with as few tautologies as possible. This has potential applications for representing (computationally complex) logics used in AI by (computationally easy) many-valued logics. It is investigated how far this method can be carried using (1) one or (2) an infinite sequence of many-valued logics. It is shown that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5.  14
    Proof Theory of Finite-Valued Logics.Richard Zach - 1993 - Dissertation, Technische Universität Wien
    The proof theory of many-valued systems has not been investigated to an extent comparable to the work done on axiomatizatbility of many-valued logics. Proof theory requires appropriate formalisms, such as sequent calculus, natural deduction, and tableaux for classical (and intuitionistic) logic. One particular method for systematically obtaining calculi for all finite-valued logics was invented independently by several researchers, with slight variations in design and presentation. The main aim of this report is to develop the proof theory (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6.  14
    Elimination of Cuts in First-Order Finite-Valued Logics.Matthias Baaz, Christian G. Fermüller & Richard Zach - 1994 - Journal of Information Processing and Cybernetics EIK 29 (6):333-355.
    A uniform construction for sequent calculi for finite-valued first-order logics with distribution quantifiers is exhibited. Completeness, cut-elimination and midsequent theorems are established. As an application, an analog of Herbrand’s theorem for the four-valued knowledge-representation logic of Belnap and Ginsberg is presented. It is indicated how this theorem can be used for reasoning about knowledge bases with incomplete and inconsistent information.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  7. Negation on the Australian Plan.Franz Berto & Greg Restall - forthcoming - Journal of Philosophical Logic.
    We present and defend the Australian Plan semantics for negation. This is a comprehensive account, suitable for a variety of different logics. It is based on two ideas. The first is that negation is an exclusion-expressing device: we utter negations to express incompatibilities. The second is that, because incompatibility is modal, negation is a modal operator as well. It can, then, be modelled as a quantifier over points in frames, restricted by accessibility relations representing compatibilities and incompatibilities between such (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8.  23
    (Master Thesis) Of Madness and Many-Valuedness: An Investigation Into Suszko's Thesis.Sanderson Molick - 2015 - Dissertation, UFRN
    Suszko’s Thesis is a philosophical claim regarding the nature of many-valuedness. It was formulated by the Polish logician Roman Suszko during the middle 70s and states the existence of “only but two truth values”. The thesis is a reaction against the notion of many-valuedness conceived by Jan Łukasiewicz. Reputed as one of the modern founders of many-valued logics, Łukasiewicz considered a third undeter- mined value in addition to the traditional Fregean values of Truth and Falsehood. For Łukasiewicz, his (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9.  51
    Effective Finite-Valued Approximations of General Propositional Logics.Matthias Baaz & Richard Zach - 2008 - In Arnon Avron, Nachum Dershowitz & Alexander Rabinovich (eds.), Pillars of Computer Science: Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His 85th Birthday. Berlin: Springer. pp. 107–129.
    Propositional logics in general, considered as a set of sentences, can be undecidable even if they have “nice” representations, e.g., are given by a calculus. Even decidable propositional logics can be computationally complex (e.g., already intuitionistic logic is PSPACE-complete). On the other hand, finite-valued logics are computationally relatively simple—at worst NP. Moreover, finite-valued semantics are simple, and general methods for theorem proving exist. This raises the question to what extent and under what circumstances propositional logics represented (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. LP, K3, and FDE as Substructural Logics.Lionel Shapiro - 2017 - In Pavel Arazim & Tomáš Lavička (eds.), The Logica Yearbook 2016. London: College Publications.
    Building on recent work, I present sequent systems for the non-classical logics LP, K3, and FDE with two main virtues. First, derivations closely resemble those in standard Gentzen-style systems. Second, the systems can be obtained by reformulating a classical system using nonstandard sequent structure and simply removing certain structural rules (relatives of exchange and contraction). I clarify two senses in which these logics count as “substructural.”.
    Download  
     
    Export citation  
     
    Bookmark  
  11.  12
    Many-Valued And Fuzzy Logic Systems From The Viewpoint Of Classical Logic.Ekrem Sefa Gül - 2018 - Tasavvur - Tekirdag Theology Journal 4 (2):624 - 657.
    The thesis that the two-valued system of classical logic is insufficient to explanation the various intermediate situations in the entity, has led to the development of many-valued and fuzzy logic systems. These systems suggest that this limitation is incorrect. They oppose the law of excluded middle (tertium non datur) which is one of the basic principles of classical logic, and even principle of non-contradiction and argue that is not an obstacle for things both to exist and to not exist (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  12. Fuzziness and the Sorites Paradox.Marcelo Vasconez - 2006 - Dissertation, Catholic University of Louvain
    The dissertation has two parts, each dealing with a problem, namely: 1) What is the most adequate account of fuzziness -the so-called phenomenon of vagueness?, and 2) what is the most plausible solution to the sorites, or heap paradox? I will try to show that fuzzy properties are those which are gradual, amenable to be possessed in a greater or smaller extent. Acknowledgement of degrees in the instantiation of a property allows for a gradual transition from one opposite to the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13.  85
    On Modal Meinongianism.Thibaut Giraud - 2016 - Synthese 193 (10).
    Modal Meinongianism is a form of Meinongianism whose main supporters are Graham Priest and Francesco Berto. The main idea of modal Meinongianism is to restrict the logical deviance of Meinongian non-existent objects to impossible worlds and thus prevent it from “contaminating” the actual world: the round square is round and not round, but not in the actual world, only in an impossible world. In the actual world, supposedly, no contradiction is true. I will show that Priest’s semantics, as originally formulated (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14.  44
    Maximality in Finite-Valued Lukasiewicz Logics Defined by Order Filters.Marcelo E. Coniglio, Francesc Esteva, Joan Gispert & Lluis Godo - forthcoming - Journal of Logic and Computation.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  15.  26
    Interpolation in 16-Valued Trilattice Logics.Reinhard Muskens & Stefan Wintein - 2018 - Studia Logica 106 (2):345-370.
    In a recent paper we have defined an analytic tableau calculus PL_16 for a functionally complete extension of Shramko and Wansing's logic based on the trilattice SIXTEEN_3. This calculus makes it possible to define syntactic entailment relations that capture central semantic relations of the logic---such as the relations |=_t, |=_f, and |=_i that each correspond to a lattice order in SIXTEEN_3; and |=, the intersection of |=_t and |=_f,. -/- It turns out that our method of characterising these semantic relations---as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. Notes on the Model Theory of DeMorgan Logics.Thomas Macaulay Ferguson - 2012 - Notre Dame Journal of Formal Logic 53 (1):113-132.
    We here make preliminary investigations into the model theory of DeMorgan logics. We demonstrate that Łoś's Theorem holds with respect to these logics and make some remarks about standard model-theoretic properties in such contexts. More concretely, as a case study we examine the fate of Cantor's Theorem that the classical theory of dense linear orderings without endpoints is $\aleph_{0}$-categorical, and we show that the taking of ultraproducts commutes with respect to previously established methods of constructing nonclassical structures, namely, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  17.  72
    Labeled Calculi and Finite-Valued Logics.Matthias Baaz, Christian G. Fermüller, Gernot Salzer & Richard Zach - 1998 - Studia Logica 61 (1):7-33.
    A general class of labeled sequent calculi is investigated, and necessary and sufficient conditions are given for when such a calculus is sound and complete for a finite -valued logic if the labels are interpreted as sets of truth values. Furthermore, it is shown that any finite -valued logic can be given an axiomatization by such a labeled calculus using arbitrary "systems of signs," i.e., of sets of truth values, as labels. The number of labels needed is logarithmic in the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  18.  92
    Conjunction and Disjunction in Infectious Logics.Hitoshi Omori & Damian Szmuc - 2017 - In Alexandru Baltag, Jeremy Seligman & Tomoyuki Yamada (eds.), Logic, Rationality, and Interaction: 6th International Workshop. Berlin: Springer. pp. 268-283.
    In this paper we discuss the extent to which conjunction and disjunction can be rightfully regarded as such, in the context of infectious logics. Infectious logics are peculiar many-valued logics whose underlying algebra has an absorbing or infectious element, which is assigned to a compound formula whenever it is assigned to one of its components. To discuss these matters, we review the philosophical motivations for infectious logics due to Bochvar, Halldén, Fitting, Ferguson and Beall, noticing (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19.  15
    Normality Operators and Classical Recapture in Extensions of Kleene Logics.Ciuni Roberto & Massimiliano Carrara - forthcoming - Logic Journal of the IGPL.
    In this paper, we approach the problem of classical recapture for LP and K3 by using normality operators. These generalize the consistency and determinedness operators from Logics of Formal Inconsistency and Underterminedness, by expressing, in any many-valued logic, that a given formula has a classical truth value (0 or 1). In particular, in the rst part of the paper we introduce the logics LPe and Ke3 , which extends LP and K3 with normality operators, and we establish (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20.  84
    Theories of Truth Based on Four-Valued Infectious Logics.Damian Szmuc, Bruno Da Re & Federico Pailos - forthcoming - Logic Journal of the IGPL.
    Infectious logics are systems which have a truth-value that is assigned to a compound formula whenever it is assigned to one of its components. This paper studies four-valued infectious logics as the basis of transparent theories of truth. This take is motivated (i) as a way to treat different pathological sentences (like the Liar and the Truth-Teller) differently, namely, by allowing some of them to be truth-value gluts and some others to be truth-value gaps, and (ii) as a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  21. A Categorial Approach to the Combination of Logics.Walter A. Carnielli & Marcelo E. Coniglio - 1999 - Manuscrito 22 (2):69-94.
    In this paper we propose a very general de nition of combination of logics by means of the concept of sheaves of logics. We first discuss some properties of this general definition and list some problems, as well as connections to related work. As applications of our abstract setting, we show that the notion of possible-translations semantics, introduced in previous papers by the first author, can be described in categorial terms. Possible-translations semantics constitute illustrative cases, since they provide (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  22. Natural Deduction for Three-Valued Regular Logics.Yaroslav Petrukhin - 2017 - Logic and Logical Philosophy 26 (2):197–206.
    In this paper, I consider a family of three-valued regular logics: the well-known strong and weak S.C. Kleene’s logics and two intermedi- ate logics, where one was discovered by M. Fitting and the other one by E. Komendantskaya. All these systems were originally presented in the semantical way and based on the theory of recursion. However, the proof theory of them still is not fully developed. Thus, natural deduction sys- tems are built only for strong Kleene’s logic (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  23. Many-Valued Logic between the Degrees of Truth and the Limits of Knowledge.Salah Osman - 2002 - Alexandria, Egypt: Al Maaref Establishment Press.
    هو أول كتاب باللغة العربية يعرض لمراحل وآليات تطور المنطق الرمزي المعاصر متعدد القيم بأنساقه المختلفة، مركزًا على مشكلة الغموض المعرفي للإنسان بأبعادها اللغوية والإبستمولوجية والأنطولوجية، والتي تتجلى – على سبيل المثال – فيما تحفل به الدراسات الفلسفية والمنطقية والعلمية من مفارقات تمثل تحديًا قويًا لثنائية الصدق والكذب الكلاسيكية، وكذلك في اكتشاف «هيزنبرج» لمبدأ اللايقين، وتأكيده وعلماء الكمّ على ضرورة التفسيرات الإحصائية في المجال دون الذري، الأمر الذي يؤكد عدم فعالية قانون الثالث المرفوع في التعامل مع معطيات الواقع الفعلي، واستحالة (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  24. Translations Between Logical Systems: A Manifesto.Walter A. Carnielli & Itala Ml D'Ottaviano - 1997 - Logique Et Analyse 157:67-81.
    The main objective o f this descriptive paper is to present the general notion of translation between logical systems as studied by the GTAL research group, as well as its main results, questions, problems and indagations. Logical systems here are defined in the most general sense, as sets endowed with consequence relations; translations between logical systems are characterized as maps which preserve consequence relations (that is, as continuous functions between those sets). In this sense, logics together with translations form (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  25. The Development of Mathematical Logic From Russell to Tarski, 1900-1935.Paolo Mancosu, Richard Zach & Calixto Badesa - 2009 - In Leila Haaparanta (ed.), The Development of Modern Logic. Oxford University Press.
    The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, Löwenheim (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  26.  90
    A Tableau Calculus for Partial Functions.Manfred Kerber Michael Kohlhase - unknown
    Even though it is not very often admitted, partial functions do play a significant role in many practical applications of deduction systems. Kleene has already given a semantic account of partial functions using a three-valued logic decades ago, but there has not been a satisfactory mechanization. Recent years have seen a thorough investigation of the framework of many-valued truth-functional logics. However, strong Kleene logic, where quantification is restricted and therefore not truthfunctional, does not fit the framework directly. We (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  27.  20
    Semantical Analysis of Weak Kleene Logics.Roberto Ciuni & Massimiliano Carrara - forthcoming - Journal of Applied Non-Classical Logics:1-36.
    This paper presents a semantical analysis of the Weak Kleene Logics Kw3 and PWK from the tradition of Bochvar and Halldén. These are three-valued logics in which a formula takes the third value if at least one of its components does. The paper establishes two main results: a characterisation result for the relation of logical con- sequence in PWK – that is, we individuate necessary and sufficient conditions for a set.
    Download  
     
    Export citation  
     
    Bookmark  
  28.  4
    Epistemic Pluralism.Fabien Schang - 2017 - Logique Et Analyse 239 (60):337-353.
    The present paper wants to promote epistemic pluralism as an alternative view of non-classical logics. For this purpose, a bilateralist logic of acceptance and rejection is developed in order to make an important di erence between several concepts of epistemology, including information and justi cation. Moreover, the notion of disagreement corresponds to a set of epistemic oppositions between agents. The result is a non-standard theory of opposition for many-valued logics, rendering total and partial disagreement in terms of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29.  95
    Post Completeness in Congruential Modal Logics.Peter Fritz - 2016 - In Lev Beklemishev, Stéphane Demri & András Máté (eds.), Advances in Modal Logic Volume 11. College Publications. pp. 288-301.
    Well-known results due to David Makinson show that there are exactly two Post complete normal modal logics, that in both of them, the modal operator is truth-functional, and that every consistent normal modal logic can be extended to at least one of them. Lloyd Humberstone has recently shown that a natural analog of this result in congruential modal logics fails, by showing that not every congruential modal logic can be extended to one in which the modal operator is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Valuations.Jean-Louis Lenard - manuscript
    Is logic empirical? Is logic to be found in the world? Or is logic rather a convention, a product of conventions, part of the many rules that regulate the language game? Answers fall in either camp. We like the linguistic answer. In this paper, we want to analyze how a linguistic community would tackle the problem of developing a logic and show how the linguistic conventions adopted by the community determine the properties of the local logic. Then show how to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31.  17
    Non-Deterministic Algebraization of Logics by Swap Structures.Marcelo E. Coniglio, Aldo Figallo-Orellano & Ana Claudia Golzio - forthcoming - Logic Journal of the IGPL.
    Multialgebras (or hyperalgebras or non-deterministic algebras) have been much studied in mathematics and in computer science. In 2016 Carnielli and Coniglio introduced a class of multialgebras called swap structures, as a semantic framework for dealing with several Logics of Formal Inconsistency (or LFIs) that cannot be semantically characterized by a single finite matrix. In particular, these LFIs are not algebraizable by the standard tools of abstract algebraic logic. In this paper, the first steps towards a theory of non-deterministic algebraization (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32.  13
    Swap Structures Semantics for Ivlev-Like Modal Logics.Marcelo E. Coniglio & Ana Claudia Golzio - forthcoming - Soft Computing.
    In 1988, J. Ivlev proposed some (non-normal) modal systems which are semantically characterized by four-valued non-deterministic matrices in the sense of A. Avron and I. Lev. Swap structures are multialgebras (a.k.a. hyperalgebras) of a special kind, which were introduced in 2016 by W. Carnielli and M. Coniglio in order to give a non-deterministic semantical account for several paraconsistent logics known as logics of formal inconsistency, which are not algebraizable by means of the standard techniques. Each swap structure induces (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33.  46
    Modulated Logics and Flexible Reasoning.Walter Carnielli & Maria Cláudia C. Grácio - 2008 - Logic and Logical Philosophy 17 (3):211-249.
    This paper studies a family of monotonic extensions of first-order logic which we call modulated logics, constructed by extending classical logic through generalized quantifiers called modulated quantifiers. This approach offers a new regard to what we call flexible reasoning. A uniform treatment of modulated logics is given here, obtaining some general results in model theory. Besides reviewing the “Logic of Ultrafilters”, which formalizes inductive assertions of the kind “almost all”, two new monotonic logical systems are proposed here, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  34.  40
    4. Contradictorial Gradualism Vs. Discontinuism: Two Views On Fuzziness And The Transition Problem.Marcelo VÁsconez - 2006 - Logique Et Analyse 49 (195).
    The dissertation has two parts, each dealing with a problem, namely: 1) What is the most adequate account of fuzziness -the so-called phenomenon of vagueness?, and 2) what is the most plausible solution to the sorites, or heap paradox? I will try to show that fuzzy properties are those which are gradual, amenable to be possessed in a greater or smaller extent. Acknowledgement of degrees in the instantiation of a property allows for a gradual transition from one opposite to the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35.  17
    Compact Propositional Gödel Logics.Matthias Baaz & Richard Zach - 1998 - In 28th IEEE International Symposium on Multiple-Valued Logic, 1998. Proceedings. Los Alamitos: IEEE Press. pp. 108-113.
    Entailment in propositional Gödel logics can be defined in a natural way. While all infinite sets of truth values yield the same sets of tautologies, the entailment relations differ. It is shown that there is a rich structure of infinite-valued Gödel logics, only one of which is compact. It is also shown that the compact infinite-valued Gödel logic is the only one which interpolates, and the only one with an r.e. entailment relation.
    Download  
     
    Export citation  
     
    Bookmark  
  36. Non-Classical Metatheory for Non-Classical Logics.Andrew Bacon - 2013 - Journal of Philosophical Logic 42 (2):335-355.
    A number of authors have objected to the application of non-classical logic to problems in philosophy on the basis that these non-classical logics are usually characterised by a classical metatheory. In many cases the problem amounts to more than just a discrepancy; the very phenomena responsible for non-classicality occur in the field of semantics as much as they do elsewhere. The phenomena of higher order vagueness and the revenge liar are just two such examples. The aim of this paper (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  37.  64
    On Partial and Paraconsistent Logics.Reinhard Muskens - 1999 - Notre Dame Journal of Formal Logic 40 (3):352-374.
    In this paper we consider the theory of predicate logics in which the principle of Bivalence or the principle of Non-Contradiction or both fail. Such logics are partial or paraconsistent or both. We consider sequent calculi for these logics and prove Model Existence. For L4, the most general logic under consideration, we also prove a version of the Craig-Lyndon Interpolation Theorem. The paper shows that many techniques used for classical predicate logic generalise to partial and paraconsistent (...) once the right set-up is chosen. Our logic L4 has a semantics that also underlies Belnap’s [4] and is related to the logic of bilattices. L4 is in focus most of the time, but it is also shown how results obtained for L4 can be transferred to several variants. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  38. Deontic Logics Based on Boolean Algebra.Pablo F. Castro & Piotr Kulicki - forthcoming - In Robert Trypuz (ed.), Krister Segerberg on Logic of Actions. Springer.
    Deontic logic is devoted to the study of logical properties of normative predicates such as permission, obligation and prohibition. Since it is usual to apply these predicates to actions, many deontic logicians have proposed formalisms where actions and action combinators are present. Some standard action combinators are action conjunction, choice between actions and not doing a given action. These combinators resemble boolean operators, and therefore the theory of boolean algebra offers a well-known athematical framework to study the properties of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39.  33
    Quantified Propositional Gödel Logics.Matthias Baaz, Agata Ciabattoni & Richard Zach - 2000 - In Andrei Voronkov & Michel Parigot (eds.), Logic for Programming and Automated Reasoning. 7th International Conference, LPAR 2000. Berlin: Springer. pp. 240-256.
    It is shown that Gqp↑, the quantified propositional Gödel logic based on the truth-value set V↑ = {1 - 1/n : n≥1}∪{1}, is decidable. This result is obtained by reduction to Büchi's theory S1S. An alternative proof based on elimination of quantifiers is also given, which yields both an axiomatization and a characterization of Gqp↑ as the intersection of all finite-valued quantified propositional Gödel logics.
    Download  
     
    Export citation  
     
    Bookmark  
  40.  3
    Une sémantique générale des croyances justifiées.Fabien Schang & Alexandre Costa Leite - 2016 - CLE-Prints 16 (3):1-24.
    Nous proposons une logique épistémique quadrivalente AR4.
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  41. 2007. Notes on the Founding of Logics and Metalogic: Aristotle, Boole, and Tarski. Eds. C. Martínez Et Al. Current Topics in Logic and Analytic Philosophy / Temas Actuales de Lógica y Filosofía Analítica. Imprenta Univeridade Santiago de Compostela.John Corcoran - 2007 - In C. Martínez (ed.), Current Topics in Logic and Analytic Philosophy /. pp. 145-178.
    Download  
     
    Export citation  
     
    Bookmark  
  42.  21
    Completeness of a Hypersequent Calculus for Some First-Order Gödel Logics with Delta.Matthias Baaz, Norbert Preining & Richard Zach - 2006 - In 36th International Symposium on Multiple-valued Logic. May 2006, Singapore. Proceedings. Los Alamitos: IEEE Press.
    All first-order Gödel logics G_V with globalization operator based on truth value sets V C [0,1] where 0 and 1 lie in the perfect kernel of V are axiomatized by Ciabattoni’s hypersequent calculus HGIF.
    Download  
     
    Export citation  
     
    Bookmark  
  43.  30
    From Bi-Facial Truth to Bi-Facial Proofs.Stefan Wintein & Reinhard A. Muskens - 2015 - Studia Logica 103 (3):545-558.
    In their recent paper Bi-facial truth: a case for generalized truth values Zaitsev and Shramko [7] distinguish between an ontological and an epistemic interpretation of classical truth values. By taking the Cartesian product of the two disjoint sets of values thus obtained, they arrive at four generalized truth values and consider two “semi-classical negations” on them. The resulting semantics is used to define three novel logics which are closely related to Belnap’s well-known four valued logic. A syntactic characterization of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  44.  27
    Incompleteness of a First-Order Gödel Logic and Some Temporal Logics of Programs.Matthias Baaz, Alexander Leitsch & Richard Zach - 1996 - In Hans Kleine Büning (ed.), Computer Science Logic. CSL 1995. Selected Papers. Berlin: Springer. pp. 1--15.
    It is shown that the infinite-valued first-order Gödel logic G° based on the set of truth values {1/k: k ε w {0}} U {0} is not r.e. The logic G° is the same as that obtained from the Kripke semantics for first-order intuitionistic logic with constant domains and where the order structure of the model is linear. From this, the unaxiomatizability of Kröger's temporal logic of programs (even of the fragment without the nexttime operator O) and of the authors' temporal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45.  64
    Razão e irracionalidade na representação do conhecimento.Walter A. Carnielli & Mamede Lima Marques - 1991 - Trans/Form/Ação 14:165-177.
    How is it possible that beginning from the negation of rational thoughts one comes to produce knowledge? This problem, besides its intrinsic interest, acquires a great relevance when the representation of a knowledge is settled, for example, on data and automatic reasoning. Many treatment ways have been tried, as in the case of the non-monotonic logics; logics that intend to formalize an idea of reasoning by default, etc. These attempts are incomplete and are subject to failure. A possible (...)
    Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  46.  88
    Rejection and Truth-Value Gaps.Fred Johnson - 1999 - Notre Dame Journal of Formal Logic 40 (4):574-577.
    A theorem due to Shoesmith and Smiley that axiomatizes two-valued multiple-conclusion logics is extended to partial logics.
    Download  
     
    Export citation  
     
    Bookmark  
  47.  53
    An Even Simpler Defense of the Material Implication (Draft).Matheus Silva - manuscript
    Lee Archie argued that if any truth-values are consistently assigned to a natural language conditional for which modus ponens and modus tollens are valid argument forms and affirming the consequent is invalid, this conditional will have the same truth-conditions of a material implication. This argument is simple and it requires few and relatively uncontroversial assumptions. We show that it is possible to extend Archie´s argument to three and five-valued logics and still vindicate the same conclusion. This defense is simpler (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. True, Truer, Truest.Brian Weatherson - 2005 - Philosophical Studies 123 (1-2):47-70.
    What the world needs now is another theory of vagueness. Not because the old theories are useless. Quite the contrary, the old theories provide many of the materials we need to construct the truest theory of vagueness ever seen. The theory shall be similar in motivation to supervaluationism, but more akin to many-valued theories in conceptualisation. What I take from the many-valued theories is the idea that some sentences can be truer than others. But I say very different (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  49. Jaina Logic and the Philosophical Basis of Pluralism.Jonardon Ganeri - 2002 - History and Philosophy of Logic 23 (4):267-281.
    What is the rational response when confronted with a set of propositions each of which we have some reason to accept, and yet which taken together form an inconsistent class? This was, in a nutshell, the problem addressed by the Jaina logicians of classical India, and the solution they gave is, I think, of great interest, both for what it tells us about the relationship between rationality and consistency, and for what we can learn about the logical basis of philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  50. Ancient Logic and its Modern Interpretations.John Corcoran (ed.) - 1974 - Boston: Reidel.
    This book treats ancient logic: the logic that originated in Greece by Aristotle and the Stoics, mainly in the hundred year period beginning about 350 BCE. Ancient logic was never completely ignored by modern logic from its Boolean origin in the middle 1800s: it was prominent in Boole’s writings and it was mentioned by Frege and by Hilbert. Nevertheless, the first century of mathematical logic did not take it seriously enough to study the ancient logic texts. A renaissance in ancient (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
1 — 50 / 1000