Many-valuedlogics are those logics that have more than the two classical truth values, to wit, true and false; in fact, they can have from three to infinitely many truth values. This property, together with truth-functionality, provides a powerful formalism to reason in settings where classical logic—as well as other non-classical logics—is of no avail. Indeed, originally motivated by philosophical concerns, these logics soon proved relevant for a plethora of applications ranging from switching theory to (...) cognitive modeling, and they are today in more demand than ever, due to the realization that inconsistency and vagueness in knowledge bases and information processes are not only inevitable and acceptable, but also perhaps welcome. The main modern applications of (any) logic are to be found in the digital computer, and we thus require the practical knowledge how to computerize—which also means automate—decisions (i.e. reasoning) in many-valuedlogics. This, in turn, necessitates a mathematical foundation for these logics. This book provides both these mathematical foundation and practical knowledge in a rigorous, yet accessible, text, while at the same time situating these logics in the context of the satisfiability problem (SAT) and automated deduction. The main text is complemented with a large selection of exercises, a plus for the reader wishing to not only learn about, but also do something with, many-valuedlogics. (shrink)
The aim of this paper is to emphasize the fact that for all finitely-many-valuedlogics there is a completely systematic relation between sequent calculi and tableau systems. More importantly, we show that for both of these systems there are al- ways two dual proof sytems (not just only two ways to interpret the calculi). This phenomenon may easily escape one’s attention since in the classical (two-valued) case the two systems coincide. (In two-valued logic the assignment of a truth (...) value and the exclusion of the opposite truth value describe the same situation.). (shrink)
A construction principle for natural deduction systems for arbitrary, finitely-many-valued first order logics is exhibited. These systems are systematically obtained from sequent calculi, which in turn can be automatically extracted from the truth tables of the logics under consideration. Soundness and cut-free completeness of these sequent calculi translate into soundness, completeness, and normal-form theorems for natural deduction systems.
The problem of approximating a propositional calculus is to find many-valuedlogics which are sound for the calculus (i.e., all theorems of the calculus are tautologies) with as few tautologies as possible. This has potential applications for representing (computationally complex) logics used in AI by (computationally easy) many-valuedlogics. It is investigated how far this method can be carried using (1) one or (2) an infinite sequence of many-valuedlogics. It is shown that (...) the optimal candidate matrices for (1) can be computed from the calculus. (shrink)
The proof theory of many-valued systems has not been investigated to an extent comparable to the work done on axiomatizatbility of many-valuedlogics. Proof theory requires appropriate formalisms, such as sequent calculus, natural deduction, and tableaux for classical (and intuitionistic) logic. One particular method for systematically obtaining calculi for all finite-valued logics was invented independently by several researchers, with slight variations in design and presentation. The main aim of this report is to develop the proof theory (...) of finite-valued first order logics in a general way, and to present some of the more important results in this area. In Systems covered are the resolution calculus, sequent calculus, tableaux, and natural deduction. This report is actually a template, from which all results can be specialized to particular logics. (shrink)
A uniform construction for sequent calculi for finite-valued first-order logics with distribution quantifiers is exhibited. Completeness, cut-elimination and midsequent theorems are established. As an application, an analog of Herbrand’s theorem for the four-valued knowledge-representation logic of Belnap and Ginsberg is presented. It is indicated how this theorem can be used for reasoning about knowledge bases with incomplete and inconsistent information.
We present and defend the Australian Plan semantics for negation. This is a comprehensive account, suitable for a variety of different logics. It is based on two ideas. The first is that negation is an exclusion-expressing device: we utter negations to express incompatibilities. The second is that, because incompatibility is modal, negation is a modal operator as well. It can, then, be modelled as a quantifier over points in frames, restricted by accessibility relations representing compatibilities and incompatibilities between such (...) points. We defuse a number of objections to this Plan, raised by supporters of the American Plan for negation, in which negation is handled via a many-valued semantics. We show that the Australian Plan has substantial advantages over the American Plan. (shrink)
Suszko’s Thesis is a philosophical claim regarding the nature of many-valuedness. It was formulated by the Polish logician Roman Suszko during the middle 70s and states the existence of “only but two truth values”. The thesis is a reaction against the notion of many-valuedness conceived by Jan Łukasiewicz. Reputed as one of the modern founders of many-valuedlogics, Łukasiewicz considered a third undeter- mined value in addition to the traditional Fregean values of Truth and Falsehood. For Łukasiewicz, his (...) third value could be seen as a step beyond the Aristotelian dichotomy of Being and non-Being. According to Suszko, Łukasiewicz’s ideas rested on a confusion between algebraic values (what sentences describe/denote) and log- ical values (truth and falsity). Thus, Łukasiewicz’s third undetermined value is no more than an algebraic value, a possible denotation for a sentence, but not a genuine logical value. Suszko’s Thesis is endorsed by a formal result baptized as Suszko’s Reduction, a theorem that states every Tarskian logic may be characterized by a two-valued semantics. The present study is intended as a thorough investigation of Suszko’s thesis and its implications. The first part is devoted to the historical roots of many-valuedness and introduce Suszko’s main motivations in formulating the double character of truth-values by drawing the distinction in between algebraic and logical values. The second part explores Suszko’s Reduction and presents the developments achieved from it; the properties of two-valued semantics in comparison to many-valued semantics are also explored and discussed. Last but not least, the third part investigates the notion of logical values in the context of non-Tarskian notions of entailment; the meaning of Suszko’s thesis within such frameworks is also discussed. Moreover, the philosophical foundations for non-Tarskian notions of entailment are explored in the light of recent debates concerning logical pluralism. (shrink)
Propositional logics in general, considered as a set of sentences, can be undecidable even if they have “nice” representations, e.g., are given by a calculus. Even decidable propositional logics can be computationally complex (e.g., already intuitionistic logic is PSPACE-complete). On the other hand, finite-valued logics are computationally relatively simple—at worst NP. Moreover, finite-valued semantics are simple, and general methods for theorem proving exist. This raises the question to what extent and under what circumstances propositional logics represented (...) in various ways can be approximated by finite-valued logics. It is shown that the minimal m-valued logic for which a given calculus is strongly sound can be calculated. It is also investigated under which conditions propositional logics can be characterized as the intersection of (effectively given) sequences of finite-valued logics. (shrink)
Building on recent work, I present sequent systems for the non-classical logics LP, K3, and FDE with two main virtues. First, derivations closely resemble those in standard Gentzen-style systems. Second, the systems can be obtained by reformulating a classical system using nonstandard sequent structure and simply removing certain structural rules (relatives of exchange and contraction). I clarify two senses in which these logics count as “substructural.”.
The thesis that the two-valued system of classical logic is insufficient to explanation the various intermediate situations in the entity, has led to the development of many-valued and fuzzy logic systems. These systems suggest that this limitation is incorrect. They oppose the law of excluded middle (tertium non datur) which is one of the basic principles of classical logic, and even principle of non-contradiction and argue that is not an obstacle for things both to exist and to not exist (...) at the same time. However, contrary to these claims, there is no inadequacy in the two-valued system of classical logic in explanation the intermediate situations in existence. The law of exclusion and the intermediate situations in the external world are separate things. The law of excluded middle has been inevitably accepted by other logic systems which are considered to reject this principle. The many-valued and the fuzzy logic systems do not transcend the classical logic. Misconceptions from incomplete information and incomplete research are effective in these criticisms. In addition, it is also effective to move the discussion about the intellectual conception (tasawwur) into the field of judgmental assent (tasdiq) and confusion of the mawhum (imaginable) with the ma‘kûl (intellegible). (shrink)
The dissertation has two parts, each dealing with a problem, namely: 1) What is the most adequate account of fuzziness -the so-called phenomenon of vagueness?, and 2) what is the most plausible solution to the sorites, or heap paradox? I will try to show that fuzzy properties are those which are gradual, amenable to be possessed in a greater or smaller extent. Acknowledgement of degrees in the instantiation of a property allows for a gradual transition from one opposite to the (...) other, each intermediate stage constituting an overlap in certain proportion of both contraries. Hence, degrees in the possession of a property give rise to simple contradictions. The reason why I have chosen those two questions is that they provide the main philosophical motivation for a particular brand of an infinite valued and paraconsistent logic. I will claim that Classical logic (CL) is not adequate to handle fuzzy situations, and, being deficient, is in need of being expanded to make room for degrees of truth and weak contradictions. One can hardly deny the importance of the debate, since what is ultimately at stake is what the limits of truth, rationality, intelligibility and possibility are. The main disciplines within which the research moves are the philosophy of language, philosophy of logic, and ontology. (shrink)
Modal Meinongianism is a form of Meinongianism whose main supporters are Graham Priest and Francesco Berto. The main idea of modal Meinongianism is to restrict the logical deviance of Meinongian non-existent objects to impossible worlds and thus prevent it from “contaminating” the actual world: the round square is round and not round, but not in the actual world, only in an impossible world. In the actual world, supposedly, no contradiction is true. I will show that Priest’s semantics, as originally formulated (...) in Towards Non-being, tell us something different. According to certain models, there are true contradictions in the actual world. Berto and Priest have noticed this unexpected consequence and have suggested a solution, but I will show that their solution is highly questionable. In the last section of this paper, I will introduce a new and simpler version of modal Meinongianism that avoids the problem. (shrink)
In a recent paper we have defined an analytic tableau calculus PL_16 for a functionally complete extension of Shramko and Wansing's logic based on the trilattice SIXTEEN_3. This calculus makes it possible to define syntactic entailment relations that capture central semantic relations of the logic---such as the relations |=_t, |=_f, and |=_i that each correspond to a lattice order in SIXTEEN_3; and |=, the intersection of |=_t and |=_f,. -/- It turns out that our method of characterising these semantic relations---as (...) intersections of auxiliary relations that can be captured with the help of a single calculus---lends itself well to proving interpolation. All entailment relations just mentioned have the interpolation property, not only when they are defined with respect to a functionally complete language, but also in a range of cases where less expressive languages are considered. For example, we will show that |=, when restricted to L_{tf}, the language originally considered by Shramko and Wansing, enjoys interpolation. This answers a question that was recently posed by M. Takano. (shrink)
We here make preliminary investigations into the model theory of DeMorgan logics. We demonstrate that Łoś's Theorem holds with respect to these logics and make some remarks about standard model-theoretic properties in such contexts. More concretely, as a case study we examine the fate of Cantor's Theorem that the classical theory of dense linear orderings without endpoints is $\aleph_{0}$-categorical, and we show that the taking of ultraproducts commutes with respect to previously established methods of constructing nonclassical structures, namely, (...) Priest's Collapsing Lemma and Dunn's Theorem in 3-Valued Logic. (shrink)
A general class of labeled sequent calculi is investigated, and necessary and sufficient conditions are given for when such a calculus is sound and complete for a finite -valued logic if the labels are interpreted as sets of truth values. Furthermore, it is shown that any finite -valued logic can be given an axiomatization by such a labeled calculus using arbitrary "systems of signs," i.e., of sets of truth values, as labels. The number of labels needed is logarithmic in the (...) number of truth values, and it is shown that this bound is tight. (shrink)
In this paper we discuss the extent to which conjunction and disjunction can be rightfully regarded as such, in the context of infectious logics. Infectious logics are peculiar many-valuedlogics whose underlying algebra has an absorbing or infectious element, which is assigned to a compound formula whenever it is assigned to one of its components. To discuss these matters, we review the philosophical motivations for infectious logics due to Bochvar, Halldén, Fitting, Ferguson and Beall, noticing (...) that none of them discusses our main question. This is why we finally turn to the analysis of the truth-conditions for conjunction and disjunction in infectious logics, employing the framework of plurivalent logics, as discussed by Priest. In doing so, we arrive at the interesting conclusion that —in the context of infectious logics— conjunction is conjunction, whereas disjunction is not disjunction. (shrink)
In this paper, we approach the problem of classical recapture for LP and K3 by using normality operators. These generalize the consistency and determinedness operators from Logics of Formal Inconsistency and Underterminedness, by expressing, in any many-valued logic, that a given formula has a classical truth value (0 or 1). In particular, in the rst part of the paper we introduce the logics LPe and Ke3 , which extends LP and K3 with normality operators, and we establish (...) a classical recapture result based on the two logics. In the second part of the paper, we compare the approach in terms of normality operators with an established approach to classical recapture, namely minimal inconsistency. Finally, we discuss technical issues connecting LPe and Ke3 to the tradition of Logics of Formal Inconsistency and Underterminedness. (shrink)
Infectious logics are systems which have a truth-value that is assigned to a compound formula whenever it is assigned to one of its components. This paper studies four-valued infectious logics as the basis of transparent theories of truth. This take is motivated (i) as a way to treat different pathological sentences (like the Liar and the Truth-Teller) differently, namely, by allowing some of them to be truth-value gluts and some others to be truth-value gaps, and (ii) as a (...) way to treat the semantic pathology suffered by at least some of these sentences as infectious. This leads us to consider four distinct four-valued logics: one where truth-value gaps are infectious, but gluts are not; one where truth-value gluts are infectious, but gaps are not; and two logics where both gluts and gaps are infectious, in some sense. Additionally, we focus on the proof-theory of these systems, by offering a discussion of two related topics. On the one hand, we prove some limitations regarding the possibility of providing standard Gentzen sequent calculi for these systems, by dualizing and extending some recent results for infectious logics. On the other hand, we provide sound and complete four-sided sequent calculi, arguing that the most important technical and philosophical features taken into account to usually prefer standard calculi are, indeed, enjoyed by the four-sided systems. -/- . (shrink)
In this paper we propose a very general de nition of combination of logics by means of the concept of sheaves of logics. We first discuss some properties of this general definition and list some problems, as well as connections to related work. As applications of our abstract setting, we show that the notion of possible-translations semantics, introduced in previous papers by the first author, can be described in categorial terms. Possible-translations semantics constitute illustrative cases, since they provide (...) a new semantical account for abstract logical systems, particularly for many-valued and paraconsistent logics. (shrink)
In this paper, I consider a family of three-valued regular logics: the well-known strong and weak S.C. Kleene’s logics and two intermedi- ate logics, where one was discovered by M. Fitting and the other one by E. Komendantskaya. All these systems were originally presented in the semantical way and based on the theory of recursion. However, the proof theory of them still is not fully developed. Thus, natural deduction sys- tems are built only for strong Kleene’s logic (...) both with one (A. Urquhart, G. Priest, A. Tamminga) and two designated values (G. Priest, B. Kooi, A. Tamminga). The purpose of this paper is to provide natural deduction systems for weak and intermediate regular logics both with one and two designated values. (shrink)
هو أول كتاب باللغة العربية يعرض لمراحل وآليات تطور المنطق الرمزي المعاصر متعدد القيم بأنساقه المختلفة، مركزًا على مشكلة الغموض المعرفي للإنسان بأبعادها اللغوية والإبستمولوجية والأنطولوجية، والتي تتجلى – على سبيل المثال – فيما تحفل به الدراسات الفلسفية والمنطقية والعلمية من مفارقات تمثل تحديًا قويًا لثنائية الصدق والكذب الكلاسيكية، وكذلك في اكتشاف «هيزنبرج» لمبدأ اللايقين، وتأكيده وعلماء الكمّ على ضرورة التفسيرات الإحصائية في المجال دون الذري، الأمر الذي يؤكد عدم فعالية قانون الثالث المرفوع في التعامل مع معطيات الواقع الفعلي، واستحالة (...) مشروع إقامة لغة مثالية أو اصطناعية أو كاملة منطقيًا تتجاوز عيوب ونقائص اللغة العادية التي نفكر ونتعامل بها. وينتهي الكتاب إلى نتيجة مؤداها أن ما واجهه المنطق الكلاسيكي – ثنائي القيم – من مشكلات أدت إلى تطويره، لاسيما مشكلة الغموض، لابد وأن يواجهه بالمثل المنطق متعدد القيم، ذلك أن الغموض ظاهرة إبستمولوجية في المحل الأول، مردودها إلى الذات العارفة وقصور إمكاناتها الإدراكية والقياسية، لا إلى الوجود ذاته. وأننا حتى لو سمحنا لأية قضية منطقية بقيمة صدق ثالثة، أو بأكثر من قيمة تتوسط بين الصدق التام والكذب التام، فسوف تظل القضية – كتمثيل لغوي لإحدى وقائع العالم – صادقة أو كاذبة، سواء أدركنا ذلك أو لم ندركه، وذلك تأكيد لنزعة أفلاطون الواقعية القائلة بوجود أزلي وثابت للحقائق في عالم المثل، تحول دون معرفتنا الظنية بظلالها في عالم الحس المتغير. ويعني ذلك بعبارة أخرى أن الشك في قانون الثالث المرفوع هو إسقاط من الذات على الموضوع، مبعثه عدم اكتمال العملية المعرفية ومحدوديتها، وأن ظهور الأنساق المنطقية ذات القيم المتعددة ما هو إلا حلقة من حلقات العلاقة الجدلية اللامنتهية بين الإنسان والطبيعة، أو بيم ما هو مُدرك وما هو موجود بالفعل. والكتاب بصفة عامة هو أول كتاب باللغة العربية يعرض لأنساق المنطق متعدد القيم بعد مرحلة البرينكيبيا ماثيماتيكا. (shrink)
The main objective o f this descriptive paper is to present the general notion of translation between logical systems as studied by the GTAL research group, as well as its main results, questions, problems and indagations. Logical systems here are defined in the most general sense, as sets endowed with consequence relations; translations between logical systems are characterized as maps which preserve consequence relations (that is, as continuous functions between those sets). In this sense, logics together with translations form (...) a bicomplete category of which topological spaces with topological continuous functions constitute a full subcategory. We also describe other uses of translations in providing new semantics for non-classical logics and in investigating duality between them. An important subclass of translations, the conservative translations, which strongly preserve consequence relations, is introduced and studied. Some specific new examples of translations involving modal logics, many-valuedlogics, para- consistent logics, intuitionistic and classical logics are also described. (shrink)
The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, Löwenheim (...) and Skolem. Itinerary V surveys the work in logic connected to the Hilbert school, and itinerary V deals specifically with consistency proofs and metamathematics, including the incompleteness theorems. Itinerary VII traces the development of intuitionistic and many-valuedlogics. Itinerary VIII surveys the development of semantical notions from the early work on axiomatics up to Tarski's work on truth. (shrink)
Even though it is not very often admitted, partial functions do play a significant role in many practical applications of deduction systems. Kleene has already given a semantic account of partial functions using a three-valued logic decades ago, but there has not been a satisfactory mechanization. Recent years have seen a thorough investigation of the framework of many-valued truth-functional logics. However, strong Kleene logic, where quantification is restricted and therefore not truthfunctional, does not fit the framework directly. We (...) solve this problem by applying recent methods from sorted logics. This paper presents a tableau calculus that combines the proper treatment of partial functions with the efficiency of sorted calculi. (shrink)
This paper presents a semantical analysis of the Weak Kleene Logics Kw3 and PWK from the tradition of Bochvar and Halldén. These are three-valued logics in which a formula takes the third value if at least one of its components does. The paper establishes two main results: a characterisation result for the relation of logical con- sequence in PWK – that is, we individuate necessary and sufficient conditions for a set.
The present paper wants to promote epistemic pluralism as an alternative view of non-classical logics. For this purpose, a bilateralist logic of acceptance and rejection is developed in order to make an important di erence between several concepts of epistemology, including information and justi cation. Moreover, the notion of disagreement corresponds to a set of epistemic oppositions between agents. The result is a non-standard theory of opposition for many-valuedlogics, rendering total and partial disagreement in terms of (...) epistemic negation and semi-negations. (shrink)
Well-known results due to David Makinson show that there are exactly two Post complete normal modal logics, that in both of them, the modal operator is truth-functional, and that every consistent normal modal logic can be extended to at least one of them. Lloyd Humberstone has recently shown that a natural analog of this result in congruential modal logics fails, by showing that not every congruential modal logic can be extended to one in which the modal operator is (...) truth-functional. As Humberstone notes, the issue of Post completeness in congruential modal logics is not well understood. The present article shows that in contrast to normal modal logics, the extent of the property of Post completeness among congruential modal logics depends on the background set of logics. Some basic results on the corresponding properties of Post completeness are established, in particular that although a congruential modal logic is Post complete among all modal logics if and only if its modality is truth-functional, there are continuum many modal logics Post complete among congruential modal logics. (shrink)
Is logic empirical? Is logic to be found in the world? Or is logic rather a convention, a product of conventions, part of the many rules that regulate the language game? Answers fall in either camp. We like the linguistic answer. In this paper, we want to analyze how a linguistic community would tackle the problem of developing a logic and show how the linguistic conventions adopted by the community determine the properties of the local logic. Then show how to (...) move from a notion of logic that varies from community to community to a notion of logic that is in a sense universal. The framework is conventional up to a point: we have sentences, atomic and composite, the connectives are interpreted, values are computed, and the value of a composite sentence is a function of the values of its subsentences. Less conventional is the use of a plurality of truth values, and the sharp distinction we draw between sentences and statements, in the spirit of the distinction between proposition and judgment that one may find in proof theory. The linguistic community will face many choices. What are the good ones, the ones to avoid? Are there, in some sense, optimal choices? These are the kind of issues we are addressing. Where do we end up? With some kind of universal bivalent logic, ironically enough. We start from an arbitrarily large number of truth values, atomic sentences and connectives, construct a generic many-valued logic, recover more or less the usual results and issues, and in the end it all comes down to a positive bivalent logic with two connectives, `and' and `or', as if logic is nothing more than a mere accounting of possibilities. (shrink)
Multialgebras (or hyperalgebras or non-deterministic algebras) have been much studied in mathematics and in computer science. In 2016 Carnielli and Coniglio introduced a class of multialgebras called swap structures, as a semantic framework for dealing with several Logics of Formal Inconsistency (or LFIs) that cannot be semantically characterized by a single finite matrix. In particular, these LFIs are not algebraizable by the standard tools of abstract algebraic logic. In this paper, the first steps towards a theory of non-deterministic algebraization (...) of logics by swap structures are given. Specifically, a formal study of swap structures for LFIs is developed, by adapting concepts of universal algebra to multialgebras in a suitable way. A decomposition theorem similar to Birkhoff's representation theorem is obtained for each class of swap structures. Moreover, when applied to the 3-valued algebraizable logics J3 and Ciore, their classes of algebraic models are retrieved, and the swap structures semantics become twist structures semantics (as independently introduced by M. Fidel and D. Vakarelov). This fact, together with the existence of a functor from the category of Boolean algebras to the category of swap structures for each LFI (which is closely connected with Kalman's functor), suggests that swap structures can be seen as non-deterministic twist structures. This opens new avenues for dealing with non-algebraizable logics by the more general methodology of multialgebraic semantics. (shrink)
In 1988, J. Ivlev proposed some (non-normal) modal systems which are semantically characterized by four-valued non-deterministic matrices in the sense of A. Avron and I. Lev. Swap structures are multialgebras (a.k.a. hyperalgebras) of a special kind, which were introduced in 2016 by W. Carnielli and M. Coniglio in order to give a non-deterministic semantical account for several paraconsistent logics known as logics of formal inconsistency, which are not algebraizable by means of the standard techniques. Each swap structure induces (...) naturally a non-deterministic matrix. The aim of this paper is to obtain a swap structures semantics for some Ivlev-like modal systems proposed in 2015 by M. Coniglio, L. Fariñas del Cerro and N. Peron. Completeness results will be stated by means of the notion of Lindenbaum–Tarski swap structures, which constitute a natural generalization to multialgebras of the concept of Lindenbaum–Tarski algebras. (shrink)
This paper studies a family of monotonic extensions of first-order logic which we call modulated logics, constructed by extending classical logic through generalized quantifiers called modulated quantifiers. This approach offers a new regard to what we call flexible reasoning. A uniform treatment of modulated logics is given here, obtaining some general results in model theory. Besides reviewing the “Logic of Ultrafilters”, which formalizes inductive assertions of the kind “almost all”, two new monotonic logical systems are proposed here, the (...) “Logic of Many” and the “Logic of Plausibility”, that characterize assertions of the kind “many”, and “for a good number of”. Although the notion of simple majority (“more than half”) can be captured by means of a modulated quantifier semantically interpreted by cardinal measure on evidence sets, it is proven that this system, although sound, cannot be complete if checked against the intended model. This justifies the interest on a purely qualitative approach to this kind of quantification, what is guaranteed by interpreting the modulated quantifiers as notions of families of principal filters and reduced topologies, respectively. We prove that both systems are conservative extensions of classical logic that preserve important properties, such as soundness and completeness. Some additional perspectives connecting our approach to flexible reasoning through modulated logics to epistemology and social choice theory are also discussed. (shrink)
The dissertation has two parts, each dealing with a problem, namely: 1) What is the most adequate account of fuzziness -the so-called phenomenon of vagueness?, and 2) what is the most plausible solution to the sorites, or heap paradox? I will try to show that fuzzy properties are those which are gradual, amenable to be possessed in a greater or smaller extent. Acknowledgement of degrees in the instantiation of a property allows for a gradual transition from one opposite to the (...) other, each intermediate stage constituting an overlap in certain proportion of both contraries. Hence, degrees in the possession of a property give rise to simple contradictions. The reason why I have chosen those two questions is that they provide the main philosophical motivation for a particular brand of an infinite valued and paraconsistent logic. I will claim that Classical logic (CL) is not adequate to handle fuzzy situations, and, being deficient, is in need of being expanded to make room for degrees of truth and weak contradictions. One can hardly deny the importance of the debate, since what is ultimately at stake is what the limits of truth, rationality, intelligibility and possibility are. The main disciplines within which the research moves are the philosophy of language, philosophy of logic, and ontology. (shrink)
Entailment in propositional Gödel logics can be defined in a natural way. While all infinite sets of truth values yield the same sets of tautologies, the entailment relations differ. It is shown that there is a rich structure of infinite-valued Gödel logics, only one of which is compact. It is also shown that the compact infinite-valued Gödel logic is the only one which interpolates, and the only one with an r.e. entailment relation.
A number of authors have objected to the application of non-classical logic to problems in philosophy on the basis that these non-classical logics are usually characterised by a classical metatheory. In many cases the problem amounts to more than just a discrepancy; the very phenomena responsible for non-classicality occur in the field of semantics as much as they do elsewhere. The phenomena of higher order vagueness and the revenge liar are just two such examples. The aim of this paper (...) is to show that a large class of non-classical logics are strong enough to formulate their own model theory in a corresponding non-classical set theory. Specifically I show that adequate definitions of validity can be given for the propositional calculus in such a way that the metatheory proves, in the specified logic, that every theorem of the propositional fragment of that logic is validated. It is shown that in some cases it may fail to be a classical matter whether a given sentence is valid or not. One surprising conclusion for non-classical accounts of vagueness is drawn: there can be no axiomatic, and therefore precise, system which is determinately sound and complete. (shrink)
In this paper we consider the theory of predicate logics in which the principle of Bivalence or the principle of Non-Contradiction or both fail. Such logics are partial or paraconsistent or both. We consider sequent calculi for these logics and prove Model Existence. For L4, the most general logic under consideration, we also prove a version of the Craig-Lyndon Interpolation Theorem. The paper shows that many techniques used for classical predicate logic generalise to partial and paraconsistent (...) class='Hi'>logics once the right set-up is chosen. Our logic L4 has a semantics that also underlies Belnap’s [4] and is related to the logic of bilattices. L4 is in focus most of the time, but it is also shown how results obtained for L4 can be transferred to several variants. (shrink)
Deontic logic is devoted to the study of logical properties of normative predicates such as permission, obligation and prohibition. Since it is usual to apply these predicates to actions, many deontic logicians have proposed formalisms where actions and action combinators are present. Some standard action combinators are action conjunction, choice between actions and not doing a given action. These combinators resemble boolean operators, and therefore the theory of boolean algebra offers a well-known athematical framework to study the properties of the (...) classic deontic operators when applied to actions. In his seminal work, Segerberg uses constructions coming from boolean algebras to formalize the usual deontic notions. Segerberg’s work provided the initial step to understand logical properties of deontic operators when they are applied to actions. In the last years, other authors have proposed related logics. In this chapter we introduce Segerberg’s work, study related formalisms and investigate further challenges in this area. (shrink)
It is shown that Gqp↑, the quantified propositional Gödel logic based on the truth-value set V↑ = {1 - 1/n : n≥1}∪{1}, is decidable. This result is obtained by reduction to Büchi's theory S1S. An alternative proof based on elimination of quantifiers is also given, which yields both an axiomatization and a characterization of Gqp↑ as the intersection of all finite-valued quantified propositional Gödel logics.
All first-order Gödel logics G_V with globalization operator based on truth value sets V C [0,1] where 0 and 1 lie in the perfect kernel of V are axiomatized by Ciabattoni’s hypersequent calculus HGIF.
In their recent paper Bi-facial truth: a case for generalized truth values Zaitsev and Shramko [7] distinguish between an ontological and an epistemic interpretation of classical truth values. By taking the Cartesian product of the two disjoint sets of values thus obtained, they arrive at four generalized truth values and consider two “semi-classical negations” on them. The resulting semantics is used to define three novel logics which are closely related to Belnap’s well-known four valued logic. A syntactic characterization of (...) these logics is left for further work. In this paper, based on our previous work on a functionally complete extension of Belnap’s logic, we present a sound and complete tableau calculus for these logics. It crucially exploits the Cartesian nature of the four values, which is reflected in the fact that each proof consists of two tableaux. The bi-facial notion of truth of Z&S is thus augmented with a bi-facial notion of proof. We also provide translations between the logics for semi-classical negation and classical logic and show that an argument is valid in a logic for semi-classical negation just in case its translation is valid in classical logic. (shrink)
It is shown that the infinite-valued first-order Gödel logic G° based on the set of truth values {1/k: k ε w {0}} U {0} is not r.e. The logic G° is the same as that obtained from the Kripke semantics for first-order intuitionistic logic with constant domains and where the order structure of the model is linear. From this, the unaxiomatizability of Kröger's temporal logic of programs (even of the fragment without the nexttime operator O) and of the authors' temporal (...) logic of linear discrete time with gaps follows. (shrink)
How is it possible that beginning from the negation of rational thoughts one comes to produce knowledge? This problem, besides its intrinsic interest, acquires a great relevance when the representation of a knowledge is settled, for example, on data and automatic reasoning. Many treatment ways have been tried, as in the case of the non-monotonic logics; logics that intend to formalize an idea of reasoning by default, etc. These attempts are incomplete and are subject to failure. A possible (...) solution would be to formulate a logic of the irrational, which offers a model for reasoning permitting to support contradictions as well as to produce knowledge from such situations. An intuition underlying the foundation of such a logic consists of the da Costa's paraconsistent logics presenting however, a different deduction theory and a whole distinct semantics, called here "the semantics of possible translations". The present proposing, following our argumentation, intends to enlight all this question, by a whole satisfactory logical point of view, being practically applicable and philosophically acceptable.Como é possível que a partir da negação do racional se possa obter conhecimento adicional? Esse problema, além de seu interesse intrínseco, adquire uma relevância adicional quando o encontramos na representação do conhecimento em bases de dados e raciocínio automático, por exemplo. Nesse caso, diversas tentativas de tratamento têm sido propostas, como as lógicas não-monotônicas, as lógicas que tentam formalizar a ideia do raciocínio por falha . Tais tentativas de solução, porém, são falhas e incompletas; proponho que uma solução possível seria formular uma lógica do irracional, que oferecesse um modelo para o raciocínio permitindo não só suportar contradições, como conseguir obter conhecimento, a partir de tais situações. A intuição subjacente à formulação de tal lógica são as lógicas paraconsistentes de da Costa, mas com uma teoria da dedução diferente e uma semântica completamente distinta . Tal proposta, como pretendo argumentar, fornece um enfoque para a questão que é ao mesmo tempo completamente satisfatório, aplicável do ponto de vista prático e aceitável do ponto de vista filosófico. (shrink)
Lee Archie argued that if any truth-values are consistently assigned to a natural language conditional for which modus ponens and modus tollens are valid argument forms and affirming the consequent is invalid, this conditional will have the same truth-conditions of a material implication. This argument is simple and it requires few and relatively uncontroversial assumptions. We show that it is possible to extend Archie´s argument to three and five-valued logics and still vindicate the same conclusion. This defense is simpler (...) because it requires fewer assumptions: even if you do not believe in bivalence and the classical negation operator you still have good reasons to accept that natural language conditionals and the material implication are logically equivalent. (shrink)
What the world needs now is another theory of vagueness. Not because the old theories are useless. Quite the contrary, the old theories provide many of the materials we need to construct the truest theory of vagueness ever seen. The theory shall be similar in motivation to supervaluationism, but more akin to many-valued theories in conceptualisation. What I take from the many-valued theories is the idea that some sentences can be truer than others. But I say very different (...) things to the ordering over sentences this relation generates. I say it is not a linear ordering, so it cannot be represented by the real numbers. I also argue that since there is higher-order vagueness, any mapping between sentences and mathematical objects is bound to be inappropriate. This is no cause for regret; we can say all we want to say by using the comparative truer than without mapping it onto some mathematical objects. From supervaluationism I take the idea that we can keep classical logic without keeping the familiar bivalent semantics for classical logic. But my preservation of classical logic is more comprehensive than is normally permitted by supervaluationism, for I preserve classical inference rules as well as classical sequents. And I do this without relying on the concept of acceptable precisifications as an unexplained explainer. The world does not need another guide to varieties of theories of vagueness, especially since Timothy Williamson (1994) and Rosanna Keefe (2000) have already provided quite good guides. I assume throughout familiarity with popular theories of vagueness. (shrink)
What is the rational response when confronted with a set of propositions each of which we have some reason to accept, and yet which taken together form an inconsistent class? This was, in a nutshell, the problem addressed by the Jaina logicians of classical India, and the solution they gave is, I think, of great interest, both for what it tells us about the relationship between rationality and consistency, and for what we can learn about the logical basis of philosophical (...) pluralism. The Jainas claim that we can continue to reason in spite of the presence of inconsistencies, and indeed construct a many-valued logical system tailored to the purpose. My aim in this paper is to offer a new interpretation of that system and to try to draw out some of its philosophical implications. (shrink)
This book treats ancient logic: the logic that originated in Greece by Aristotle and the Stoics, mainly in the hundred year period beginning about 350 BCE. Ancient logic was never completely ignored by modern logic from its Boolean origin in the middle 1800s: it was prominent in Boole’s writings and it was mentioned by Frege and by Hilbert. Nevertheless, the first century of mathematical logic did not take it seriously enough to study the ancient logic texts. A renaissance in ancient (...) logic studies occurred in the early 1950s with the publication of the landmark Aristotle’s Syllogistic by Jan Łukasiewicz, Oxford UP 1951, 2nd ed. 1957. Despite its title, it treats the logic of the Stoics as well as that of Aristotle. Łukasiewicz was a distinguished mathematical logician. He had created many-valued logic and the parenthesis-free prefix notation known as Polish notation. He co-authored with Alfred Tarski’s an important paper on metatheory of propositional logic and he was one of Tarski’s the three main teachers at the University of Warsaw. Łukasiewicz’s stature was just short of that of the giants: Aristotle, Boole, Frege, Tarski and Gödel. No mathematical logician of his caliber had ever before quoted the actual teachings of ancient logicians. -/- Not only did Łukasiewicz inject fresh hypotheses, new concepts, and imaginative modern perspectives into the field, his enormous prestige and that of the Warsaw School of Logic reflected on the whole field of ancient logic studies. Suddenly, this previously somewhat dormant and obscure field became active and gained in respectability and importance in the eyes of logicians, mathematicians, linguists, analytic philosophers, and historians. Next to Aristotle himself and perhaps the Stoic logician Chrysippus, Łukasiewicz is the most prominent figure in ancient logic studies. A huge literature traces its origins to Łukasiewicz. -/- This Ancient Logic and Its Modern Interpretations, is based on the 1973 Buffalo Symposium on Modernist Interpretations of Ancient Logic, the first conference devoted entirely to critical assessment of the state of ancient logic studies. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.