2nd edition. Many-valuedlogics are those logics that have more than the two classical truth values, to wit, true and false; in fact, they can have from three to infinitely many truth values. This property, together with truth-functionality, provides a powerful formalism to reason in settings where classical logic—as well as other non-classical logics—is of no avail. Indeed, originally motivated by philosophical concerns, these logics soon proved relevant for a plethora of applications ranging (...) from switching theory to cognitive modeling, and they are today in more demand than ever, due to the realization that inconsistency and vagueness in knowledge bases and information processes are not only inevitable and acceptable, but also perhaps welcome. The main modern applications of (any) logic are to be found in the digital computer, and we thus require the practical knowledge how to computerize—which also means automate—decisions (i.e. reasoning) in many-valuedlogics. This, in turn, necessitates a mathematical foundation for these logics. This book provides both these mathematical foundation and practical knowledge in a rigorous, yet accessible, text, while at the same time situating these logics in the context of the satisfiability problem (SAT) and automated deduction. The main text is complemented with a large selection of exercises, a plus for the reader wishing to not only learn about, but also do something with, many-valuedlogics. (shrink)
The aim of this paper is to emphasize the fact that for all finitely-many-valuedlogics there is a completely systematic relation between sequent calculi and tableau systems. More importantly, we show that for both of these systems there are al- ways two dual proof sytems (not just only two ways to interpret the calculi). This phenomenon may easily escape one’s attention since in the classical (two-valued) case the two systems coincide. (In two-valued logic the assignment (...) of a truth value and the exclusion of the opposite truth value describe the same situation.). (shrink)
A construction principle for natural deduction systems for arbitrary, finitely-many-valued first order logics is exhibited. These systems are systematically obtained from sequent calculi, which in turn can be automatically extracted from the truth tables of the logics under consideration. Soundness and cut-free completeness of these sequent calculi translate into soundness, completeness, and normal-form theorems for natural deduction systems.
The proof theory of many-valued systems has not been investigated to an extent comparable to the work done on axiomatizatbility of many-valuedlogics. Proof theory requires appropriate formalisms, such as sequent calculus, natural deduction, and tableaux for classical (and intuitionistic) logic. One particular method for systematically obtaining calculi for all finite-valuedlogics was invented independently by several researchers, with slight variations in design and presentation. The main aim of this report is to develop (...) the proof theory of finite-valued first order logics in a general way, and to present some of the more important results in this area. In Systems covered are the resolution calculus, sequent calculus, tableaux, and natural deduction. This report is actually a template, from which all results can be specialized to particular logics. (shrink)
Intuitionistic Propositional Logic is proved to be an infinitely manyvalued logic by Gödel (Kurt Gödel collected works (Volume I) Publications 1929–1936, Oxford University Press, pp 222–225, 1932), and it is proved by Jaśkowski (Actes du Congrés International de Philosophie Scientifique, VI. Philosophie des Mathématiques, Actualités Scientifiques et Industrielles 393:58–61, 1936) to be a countably manyvalued logic. In this paper, we provide alternative proofs for these theorems by using models of Kripke (J Symbol Logic 24(1):1–14, (...) 1959). Gödel’s proof gave rise to an intermediate propositional logic (between intuitionistic and classical), that is known nowadays as Gödel or the Gödel-Dummett Logic, and is studied by fuzzy logicians as well. We also provide some results on the inter-definability of propositional connectives in this logic. (shrink)
A uniform construction for sequent calculi for finite-valued first-order logics with distribution quantifiers is exhibited. Completeness, cut-elimination and midsequent theorems are established. As an application, an analog of Herbrand’s theorem for the four-valued knowledge-representation logic of Belnap and Ginsberg is presented. It is indicated how this theorem can be used for reasoning about knowledge bases with incomplete and inconsistent information.
The problem of approximating a propositional calculus is to find many-valuedlogics which are sound for the calculus (i.e., all theorems of the calculus are tautologies) with as few tautologies as possible. This has potential applications for representing (computationally complex) logics used in AI by (computationally easy) many-valuedlogics. It is investigated how far this method can be carried using (1) one or (2) an infinite sequence of many-valuedlogics. It (...) is shown that the optimal candidate matrices for (1) can be computed from the calculus. (shrink)
A general framework for translating various logical systems is presented, including a set of partial unary operators of affirmation and negation. Despite its usual reading, affirmation is not redundant in any domain of values and whenever it does not behave like a full mapping. After depicting the process of partial functions, a number of logics are translated through a variety of affirmations and a unique pair of negations. This relies upon two preconditions: a deconstruction of truth-values as ordered and (...) structured objects, unlike its mainstream presentation as a simple object; a redefinition of the Principle of Bivalence as a set of four independent properties, such that its definition does not equate with normality. (shrink)
In this paper we discuss the extent to which conjunction and disjunction can be rightfully regarded as such, in the context of infectious logics. Infectious logics are peculiar many-valuedlogics whose underlying algebra has an absorbing or infectious element, which is assigned to a compound formula whenever it is assigned to one of its components. To discuss these matters, we review the philosophical motivations for infectious logics due to Bochvar, Halldén, Fitting, Ferguson and Beall, (...) noticing that none of them discusses our main question. This is why we finally turn to the analysis of the truth-conditions for conjunction and disjunction in infectious logics, employing the framework of plurivalent logics, as discussed by Priest. In doing so, we arrive at the interesting conclusion that —in the context of infectious logics— conjunction is conjunction, whereas disjunction is not disjunction. (shrink)
Propositional logics in general, considered as a set of sentences, can be undecidable even if they have “nice” representations, e.g., are given by a calculus. Even decidable propositional logics can be computationally complex (e.g., already intuitionistic logic is PSPACE-complete). On the other hand, finite-valuedlogics are computationally relatively simple—at worst NP. Moreover, finite-valued semantics are simple, and general methods for theorem proving exist. This raises the question to what extent and under what circumstances propositional (...) class='Hi'>logics represented in various ways can be approximated by finite-valuedlogics. It is shown that the minimal m-valued logic for which a given calculus is strongly sound can be calculated. It is also investigated under which conditions propositional logics can be characterized as the intersection of (effectively given) sequences of finite-valuedlogics. (shrink)
In 2016 Beziau, introduce a more restricted concept of paraconsistency, namely the genuine paraconsistency. He calls genuine paraconsistent logic those logic rejecting φ, ¬φ |- ψ and |- ¬(φ ∧ ¬φ). In that paper the author analyzes, among the three-valuedlogics, which of these logics satisfy this property. If we consider multiple-conclusion consequence relations, the dual properties of those above mentioned are: |- φ, ¬φ, and ¬(ψ ∨ ¬ψ) |- . We call genuine paracomplete logics those (...) rejecting the mentioned properties. We present here an analysis of the three-valued genuine paracomplete logics. (shrink)
Logics based on weak Kleene algebra (WKA) and related structures have been recently proposed as a tool for reasoning about flaws in computer programs. The key element of this proposal is the presence, in WKA and related structures, of a non-classical truth-value that is “contaminating” in the sense that whenever the value is assigned to a formula ϕ, any complex formula in which ϕ appears is assigned that value as well. Under such interpretations, the contaminating states represent occurrences of (...) a flaw. However, since different programs and machines can interact with (or be nested into) one another, we need to account for different kind of errors, and this calls for an evaluation of systems with multiple contaminating values. In this paper, we make steps toward these evaluation systems by considering two logics, HYB1 and HYB2, whose semantic interpretations account for two contaminating values beside classical values 0 and 1. In particular, we provide two main formal contributions. First, we give a characterization of their relations of (multiple-conclusion) logical consequence—that is, necessary and sufficient conditions for a set Δ of formulas to logically follow from a set Γ of formulas in HYB1 or HYB2 . Second, we provide sound and complete sequent calculi for the two logics. (shrink)
Building on recent work, I present sequent systems for the non-classical logics LP, K3, and FDE with two main virtues. First, derivations closely resemble those in standard Gentzen-style systems. Second, the systems can be obtained by reformulating a classical system using nonstandard sequent structure and simply removing certain structural rules (relatives of exchange and contraction). I clarify two senses in which these logics count as “substructural.”.
Suszko’s Thesis is a philosophical claim regarding the nature of many-valuedness. It was formulated by the Polish logician Roman Suszko during the middle 70s and states the existence of “only but two truth values”. The thesis is a reaction against the notion of many-valuedness conceived by Jan Łukasiewicz. Reputed as one of the modern founders of many-valuedlogics, Łukasiewicz considered a third undeter- mined value in addition to the traditional Fregean values of Truth and Falsehood. (...) For Łukasiewicz, his third value could be seen as a step beyond the Aristotelian dichotomy of Being and non-Being. According to Suszko, Łukasiewicz’s ideas rested on a confusion between algebraic values (what sentences describe/denote) and log- ical values (truth and falsity). Thus, Łukasiewicz’s third undetermined value is no more than an algebraic value, a possible denotation for a sentence, but not a genuine logical value. Suszko’s Thesis is endorsed by a formal result baptized as Suszko’s Reduction, a theorem that states every Tarskian logic may be characterized by a two-valued semantics. The present study is intended as a thorough investigation of Suszko’s thesis and its implications. The first part is devoted to the historical roots of many-valuedness and introduce Suszko’s main motivations in formulating the double character of truth-values by drawing the distinction in between algebraic and logical values. The second part explores Suszko’s Reduction and presents the developments achieved from it; the properties of two-valued semantics in comparison to many-valued semantics are also explored and discussed. Last but not least, the third part investigates the notion of logical values in the context of non-Tarskian notions of entailment; the meaning of Suszko’s thesis within such frameworks is also discussed. Moreover, the philosophical foundations for non-Tarskian notions of entailment are explored in the light of recent debates concerning logical pluralism. (shrink)
We here make preliminary investigations into the model theory of DeMorgan logics. We demonstrate that Łoś's Theorem holds with respect to these logics and make some remarks about standard model-theoretic properties in such contexts. More concretely, as a case study we examine the fate of Cantor's Theorem that the classical theory of dense linear orderings without endpoints is $\aleph_{0}$-categorical, and we show that the taking of ultraproducts commutes with respect to previously established methods of constructing nonclassical structures, namely, (...) Priest's Collapsing Lemma and Dunn's Theorem in 3-Valued Logic. (shrink)
In this paper we propose a very general de nition of combination of logics by means of the concept of sheaves of logics. We first discuss some properties of this general definition and list some problems, as well as connections to related work. As applications of our abstract setting, we show that the notion of possible-translations semantics, introduced in previous papers by the first author, can be described in categorial terms. Possible-translations semantics constitute illustrative cases, since they provide (...) a new semantical account for abstract logical systems, particularly for many-valued and paraconsistent logics. (shrink)
We present and defend the Australian Plan semantics for negation. This is a comprehensive account, suitable for a variety of different logics. It is based on two ideas. The first is that negation is an exclusion-expressing device: we utter negations to express incompatibilities. The second is that, because incompatibility is modal, negation is a modal operator as well. It can, then, be modelled as a quantifier over points in frames, restricted by accessibility relations representing compatibilities and incompatibilities between such (...) points. We defuse a number of objections to this Plan, raised by supporters of the American Plan for negation, in which negation is handled via a many-valued semantics. We show that the Australian Plan has substantial advantages over the American Plan. (shrink)
In this paper, we approach the problem of classical recapture for LP and K3 by using normality operators. These generalize the consistency and determinedness operators from Logics of Formal Inconsistency and Underterminedness, by expressing, in any many-valued logic, that a given formula has a classical truth value (0 or 1). In particular, in the rst part of the paper we introduce the logics LPe and Ke3 , which extends LP and K3 with normality operators, and we (...) establish a classical recapture result based on the two logics. In the second part of the paper, we compare the approach in terms of normality operators with an established approach to classical recapture, namely minimal inconsistency. Finally, we discuss technical issues connecting LPe and Ke3 to the tradition of Logics of Formal Inconsistency and Underterminedness. (shrink)
A general class of labeled sequent calculi is investigated, and necessary and sufficient conditions are given for when such a calculus is sound and complete for a finite -valued logic if the labels are interpreted as sets of truth values. Furthermore, it is shown that any finite -valued logic can be given an axiomatization by such a labeled calculus using arbitrary "systems of signs," i.e., of sets of truth values, as labels. The number of labels needed is logarithmic (...) in the number of truth values, and it is shown that this bound is tight. (shrink)
The main objective o f this descriptive paper is to present the general notion of translation between logical systems as studied by the GTAL research group, as well as its main results, questions, problems and indagations. Logical systems here are defined in the most general sense, as sets endowed with consequence relations; translations between logical systems are characterized as maps which preserve consequence relations (that is, as continuous functions between those sets). In this sense, logics together with translations form (...) a bicomplete category of which topological spaces with topological continuous functions constitute a full subcategory. We also describe other uses of translations in providing new semantics for non-classical logics and in investigating duality between them. An important subclass of translations, the conservative translations, which strongly preserve consequence relations, is introduced and studied. Some specific new examples of translations involving modal logics, many-valuedlogics, para- consistent logics, intuitionistic and classical logics are also described. (shrink)
The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, Löwenheim (...) and Skolem. Itinerary V surveys the work in logic connected to the Hilbert school, and itinerary V deals specifically with consistency proofs and metamathematics, including the incompleteness theorems. Itinerary VII traces the development of intuitionistic and many-valuedlogics. Itinerary VIII surveys the development of semantical notions from the early work on axiomatics up to Tarski's work on truth. (shrink)
The present paper wants to promote epistemic pluralism as an alternative view of non-classical logics. For this purpose, a bilateralist logic of acceptance and rejection is developed in order to make an important di erence between several concepts of epistemology, including information and justi cation. Moreover, the notion of disagreement corresponds to a set of epistemic oppositions between agents. The result is a non-standard theory of opposition for many-valuedlogics, rendering total and partial disagreement in terms (...) of epistemic negation and semi-negations. (shrink)
The thesis that the two-valued system of classical logic is insufficient to explanation the various intermediate situations in the entity, has led to the development of many-valued and fuzzy logic systems. These systems suggest that this limitation is incorrect. They oppose the law of excluded middle (tertium non datur) which is one of the basic principles of classical logic, and even principle of non-contradiction and argue that is not an obstacle for things both to exist and to (...) not exist at the same time. However, contrary to these claims, there is no inadequacy in the two-valued system of classical logic in explanation the intermediate situations in existence. The law of exclusion and the intermediate situations in the external world are separate things. The law of excluded middle has been inevitably accepted by other logic systems which are considered to reject this principle. The many-valued and the fuzzy logic systems do not transcend the classical logic. Misconceptions from incomplete information and incomplete research are effective in these criticisms. In addition, it is also effective to move the discussion about the intellectual conception (tasawwur) into the field of judgmental assent (tasdiq) and confusion of the mawhum (imaginable) with the ma‘kûl (intellegible). (shrink)
In this paper, I consider a family of three-valued regular logics: the well-known strong and weak S.C. Kleene’s logics and two intermedi- ate logics, where one was discovered by M. Fitting and the other one by E. Komendantskaya. All these systems were originally presented in the semantical way and based on the theory of recursion. However, the proof theory of them still is not fully developed. Thus, natural deduction sys- tems are built only for strong Kleene’s (...) logic both with one (A. Urquhart, G. Priest, A. Tamminga) and two designated values (G. Priest, B. Kooi, A. Tamminga). The purpose of this paper is to provide natural deduction systems for weak and intermediate regular logics both with one and two designated values. (shrink)
هو أول كتاب باللغة العربية يعرض لمراحل وآليات تطور المنطق الرمزي المعاصر متعدد القيم بأنساقه المختلفة، مركزًا على مشكلة الغموض المعرفي للإنسان بأبعادها اللغوية والإبستمولوجية والأنطولوجية، والتي تتجلى – على سبيل المثال – فيما تحفل به الدراسات الفلسفية والمنطقية والعلمية من مفارقات تمثل تحديًا قويًا لثنائية الصدق والكذب الكلاسيكية، وكذلك في اكتشاف «هيزنبرج» لمبدأ اللايقين، وتأكيده وعلماء الكمّ على ضرورة التفسيرات الإحصائية في المجال دون الذري، الأمر الذي يؤكد عدم فعالية قانون الثالث المرفوع في التعامل مع معطيات الواقع الفعلي، واستحالة (...) مشروع إقامة لغة مثالية أو اصطناعية أو كاملة منطقيًا تتجاوز عيوب ونقائص اللغة العادية التي نفكر ونتعامل بها. وينتهي الكتاب إلى نتيجة مؤداها أن ما واجهه المنطق الكلاسيكي – ثنائي القيم – من مشكلات أدت إلى تطويره، لاسيما مشكلة الغموض، لابد وأن يواجهه بالمثل المنطق متعدد القيم، ذلك أن الغموض ظاهرة إبستمولوجية في المحل الأول، مردودها إلى الذات العارفة وقصور إمكاناتها الإدراكية والقياسية، لا إلى الوجود ذاته. وأننا حتى لو سمحنا لأية قضية منطقية بقيمة صدق ثالثة، أو بأكثر من قيمة تتوسط بين الصدق التام والكذب التام، فسوف تظل القضية – كتمثيل لغوي لإحدى وقائع العالم – صادقة أو كاذبة، سواء أدركنا ذلك أو لم ندركه، وذلك تأكيد لنزعة أفلاطون الواقعية القائلة بوجود أزلي وثابت للحقائق في عالم المثل، تحول دون معرفتنا الظنية بظلالها في عالم الحس المتغير. ويعني ذلك بعبارة أخرى أن الشك في قانون الثالث المرفوع هو إسقاط من الذات على الموضوع، مبعثه عدم اكتمال العملية المعرفية ومحدوديتها، وأن ظهور الأنساق المنطقية ذات القيم المتعددة ما هو إلا حلقة من حلقات العلاقة الجدلية اللامنتهية بين الإنسان والطبيعة، أو بيم ما هو مُدرك وما هو موجود بالفعل. والكتاب بصفة عامة هو أول كتاب باللغة العربية يعرض لأنساق المنطق متعدد القيم بعد مرحلة البرينكيبيا ماثيماتيكا. (shrink)
Infectious logics are systems that have a truth-value that is assigned to a compound formula whenever it is assigned to one of its components. This paper studies four-valued infectious logics as the basis of transparent theories of truth. This take is motivated as a way to treat different pathological sentences differently, namely, by allowing some of them to be truth-value gluts and some others to be truth-value gaps and as a way to treat the semantic pathology suffered (...) by at least some of these sentences as infectious. This leads us to consider four distinct four-valuedlogics: one where truth-value gaps are infectious, but gluts are not; one where truth-value gluts are infectious, but gaps are not; and two logics where both gluts and gaps are infectious, in some sense. Additionally, we focus on the proof theory of these systems, by offering a discussion of two related topics. On the one hand, we prove some limitations regarding the possibility of providing standard Gentzen sequent calculi for these systems, by dualizing and extending some recent results for infectious logics. On the other hand, we provide sound and complete four-sided sequent calculi, arguing that the most important technical and philosophical features taken into account to usually prefer standard calculi are, indeed, enjoyed by the four-sided systems. (shrink)
Etude de l'extension par la negation semi-intuitionniste de la logique positive des propositions appelee logique C, developpee par A. Urquhart afin de definir une semantique relationnelle valable pour la logique des valeurs infinies de Lukasiewicz (Lw). Evitant les axiomes de contraction et de reduction propres a la logique classique de Dummett, l'A. propose une semantique de type Routley-Meyer pour le systeme d'Urquhart (CI) en tant que celle-la ne fournit que des theories consistantes pour la completude de celui-ci.
Modal Meinongianism is a form of Meinongianism whose main supporters are Graham Priest and Francesco Berto. The main idea of modal Meinongianism is to restrict the logical deviance of Meinongian non-existent objects to impossible worlds and thus prevent it from “contaminating” the actual world: the round square is round and not round, but not in the actual world, only in an impossible world. In the actual world, supposedly, no contradiction is true. I will show that Priest’s semantics, as originally formulated (...) in Towards Non-being, tell us something different. According to certain models, there are true contradictions in the actual world. Berto and Priest have noticed this unexpected consequence and have suggested a solution, but I will show that their solution is highly questionable. In the last section of this paper, I will introduce a new and simpler version of modal Meinongianism that avoids the problem. (shrink)
Even though it is not very often admitted, partial functions do play a significant role in many practical applications of deduction systems. Kleene has already given a semantic account of partial functions using a three-valued logic decades ago, but there has not been a satisfactory mechanization. Recent years have seen a thorough investigation of the framework of many-valued truth-functional logics. However, strong Kleene logic, where quantification is restricted and therefore not truthfunctional, does not fit the (...) framework directly. We solve this problem by applying recent methods from sorted logics. This paper presents a tableau calculus that combines the proper treatment of partial functions with the efficiency of sorted calculi. (shrink)
The first degree entailment (FDE) family is a group of logics, a many-valued semantics for each system of which is obtained from classical logic by adding to the classical truth-values true and false any subset of {both, neither, indeterminate}, where indeterminate is an infectious value (any formula containing a subformula with the value indeterminate itself has the value indeterminate). In this paper, we see how to extend a version of star semantics for the logics whose (...) class='Hi'>many-valued semantics lack indeterminate to star semantics for logics whose many-valued semantics include indeterminate. The equivalence of the many-valued semantics and star semantics is established by way of a soundness and completeness proof. The upshot of the novel semantics in terms of the applied semantics of these logics, and specifically infectiousness, is explored, settling on the idea that infectiousness concerns ineffability. (shrink)
Boolean-valued models of set theory were independently introduced by Scott, Solovay and Vopěnka in 1965, offering a natural and rich alternative for describing forcing. The original method was adapted by Takeuti, Titani, Kozawa and Ozawa to lattice-valued models of set theory. After this, Löwe and Tarafder proposed a class of algebras based on a certain kind of implication which satisfy several axioms of ZF. From this class, they found a specific 3-valued model called PS3 which satisfies all (...) the axioms of ZF, and can be expanded with a paraconsistent negation *, thus obtaining a paraconsistent model of ZF. The logic (PS3 ,*) coincides (up to language) with da Costa and D'Ottaviano logic J3, a 3-valued paraconsistent logic that have been proposed independently in the literature by several authors and with different motivations such as CluNs, LFI1 and MPT. We propose in this paper a family of algebraic models of ZFC based on LPT0, another linguistic variant of J3 introduced by us in 2016. The semantics of LPT0, as well as of its first-order version QLPT0, is given by twist structures defined over Boolean agebras. From this, it is possible to adapt the standard Boolean-valued models of (classical) ZFC to twist-valued models of an expansion of ZFC by adding a paraconsistent negation. We argue that the implication operator of LPT0 is more suitable for a paraconsistent set theory than the implication of PS3, since it allows for genuinely inconsistent sets w such that [(w = w)] = 1/2 . This implication is not a 'reasonable implication' as defined by Löwe and Tarafder. This suggests that 'reasonable implication algebras' are just one way to define a paraconsistent set theory. Our twist-valued models are adapted to provide a class of twist-valued models for (PS3,*), thus generalizing Löwe and Tarafder result. It is shown that they are in fact models of ZFC (not only of ZF). (shrink)
The dissertation has two parts, each dealing with a problem, namely: 1) What is the most adequate account of fuzziness -the so-called phenomenon of vagueness?, and 2) what is the most plausible solution to the sorites, or heap paradox? I will try to show that fuzzy properties are those which are gradual, amenable to be possessed in a greater or smaller extent. Acknowledgement of degrees in the instantiation of a property allows for a gradual transition from one opposite to the (...) other, each intermediate stage constituting an overlap in certain proportion of both contraries. Hence, degrees in the possession of a property give rise to simple contradictions. The reason why I have chosen those two questions is that they provide the main philosophical motivation for a particular brand of an infinite valued and paraconsistent logic. I will claim that Classical logic (CL) is not adequate to handle fuzzy situations, and, being deficient, is in need of being expanded to make room for degrees of truth and weak contradictions. One can hardly deny the importance of the debate, since what is ultimately at stake is what the limits of truth, rationality, intelligibility and possibility are. The main disciplines within which the research moves are the philosophy of language, philosophy of logic, and ontology. (shrink)
In a recent paper we have defined an analytic tableau calculus PL_16 for a functionally complete extension of Shramko and Wansing's logic based on the trilattice SIXTEEN_3. This calculus makes it possible to define syntactic entailment relations that capture central semantic relations of the logic---such as the relations |=_t, |=_f, and |=_i that each correspond to a lattice order in SIXTEEN_3; and |=, the intersection of |=_t and |=_f,. -/- It turns out that our method of characterising these semantic relations---as (...) intersections of auxiliary relations that can be captured with the help of a single calculus---lends itself well to proving interpolation. All entailment relations just mentioned have the interpolation property, not only when they are defined with respect to a functionally complete language, but also in a range of cases where less expressive languages are considered. For example, we will show that |=, when restricted to L_{tf}, the language originally considered by Shramko and Wansing, enjoys interpolation. This answers a question that was recently posed by M. Takano. (shrink)
The new field of judgment aggregation aims to merge many individual sets of judgments on logically interconnected propositions into a single collective set of judgments on these propositions. Judgment aggregation has commonly been studied using classical propositional logic, with a limited expressive power and a problematic representation of conditional statements ("if P then Q") as material conditionals. In this methodological paper, I present a simple unified model of judgment aggregation in general logics. I show how many realistic (...) decision problems can be represented in it. This includes decision problems expressed in languages of classical propositional logic, predicate logic (e.g. preference aggregation problems), modal or conditional logics, and some multi-valued or fuzzy logics. I provide a list of simple tools for working with general logics, and I prove impossibility results that generalise earlier theorems. (shrink)
This paper presents a semantical analysis of the Weak Kleene Logics Kw3 and PWK from the tradition of Bochvar and Halldén. These are three-valuedlogics in which a formula takes the third value if at least one of its components does. The paper establishes two main results: a characterisation result for the relation of logical con- sequence in PWK – that is, we individuate necessary and sufficient conditions for a set.
Multialgebras have been much studied in mathematics and in computer science. In 2016 Carnielli and Coniglio introduced a class of multialgebras called swap structures, as a semantic framework for dealing with several Logics of Formal Inconsistency that cannot be semantically characterized by a single finite matrix. In particular, these LFIs are not algebraizable by the standard tools of abstract algebraic logic. In this paper, the first steps towards a theory of non-deterministic algebraization of logics by swap structures are (...) given. Specifically, a formal study of swap structures for LFIs is developed, by adapting concepts of universal algebra to multialgebras in a suitable way. A decomposition theorem similar to Birkhoff’s representation theorem is obtained for each class of swap structures. Moreover, when applied to the 3-valued algebraizable logics J3 and Ciore, their classes of algebraic models are retrieved, and the swap structures semantics become twist structures semantics. This fact, together with the existence of a functor from the category of Boolean algebras to the category of swap structures for each LFI, suggests that swap structures can be seen as non-deterministic twist structures. This opens new avenues for dealing with non-algebraizable logics by the more general methodology of multialgebraic semantics. (shrink)
The present contribution might be regarded as a kind of defense of the common sense in logic. It is demonstrated that if the classical negation is interpreted as the minimal negation with n = 2 truth values, then deviant logics can be conceived as extension of the classical bivalent frame. Such classical apprehension of negation is possible in non- classical logics as well, if truth value is internalized and bivalence is replaced by bipartition.
Deontic logic is devoted to the study of logical properties of normative predicates such as permission, obligation and prohibition. Since it is usual to apply these predicates to actions, many deontic logicians have proposed formalisms where actions and action combinators are present. Some standard action combinators are action conjunction, choice between actions and not doing a given action. These combinators resemble boolean operators, and therefore the theory of boolean algebra offers a well-known athematical framework to study the properties of (...) the classic deontic operators when applied to actions. In his seminal work, Segerberg uses constructions coming from boolean algebras to formalize the usual deontic notions. Segerberg’s work provided the initial step to understand logical properties of deontic operators when they are applied to actions. In the last years, other authors have proposed related logics. In this chapter we introduce Segerberg’s work, study related formalisms and investigate further challenges in this area. (shrink)
The logics of formal inconsistency (LFIs, for short) are paraconsistent logics (that is, logics containing contradictory but non-trivial theories) having a consistency connective which allows to recover the ex falso quodlibet principle in a controlled way. The aim of this paper is considering a novel semantical approach to first-order LFIs based on Tarskian structures defined over swap structures, a special class of multialgebras. The proposed semantical framework generalizes previous aproaches to quantified LFIs presented in the literature. The (...) case of QmbC, the simpler quantified LFI expanding classical logic, will be analyzed in detail. An axiomatic extension of QmbC called QLFI1o is also studied, which is equivalent to the quantified version of da Costa and D'Ottaviano 3-valued logic J3. The semantical structures for this logic turn out to be Tarkian structures based on twist structures. The expansion of QmbC and QLFI1o with a standard equality predicate is also considered. (shrink)
Entailment in propositional Gödel logics can be defined in a natural way. While all infinite sets of truth values yield the same sets of tautologies, the entailment relations differ. It is shown that there is a rich structure of infinite-valued Gödel logics, only one of which is compact. It is also shown that the compact infinite-valued Gödel logic is the only one which interpolates, and the only one with an r.e. entailment relation.
In this paper we consider the theory of predicate logics in which the principle of Bivalence or the principle of Non-Contradiction or both fail. Such logics are partial or paraconsistent or both. We consider sequent calculi for these logics and prove Model Existence. For L4, the most general logic under consideration, we also prove a version of the Craig-Lyndon Interpolation Theorem. The paper shows that many techniques used for classical predicate logic generalise to partial and paraconsistent (...)logics once the right set-up is chosen. Our logic L4 has a semantics that also underlies Belnap’s [4] and is related to the logic of bilattices. L4 is in focus most of the time, but it is also shown how results obtained for L4 can be transferred to several variants. (shrink)
It is shown that Gqp↑, the quantified propositional Gödel logic based on the truth-value set V↑ = {1 - 1/n : n≥1}∪{1}, is decidable. This result is obtained by reduction to Büchi's theory S1S. An alternative proof based on elimination of quantifiers is also given, which yields both an axiomatization and a characterization of Gqp↑ as the intersection of all finite-valued quantified propositional Gödel logics.
Well-known results due to David Makinson show that there are exactly two Post complete normal modal logics, that in both of them, the modal operator is truth-functional, and that every consistent normal modal logic can be extended to at least one of them. Lloyd Humberstone has recently shown that a natural analog of this result in congruential modal logics fails, by showing that not every congruential modal logic can be extended to one in which the modal operator is (...) truth-functional. As Humberstone notes, the issue of Post completeness in congruential modal logics is not well understood. The present article shows that in contrast to normal modal logics, the extent of the property of Post completeness among congruential modal logics depends on the background set of logics. Some basic results on the corresponding properties of Post completeness are established, in particular that although a congruential modal logic is Post complete among all modal logics if and only if its modality is truth-functional, there are continuum many modal logics Post complete among congruential modal logics. (shrink)
In 1988, J. Ivlev proposed some (non-normal) modal systems which are semantically characterized by four-valued non-deterministic matrices in the sense of A. Avron and I. Lev. Swap structures are multialgebras (a.k.a. hyperalgebras) of a special kind, which were introduced in 2016 by W. Carnielli and M. Coniglio in order to give a non-deterministic semantical account for several paraconsistent logics known as logics of formal inconsistency, which are not algebraizable by means of the standard techniques. Each swap structure (...) induces naturally a non-deterministic matrix. The aim of this paper is to obtain a swap structures semantics for some Ivlev-like modal systems proposed in 2015 by M. Coniglio, L. Fariñas del Cerro and N. Peron. Completeness results will be stated by means of the notion of Lindenbaum–Tarski swap structures, which constitute a natural generalization to multialgebras of the concept of Lindenbaum–Tarski algebras. (shrink)
A number of authors have objected to the application of non-classical logic to problems in philosophy on the basis that these non-classical logics are usually characterised by a classical metatheory. In many cases the problem amounts to more than just a discrepancy; the very phenomena responsible for non-classicality occur in the field of semantics as much as they do elsewhere. The phenomena of higher order vagueness and the revenge liar are just two such examples. The aim of this (...) paper is to show that a large class of non-classical logics are strong enough to formulate their own model theory in a corresponding non-classical set theory. Specifically I show that adequate definitions of validity can be given for the propositional calculus in such a way that the metatheory proves, in the specified logic, that every theorem of the propositional fragment of that logic is validated. It is shown that in some cases it may fail to be a classical matter whether a given sentence is valid or not. One surprising conclusion for non-classical accounts of vagueness is drawn: there can be no axiomatic, and therefore precise, system which is determinately sound and complete. (shrink)
This paper studies a family of monotonic extensions of first-order logic which we call modulated logics, constructed by extending classical logic through generalized quantifiers called modulated quantifiers. This approach offers a new regard to what we call flexible reasoning. A uniform treatment of modulated logics is given here, obtaining some general results in model theory. Besides reviewing the “Logic of Ultrafilters”, which formalizes inductive assertions of the kind “almost all”, two new monotonic logical systems are proposed here, the (...) “Logic of Many” and the “Logic of Plausibility”, that characterize assertions of the kind “many”, and “for a good number of”. Although the notion of simple majority (“more than half”) can be captured by means of a modulated quantifier semantically interpreted by cardinal measure on evidence sets, it is proven that this system, although sound, cannot be complete if checked against the intended model. This justifies the interest on a purely qualitative approach to this kind of quantification, what is guaranteed by interpreting the modulated quantifiers as notions of families of principal filters and reduced topologies, respectively. We prove that both systems are conservative extensions of classical logic that preserve important properties, such as soundness and completeness. Some additional perspectives connecting our approach to flexible reasoning through modulated logics to epistemology and social choice theory are also discussed. (shrink)
This work provides proof-search algorithms and automated counter-model extraction for a class of STIT logics. With this, we answer an open problem concerning syntactic decision procedures and cut-free calculi for STIT logics. A new class of cut-free complete labelled sequent calculi G3LdmL^m_n, for multi-agent STIT with at most n-many choices, is introduced. We refine the calculi G3LdmL^m_n through the use of propagation rules and demonstrate the admissibility of their structural rules, resulting in auxiliary calculi Ldm^m_nL. In the (...) single-agent case, we show that the refined calculi Ldm^m_nL derive theorems within a restricted class of (forestlike) sequents, allowing us to provide proof-search algorithms that decide single-agent STIT logics. We prove that the proof-search algorithms are correct and terminate. (shrink)
The thesis deals with the concept of truth and the paradoxes of truth. Philosophical theories usually consider the concept of truth from a wider perspective. They are concerned with questions such as - Is there any connection between the truth and the world? And, if there is - What is the nature of the connection? Contrary to these theories, this analysis is of a logical nature. It deals with the internal semantic structure of language, the mutual semantic connection of sentences, (...) above all the connection of sentences that speak about the truth of other sentences and sentences whose truth they speak about. Truth paradoxes show that there is a problem in our basic understanding of the language meaning and they are a test for any proposed solution. It is important to make a distinction between the normative and analytical aspect of the solution. The former tries to ensure that paradoxes will not emerge. The latter tries to explain paradoxes. Of course, the practical aspect of the solution is also important. It tries to ensure a good framework for logical foundations of knowledge, for related problems in Artificial Intelligence and for the analysis of the natural language. Tarski’s analysis emphasized the T-scheme as the basic intuitive principle for the concept of truth, but it also showed its inconsistency with the classical logic. Tarski’s solution is to preserve the classical logic and to restrict the scheme: we can talk about the truth of sentences of a language only inside another essentially richer metalanguage. This solution is in harmony with the idea of reflexivity of thinking and it has become very fertile for mathematics and science in general. But it has normative nature | truth paradoxes are avoided in a way that in such frame we cannot even express paradoxical sentences. It is also too restrictive because, for the same reason we cannot express a situation in which there is a circular reference of some sentences to other sentences, no matter how common and harmless such a situation may be. Kripke showed that there is no natural restriction to the T-scheme and we have to accept it. But then we must also accept the riskiness of sentences | the possibility that under some circumstances a sentence does not have the classical truth value but it is undetermined. This leads to languages with three-valued semantics. Kripke did not give any definite model, but he gave a theoretical frame for investigations of various models | each fixed point in each three-valued semantics can be a model for the concept of truth. The solutions also have normative nature | we can express the paradoxical sentences, but we escape a contradiction by declaring them undetermined. Such a solution could become an analytical solution only if we provide the analysis that would show in a substantial way that it is the solution that models the concept of truth. Kripke took some steps in the direction of finding an analytical solution. He preferred the strong Kleene three-valued semantics for which he wrote it was "appropriate" but did not explain why it was appropriate. One reason for such a choice is probably that Kripke finds paradoxical sentences meaningful. This eliminates the weak Kleene three valued semantics which corresponds to the idea that paradoxical sentences are meaningless, and thus indeterminate. Another reason could be that the strong Kleene three valued semantics has the so-called investigative interpretation. According to this interpretation, this semantics corresponds to the classical determination of truth, whereby all sentences that do not have an already determined value are temporarily considered indeterminate. When we determine the truth value of these sentences, then we can also determine the truth value of the sentences that are composed of them. Kripke supplemented this investigative interpretation with an intuition about learning the concept of truth. That intuition deals with how we can teach someone who is a competent user of an initial language (without the predicate of truth T) to use sentences that contain the predicate T. That person knows which sentences of the initial language are true and which are not. We give her the rule to assign the T attribute to the former and deny that attribute to the latter. In that way, some new sentences that contain the predicate of truth, and which were indeterminate until then, become determinate. So the person gets a new set of true and false sentences with which he continues the procedure. This intuition leads directly to the smallest fixed point of strong Kleene semantics as an analytically acceptable model for the logical notion of truth. However, since this process is usually saturated only on some transfinite ordinal, this intuition, by climbing on ordinals, increasingly becomes a metaphor. This thesis is an attempt to give an analytical solution to truth paradoxes. It gives an analysis of why and how some sentences lack the classical truth value. The starting point is basic intuition according to which paradoxical sentences are meaningful (because we understand what they are talking about well, moreover we use it for determining their truth values), but they witness the failure of the classical procedure of determining their truth value in some "extreme" circumstances. Paradoxes emerge because the classical procedure of the truth value determination does not always give a classically supposed (and expected) answer. The analysis shows that such an assumption is an unjustified generalization from common situations to all situations. We can accept the classical procedure of the truth value determination and consequently the internal semantic structure of the language, but we must reject the universality of the exterior assumption of a successful ending of the procedure. The consciousness of this transforms paradoxes to normal situations inherent to the classical procedure. Some sentences, although meaningful, when we evaluate them according to the classical truth conditions, the classical conditions do not assign them a unique value. We can assign to them the third value, \undetermined", as a sign of definitive failure of the classical procedure. An analysis of the propagation of the failure in the structure of sentences gives exactly the strong Kleene three-valued semantics, not as an investigative procedure, as it occurs in Kripke, but as the classical truth determination procedure accompanied by the propagation of its own failure. An analysis of the circularities in the determination of the classical truth value gives the criterion of when the classical procedure succeeds and when it fails, when the sentences will have the classical truth value and when they will not. It turns out that the truth values of sentences thus obtained give exactly the largest intrinsic fixed point of the strong Kleene three-valued semantics. In that way, the argumentation is given for that choice among all fixed points of all monotone three-valued semantics for the model of the logical concept of truth. An immediate mathematical description of the fixed point is given, too. It has also been shown how this language can be semantically completed to the classical language which in many respects appears a natural completion of the process of thinking about the truth values of the sentences of a given language. Thus the final model is a language that has one interpretation and two systems of sentence truth evaluation, primary and final evaluation. The language through the symbol T speaks of its primary truth valuation, which is precisely the largest intrinsic fixed point of the strong Kleene three valued semantics. Its final truth valuation is the semantic completion of the first in such a way that all sentences that are not true in the primary valuation are false in the final valuation. (shrink)
All first-order Gödel logics G_V with globalization operator based on truth value sets V C [0,1] where 0 and 1 lie in the perfect kernel of V are axiomatized by Ciabattoni’s hypersequent calculus HGIF.
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.