Results for 'completeness theorems'

957 found
Order:
  1. A Completness Theorem in Modal Logic / Teorem kompletnosti u modalnoj logici (Bosnian translation by Nijaz Ibrulj).Nijaz Ibrulj & Saul A. Kripke - 2021 - Sophos 1 (14):213-232.
    Download  
     
    Export citation  
     
    Bookmark  
  2. A topological completeness theorem for a weak version of Stalnaker's logic of knowledge and belief.Thomas Mormann - manuscript
    Download  
     
    Export citation  
     
    Bookmark  
  3. Completeness and Doxastic Plurality for Topological Operators of Knowledge and Belief.Thomas Mormann - 2023 - Erkenntnis: 1 - 34, ONLINE.
    The first aim of this paper is to prove a topological completeness theorem for a weak version of Stalnaker’s logic KB of knowledge and belief. The weak version of KB is characterized by the assumption that the axioms and rules of KB have to be satisfied with the exception of the axiom (NI) of negative introspection. The proof of a topological completeness theorem for weak KB is based on the fact that nuclei (as defined in the framework of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  4. Polyhedral Completeness of Intermediate Logics: The Nerve Criterion.Sam Adam-day, Nick Bezhanishvili, David Gabelaia & Vincenzo Marra - 2024 - Journal of Symbolic Logic 89 (1):342-382.
    We investigate a recently devised polyhedral semantics for intermediate logics, in which formulas are interpreted in n-dimensional polyhedra. An intermediate logic is polyhedrally complete if it is complete with respect to some class of polyhedra. The first main result of this paper is a necessary and sufficient condition for the polyhedral completeness of a logic. This condition, which we call the Nerve Criterion, is expressed in terms of Alexandrov’s notion of the nerve of a poset. It affords a purely (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. A new reading and comparative interpretation of Gödel’s completeness (1930) and incompleteness (1931) theorems.Vasil Penchev - 2016 - Логико-Философские Штудии 13 (2):187-188.
    Peano arithmetic cannot serve as the ground of mathematics for it is inconsistent to infinity, and infinity is necessary for its foundation. Though Peano arithmetic cannot be complemented by any axiom of infinity, there exists at least one (logical) axiomatics consistent to infinity. That is nothing else than a new reading at issue and comparative interpretation of Gödel’s papers (1930; 1931) meant here. Peano arithmetic admits anyway generalizations consistent to infinity and thus to some addable axiom(s) of infinity. The most (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Verified completeness in Henkin-style for intuitionistic propositional logic.Huayu Guo, Dongheng Chen & Bruno Bentzen - 2023 - In Bruno Bentzen, Beishui Liao, Davide Liga, Reka Markovich, Bin Wei, Minghui Xiong & Tianwen Xu (eds.), Logics for AI and Law: Joint Proceedings of the Third International Workshop on Logics for New-Generation Artificial Intelligence and the International Workshop on Logic, AI and Law, September 8-9 and 11-12, 2023, Hangzhou. College Publications. pp. 36-48.
    This paper presents a formalization of the classical proof of completeness in Henkin-style developed by Troelstra and van Dalen for intuitionistic logic with respect to Kripke models. The completeness proof incorporates their insights in a fresh and elegant manner that is better suited for mechanization. We discuss details of our implementation in the Lean theorem prover with emphasis on the prime extension lemma and construction of the canonical model. Our implementation is restricted to a system of intuitionistic propositional (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. Gödel Incompleteness and Turing Completeness.Ramón Casares - manuscript
    Following Post program, we will propose a linguistic and empirical interpretation of Gödel’s incompleteness theorem and related ones on unsolvability by Church and Turing. All these theorems use the diagonal argument by Cantor in order to find limitations in finitary systems, as human language, which can make “infinite use of finite means”. The linguistic version of the incompleteness theorem says that every Turing complete language is Gödel incomplete. We conclude that the incompleteness and unsolvability theorems find limitations in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Bell's Theorem Begs the Question.Joy Christian - manuscript
    I demonstrate that Bell's theorem is based on circular reasoning and thus a fundamentally flawed argument. It unjustifiably assumes the additivity of expectation values for dispersion-free states of contextual hidden variable theories for non-commuting observables involved in Bell-test experiments, which is tautologous to assuming the bounds of ±2 on the Bell-CHSH sum of expectation values. Its premises thus assume in a different guise the bounds of ±2 it sets out to prove. Once this oversight is ameliorated from Bell's argument by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Fermat’s last theorem proved in Hilbert arithmetic. III. The quantum-information unification of Fermat’s last theorem and Gleason’s theorem.Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (12):1-30.
    The previous two parts of the paper demonstrate that the interpretation of Fermat’s last theorem (FLT) in Hilbert arithmetic meant both in a narrow sense and in a wide sense can suggest a proof by induction in Part I and by means of the Kochen - Specker theorem in Part II. The same interpretation can serve also for a proof FLT based on Gleason’s theorem and partly similar to that in Part II. The concept of (probabilistic) measure of a subspace (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. From the four-color theorem to a generalizing “four-letter theorem”: A sketch for “human proof” and the philosophical interpretation.Vasil Penchev - 2020 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 12 (21):1-10.
    The “four-color” theorem seems to be generalizable as follows. The four-letter alphabet is sufficient to encode unambiguously any set of well-orderings including a geographical map or the “map” of any logic and thus that of all logics or the DNA plan of any alive being. Then the corresponding maximally generalizing conjecture would state: anything in the universe or mind can be encoded unambiguously by four letters. That admits to be formulated as a “four-letter theorem”, and thus one can search for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  11. Making Sense of Bell’s Theorem and Quantum Nonlocality.Stephen Boughn - 2017 - Foundations of Physics 47 (5):640-657.
    Bell’s theorem has fascinated physicists and philosophers since his 1964 paper, which was written in response to the 1935 paper of Einstein, Podolsky, and Rosen. Bell’s theorem and its many extensions have led to the claim that quantum mechanics and by inference nature herself are nonlocal in the sense that a measurement on a system by an observer at one location has an immediate effect on a distant entangled system. Einstein was repulsed by such “spooky action at a distance” and (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  12. Fermat’s last theorem proved in Hilbert arithmetic. I. From the proof by induction to the viewpoint of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (7):1-57.
    In a previous paper, an elementary and thoroughly arithmetical proof of Fermat’s last theorem by induction has been demonstrated if the case for “n = 3” is granted as proved only arithmetically (which is a fact a long time ago), furthermore in a way accessible to Fermat himself though without being absolutely and precisely correct. The present paper elucidates the contemporary mathematical background, from which an inductive proof of FLT can be inferred since its proof for the case for “n (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. complete enumerative inductions.John Corcoran - 2006 - Bulletin of Symbolic Logic 12:465-6.
    Consider the following. The first is a one-premise argument; the second has two premises. The question sign marks the conclusions as such. -/- Matthew, Mark, Luke, and John wrote Greek. ? Every evangelist wrote Greek. -/- Matthew, Mark, Luke, and John wrote Greek. Every evangelist is Matthew, Mark, Luke, or John. ? Every evangelist wrote Greek. -/- The above pair of premise-conclusion arguments is of a sort familiar to logicians and philosophers of science. In each case the first premise is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14. A Henkin-style completeness proof for the modal logic S5.Bruno Bentzen - 2021 - In Pietro Baroni, Christoph Benzmüller & Yì N. Wáng (eds.), Logic and Argumentation: Fourth International Conference, CLAR 2021, Hangzhou, China, October 20–22. Springer. pp. 459-467.
    This paper presents a recent formalization of a Henkin-style completeness proof for the propositional modal logic S5 using the Lean theorem prover. The proof formalized is close to that of Hughes and Cresswell, but the system, based on a different choice of axioms, is better described as a Mendelson system augmented with axiom schemes for K, T, S4, and B, and the necessitation rule as a rule of inference. The language has the false and implication as the only primitive (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  15. Gödel Mathematics Versus Hilbert Mathematics. II Logicism and Hilbert Mathematics, the Identification of Logic and Set Theory, and Gödel’s 'Completeness Paper' (1930).Vasil Penchev - 2023 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 15 (1):1-61.
    The previous Part I of the paper discusses the option of the Gödel incompleteness statement (1931: whether “Satz VI” or “Satz X”) to be an axiom due to the pair of the axiom of induction in arithmetic and the axiom of infinity in set theory after interpreting them as logical negations to each other. The present Part II considers the previous Gödel’s paper (1930) (and more precisely, the negation of “Satz VII”, or “the completeness theorem”) as a necessary condition (...)
    Download  
     
    Export citation  
     
    Bookmark  
  16. The Completeness: From Henkin's Proposition to Quantum Computer.Vasil Penchev - 2018 - Логико-Философские Штудии 16 (1-2):134-135.
    The paper addresses Leon Hen.kin's proposition as a " lighthouse", which can elucidate a vast territory of knowledge uniformly: logic, set theory, information theory, and quantum mechanics: Two strategies to infinity are equally relevant for it is as universal and t hus complete as open and thus incomplete. Henkin's, Godel's, Robert Jeroslow's, and Hartley Rogers' proposition are reformulated so that both completeness and incompleteness to be unified and thus reduced as a joint property of infinity and of all infinite (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Gödel mathematics versus Hilbert mathematics. I. The Gödel incompleteness (1931) statement: axiom or theorem?Vasil Penchev - 2022 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 14 (9):1-56.
    The present first part about the eventual completeness of mathematics (called “Hilbert mathematics”) is concentrated on the Gödel incompleteness (1931) statement: if it is an axiom rather than a theorem inferable from the axioms of (Peano) arithmetic, (ZFC) set theory, and propositional logic, this would pioneer the pathway to Hilbert mathematics. One of the main arguments that it is an axiom consists in the direct contradiction of the axiom of induction in arithmetic and the axiom of infinity in set (...)
    Download  
     
    Export citation  
     
    Bookmark  
  18. Kurt Gödel, paper on the incompleteness theorems (1931).Richard Zach - 2004 - In Ivor Grattan-Guinness (ed.), Landmark Writings in Mathematics. North-Holland. pp. 917-925.
    This chapter describes Kurt Gödel's paper on the incompleteness theorems. Gödel's incompleteness results are two of the most fundamental and important contributions to logic and the foundations of mathematics. It had been assumed that first-order number theory is complete in the sense that any sentence in the language of number theory would be either provable from the axioms or refutable. Gödel's first incompleteness theorem showed that this assumption was false: it states that there are sentences of number theory that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. Application of "A Thing Exists If It's A Grouping" to Russell's Paradox and Godel's First Incompletness Theorem.Roger Granet - manuscript
    A resolution to the Russell Paradox is presented that is similar to Russell's “theory of types” method but is instead based on the definition of why a thing exists as described in previous work by this author. In that work, it was proposed that a thing exists if it is a grouping tying "stuff" together into a new unit whole. In tying stuff together, this grouping defines what is contained within the new existent entity. A corollary is that a thing, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  20. The Quantum Strategy of Completeness: On the Self-Foundation of Mathematics.Vasil Penchev - 2020 - Cultural Anthropology eJournal (Elsevier: SSRN) 5 (136):1-12.
    Gentzen’s approach by transfinite induction and that of intuitionist Heyting arithmetic to completeness and the self-foundation of mathematics are compared and opposed to the Gödel incompleteness results as to Peano arithmetic. Quantum mechanics involves infinity by Hilbert space, but it is finitist as any experimental science. The absence of hidden variables in it interpretable as its completeness should resurrect Hilbert’s finitism at the cost of relevant modification of the latter already hinted by intuitionism and Gentzen’s approaches for (...). This paper investigates both conditions and philosophical background necessary for that modification. The main conclusion is that the concept of infinity as underlying contemporary mathematics cannot be reduced to a single Peano arithmetic, but to at least two ones independent of each other. Intuitionism, quantum mechanics, and Gentzen’s approaches to completeness an even Hilbert’s finitism can be unified from that viewpoint. Mathematics may found itself by a way of finitism complemented by choice. The concept of information as the quantity of choices underlies that viewpoint. Quantum mechanics interpretable in terms of information and quantum information is inseparable from mathematics and its foundation. (shrink)
    Download  
     
    Export citation  
     
    Bookmark  
  21. How Hilbert’s attempt to unify gravitation and electromagnetism failed completely, and a plausible resolution.Victor Christianto, Florentin Smarandache & Robert N. Boyd - manuscript
    In the present paper, these authors argue on actual reasons why Hilbert’s axiomatic program to unify gravitation theory and electromagnetism failed completely. An outline of plausible resolution of this problem is given here, based on: a) Gödel’s incompleteness theorem, b) Newton’s aether stream model. And in another paper we will present our calculation of receding Moon from Earth based on such a matter creation hypothesis. More experiments and observations are called to verify this new hypothesis, albeit it is inspired from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  22. From Acoustic Analog of Space, Cancer Therapy, to Acoustic Sachs-Wolfe Theorem: A Model of the Universe as a Guitar.Victor Christianto, Florentin Smarandache & Yunita Umniyati - manuscript
    It has been known for long time that the cosmic sound wave was there since the early epoch of the Universe. Signatures of its existence are abound. However, such an acoustic model of cosmology is rarely developed fully into a complete framework from the notion of space, cancer therapy up to the sky. This paper may be the first attempt towards such a complete description of the Universe based on classical wave equation of sound. It is argued that one can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Do Goedel's incompleteness theorems set absolute limits on the ability of the brain to express and communicate mental concepts verifiably?Bhupinder Singh Anand - 2004 - Neuroquantology 2:60-100.
    Classical interpretations of Goedels formal reasoning, and of his conclusions, implicitly imply that mathematical languages are essentially incomplete, in the sense that the truth of some arithmetical propositions of any formal mathematical language, under any interpretation, is, both, non-algorithmic, and essentially unverifiable. However, a language of general, scientific, discourse, which intends to mathematically express, and unambiguously communicate, intuitive concepts that correspond to scientific investigations, cannot allow its mathematical propositions to be interpreted ambiguously. Such a language must, therefore, define mathematical truth (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  24. (1 other version)Algorithmic correspondence and completeness in modal logic. IV. Semantic extensions of SQEMA.Willem Conradie & Valentin Goranko - 2008 - Journal of Applied Non-Classical Logics 18 (2):175-211.
    In a previous work we introduced the algorithm \SQEMA\ for computing first-order equivalents and proving canonicity of modal formulae, and thus established a very general correspondence and canonical completeness result. \SQEMA\ is based on transformation rules, the most important of which employs a modal version of a result by Ackermann that enables elimination of an existentially quantified predicate variable in a formula, provided a certain negative polarity condition on that variable is satisfied. In this paper we develop several extensions (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  25. A Completenesss Theorem for a 3-Valued Semantics for a First-order Language.Christopher Gauker - manuscript
    This document presents a Gentzen-style deductive calculus and proves that it is complete with respect to a 3-valued semantics for a language with quantifiers. The semantics resembles the strong Kleene semantics with respect to conjunction, disjunction and negation. The completeness proof for the sentential fragment fills in the details of a proof sketched in Arnon Avron (2003). The extension to quantifiers is original but uses standard techniques.
    Download  
     
    Export citation  
     
    Bookmark  
  26. Aggregation for potentially infinite populations without continuity or completeness.David McCarthy, Kalle M. Mikkola & J. Teruji Thomas - 2019 - arXiv:1911.00872 [Econ.TH].
    We present an abstract social aggregation theorem. Society, and each individual, has a preorder that may be interpreted as expressing values or beliefs. The preorders are allowed to violate both completeness and continuity, and the population is allowed to be infinite. The preorders are only assumed to be represented by functions with values in partially ordered vector spaces, and whose product has convex range. This includes all preorders that satisfy strong independence. Any Pareto indifferent social preorder is then shown (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Two Strategies to Infinity: Completeness and Incompleteness. The Completeness of Quantum Mechanics.Vasil Penchev - 2020 - High Performance Computing eJournal 12 (11):1-8.
    Two strategies to infinity are equally relevant for it is as universal and thus complete as open and thus incomplete. Quantum mechanics is forced to introduce infinity implicitly by Hilbert space, on which is founded its formalism. One can demonstrate that essential properties of quantum information, entanglement, and quantum computer originate directly from infinity once it is involved in quantum mechanics. Thus, thеse phenomena can be elucidated as both complete and incomplete, after which choice is the border between them. A (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28.  70
    The Ontic Probability Interpretation of Quantum Theory – Part IV: How to Complete Special Relativity and Merge it with Quantum Theory.Felix Alba-Juez - manuscript
    We have ignored for a century that the incompleteness of Quantum Theory (QT) is inseparable from the incompleteness of Special Relativity (RT). In this article, I claim that the latter has been gravely incomplete vis à vis the former from 1927 until today. But completing RT in the light of QT is not as simple as merely postulating nonlocality and stochasticity as “elements of reality” (which is de facto done by most physicists and pragmatic philosophers); otherwise, RT would not still (...)
    Download  
     
    Export citation  
     
    Bookmark  
  29. McKinsey Algebras and Topological Models of S4.1.Thomas Mormann - manuscript
    The aim of this paper is to show that every topological space gives rise to a wealth of topological models of the modal logic S4.1. The construction of these models is based on the fact that every space defines a Boolean closure algebra (to be called a McKinsey algebra) that neatly reflects the structure of the modal system S4.1. It is shown that the class of topological models based on McKinsey algebras contains a canonical model that can be used to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30. Wolpert, Chaitin et Wittgenstein sur l’impossibilité, l’incomplétude, le paradoxe menteur, le théisme, les limites du calcul, un principe d’incertitude mécanique non quantique et l’univers comme ordinateur, le théorème ultime dans Turing Machine Theory (révisé 2019).Michael Richard Starks - 2020 - In Bienvenue en Enfer sur Terre : Bébés, Changement climatique, Bitcoin, Cartels, Chine, Démocratie, Diversité, Dysgénique, Égalité, Pirates informatiques, Droits de l'homme, Islam, Libéralisme, Prospérité, Le Web, Chaos, Famine, Maladie, Violence, Intellige. Las Vegas, NV USA: Reality Press. pp. 185-189.
    J’ai lu de nombreuses discussions récentes sur les limites du calcul et de l’univers en tant qu’ordinateur, dans l’espoir de trouver quelques commentaires sur le travail étonnant du physicien polymathe et théoricien de la décision David Wolpert, mais n’ont pas trouvé une seule citation et je présente donc ce résumé très bref. Wolpert s’est avéré quelques théoricaux d’impossibilité ou d’incomplétude renversants (1992 à 2008-voir arxiv dot org) sur les limites de l’inférence (computation) qui sont si généraux qu’ils sont indépendants de (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Introduction to Mathematical Logic, Edition 2021.Vilnis Detlovs & Karlis Podnieks - manuscript
    Textbook for students in mathematical logic. Part 1. Total formalization is possible! Formal theories. First order languages. Axioms of constructive and classical logic. Proving formulas in propositional and predicate logic. Glivenko's theorem and constructive embedding. Axiom independence. Interpretations, models and completeness theorems. Normal forms. Tableaux method. Resolution method. Herbrand's theorem.
    Download  
     
    Export citation  
     
    Bookmark  
  32. Hierarchies of modal and temporal logics with reference pointers.Valentin Goranko - 1996 - Journal of Logic, Language and Information 5 (1):1-24.
    We introduce and study hierarchies of extensions of the propositional modal and temporal languages with pairs of new syntactic devices: point of reference-reference pointer which enable semantic references to be made within a formula. We propose three different but equivalent semantics for the extended languages, discuss and compare their expressiveness. The languages with reference pointers are shown to have great expressive power (especially when their frugal syntax is taken into account), perspicuous semantics, and simple deductive systems. For instance, Kamp's and (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  33. Variable Binding Term Operators.John Corcoran, William Hatcher & John Herring - 1972 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 18 (12):177-182.
    Chapin reviewed this 1972 ZEITSCHRIFT paper that proves the completeness theorem for the logic of variable-binding-term operators created by Corcoran and his student John Herring in the 1971 LOGIQUE ET ANALYSE paper in which the theorem was conjectured. This leveraging proof extends completeness of ordinary first-order logic to the extension with vbtos. Newton da Costa independently proved the same theorem about the same time using a Henkin-type proof. This 1972 paper builds on the 1971 “Notes on a Semantic (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  34. The Logic of Sequence Frames.Fabio Lampert - 2022 - Review of Symbolic Logic 15 (1):101-132.
    This paper investigates and develops generalizations of two-dimensional modal logics to any finite dimension. These logics are natural extensions of multidimensional systems known from the literature on logics for a priori knowledge. We prove a completeness theorem for propositional n-dimensional modal logics and show them to be decidable by means of a systematic tableau construction.
    Download  
     
    Export citation  
     
    Bookmark  
  35. Lógica positiva : plenitude, potencialidade e problemas (do pensar sem negação).Tomás Barrero - 2004 - Dissertation, Universidade Estadual de Campinas
    This work studies some problems connected to the role of negation in logic, treating the positive fragments of propositional calculus in order to deal with two main questions: the proof of the completeness theorems in systems lacking negation, and the puzzle raised by positive paradoxes like the well-known argument of Haskel Curry. We study the constructive com- pleteness method proposed by Leon Henkin for classical fragments endowed with implication, and advance some reasons explaining what makes difficult to extend (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  36. From Oughts to Goals: A Logic for Enkrasia.Dominik Klein & Alessandra Marra - 2020 - Studia Logica 108 (1):85-128.
    This paper focuses on the Enkratic principle of rationality, according to which rationality requires that if an agent sincerely and with conviction believes she ought to X, then X-ing is a goal in her plan. We analyze the logical structure of Enkrasia and its implications for deontic logic. To do so, we elaborate on the distinction between basic and derived oughts, and provide a multi-modal neighborhood logic with three characteristic operators: a non-normal operator for basic oughts, a non-normal operator for (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  37. On the logic of common belief and common knowledge.Luc Lismont & Philippe Mongin - 1994 - Theory and Decision 37 (1):75-106.
    The paper surveys the currently available axiomatizations of common belief (CB) and common knowledge (CK) by means of modal propositional logics. (Throughout, knowledge- whether individual or common- is defined as true belief.) Section 1 introduces the formal method of axiomatization followed by epistemic logicians, especially the syntax-semantics distinction, and the notion of a soundness and completeness theorem. Section 2 explains the syntactical concepts, while briefly discussing their motivations. Two standard semantic constructions, Kripke structures and neighbourhood structures, are introduced in (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  38. Paraconsistent modal logics.Umberto Rivieccio - 2011 - Electronic Notes in Theoretical Computer Science 278:173-186.
    We introduce a modal expansion of paraconsistent Nelson logic that is also as a generalization of the Belnapian modal logic recently introduced by Odintsov and Wansing. We prove algebraic completeness theorems for both logics, defining and axiomatizing the corresponding algebraic semantics. We provide a representation for these algebras in terms of twiststructures, generalizing a known result on the representation of the algebraic counterpart of paraconsistent Nelson logic.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  39. The logic of partitions: Introduction to the dual of the logic of subsets: The logic of partitions.David Ellerman - 2010 - Review of Symbolic Logic 3 (2):287-350.
    Modern categorical logic as well as the Kripke and topological models of intuitionistic logic suggest that the interpretation of ordinary “propositional” logic should in general be the logic of subsets of a given universe set. Partitions on a set are dual to subsets of a set in the sense of the category-theoretic duality of epimorphisms and monomorphisms—which is reflected in the duality between quotient objects and subobjects throughout algebra. If “propositional” logic is thus seen as the logic of subsets of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  40. The Relevant Logic E and Some Close Neighbours: A Reinterpretation.Edwin Mares & Shawn Standefer - 2017 - IfCoLog Journal of Logics and Their Applications 4 (3):695--730.
    This paper has two aims. First, it sets out an interpretation of the relevant logic E of relevant entailment based on the theory of situated inference. Second, it uses this interpretation, together with Anderson and Belnap’s natural deduc- tion system for E, to generalise E to a range of other systems of strict relevant implication. Routley–Meyer ternary relation semantics for these systems are produced and completeness theorems are proven. -/- .
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  41. One-step Modal Logics, Intuitionistic and Classical, Part 1.Harold T. Hodes - 2021 - Journal of Philosophical Logic 50 (5):837-872.
    This paper and its sequel “look under the hood” of the usual sorts of proof-theoretic systems for certain well-known intuitionistic and classical propositional modal logics. Section 1 is preliminary. Of most importance: a marked formula will be the result of prefixing a formula in a propositional modal language with a step-marker, for this paper either 0 or 1. Think of 1 as indicating the taking of “one step away from 0.” Deductions will be constructed using marked formulas. Section 2 presents (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  42. Judgment aggregation with consistency alone.Franz Dietrich & Christian List - 2007 - Maastricht University.
    All existing impossibility theorems on judgment aggregation require individual and collective judgment sets to be consistent and complete, arguably a demanding rationality requirement. They do not carry over to aggregation functions mapping profiles of consistent individual judgment sets to consistent collective ones. We prove that, whenever the agenda of propositions under consideration exhibits mild interconnections, any such aggregation function that is "neutral" between the acceptance and rejection of each proposition is dictatorial. We relate this theorem to the literature.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  43. A graph-theoretic account of logics.A. Sernadas, C. Sernadas, J. Rasga & Marcelo E. Coniglio - 2009 - Journal of Logic and Computation 19 (6):1281-1320.
    A graph-theoretic account of logics is explored based on the general notion of m-graph (that is, a graph where each edge can have a finite sequence of nodes as source). Signatures, interpretation structures and deduction systems are seen as m-graphs. After defining a category freely generated by a m-graph, formulas and expressions in general can be seen as morphisms. Moreover, derivations involving rule instantiation are also morphisms. Soundness and completeness theorems are proved. As a consequence of the generality (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  44. What the Tortoise Said to Achilles: Lewis Carroll’s paradox in terms of Hilbert arithmetic.Vasil Penchev - 2021 - Logic and Philosophy of Mathematics eJournal (Elsevier: SSRN) 13 (22):1-32.
    Lewis Carroll, both logician and writer, suggested a logical paradox containing furthermore two connotations (connotations or metaphors are inherent in literature rather than in mathematics or logics). The paradox itself refers to implication demonstrating that an intermediate implication can be always inserted in an implication therefore postponing its ultimate conclusion for the next step and those insertions can be iteratively and indefinitely added ad lib, as if ad infinitum. Both connotations clear up links due to the shared formal structure with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  45. Natural Deduction for Modal Logic with a Backtracking Operator.Jonathan Payne - 2015 - Journal of Philosophical Logic 44 (3):237-258.
    Harold Hodes in [1] introduces an extension of first-order modal logic featuring a backtracking operator, and provides a possible worlds semantics, according to which the operator is a kind of device for ‘world travel’; he does not provide a proof theory. In this paper, I provide a natural deduction system for modal logic featuring this operator, and argue that the system can be motivated in terms of a reading of the backtracking operator whereby it serves to indicate modal scope. I (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  46. Base-extension Semantics for Modal Logic.Eckhardt Timo & Pym David - forthcoming - Logic Journal of the IGPL.
    In proof-theoretic semantics, meaning is based on inference. It may be seen as the mathematical expression of the inferentialist interpretation of logic. Much recent work has focused on base-extension semantics, in which the validity of formulas is given by an inductive definition generated by provability in a ‘base’ of atomic rules. Base-extension semantics for classical and intuitionistic propositional logic have been explored by several authors. In this paper, we develop base-extension semantics for the classical propositional modal systems K, KT , (...)
    Download  
     
    Export citation  
     
    Bookmark  
  47. Парадоксът на Скулем и квантовата информация. Относителност на пълнота по Гьодел.Vasil Penchev - 2011 - Philosophical Alternatives 20 (2):131-147.
    In 1922, Thoralf Skolem introduced the term of «relativity» as to infinity от set theory. Не demonstrated Ьу Zermelo 's axiomatics of set theory (incl. the axiom of choice) that there exists unintended interpretations of anу infinite set. Тhus, the notion of set was also «relative». We сan apply his argurnentation to Gödel's incompleteness theorems (1931) as well as to his completeness theorem (1930). Then, both the incompleteness of Реапо arithmetic and the completeness of first-order logic tum (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Неразрешимост на първата теорема за непълнотата. Гьоделова и Хилбертова математика.Vasil Penchev - 2010 - Philosophical Alternatives 19 (5):104-119.
    Can the so-ca\led first incompleteness theorem refer to itself? Many or maybe even all the paradoxes in mathematics are connected with some kind of self-reference. Gбdel built his proof on the ground of self-reference: а statement which claims its unprovabllity. So, he demonstrated that undecidaЬle propositions exist in any enough rich axiomatics (i.e. such one which contains Peano arithmetic in some sense). What about the decidabllity of the very first incompleteness theorem? We can display that it fulfills its conditions. That's (...)
    Download  
     
    Export citation  
     
    Bookmark  
  49. G'3 as the logic of modal 3-valued Heyting algebras.Marcelo E. Coniglio, Aldo Figallo-Orellano, Alejandro Hernández-Tello & Miguel Perez-Gaspar - 2022 - IfCoLog Journal of Logics and Their Applications 9 (1):175-197.
    In 2001, W. Carnielli and Marcos considered a 3-valued logic in order to prove that the schema ϕ ∨ (ϕ → ψ) is not a theorem of da Costa’s logic Cω. In 2006, this logic was studied (and baptized) as G'3 by Osorio et al. as a tool to define semantics of logic programming. It is known that the truth-tables of G'3 have the same expressive power than the one of Łukasiewicz 3-valued logic as well as the one of Gödel (...)
    Download  
     
    Export citation  
     
    Bookmark  
  50. On the Logics with Propositional Quantifiers Extending S5Π.Yifeng Ding - 2018 - In Guram Bezhanishvili, Giovanna D'Agostino, George Metcalfe & Thomas Studer (eds.), Advances in Modal Logic 12, proceedings of the 12th conference on "Advances in Modal Logic," held in Bern, Switzerland, August 27-31, 2018. pp. 219-235.
    Scroggs's theorem on the extensions of S5 is an early landmark in the modern mathematical studies of modal logics. From it, we know that the lattice of normal extensions of S5 is isomorphic to the inverse order of the natural numbers with infinity and that all extensions of S5 are in fact normal. In this paper, we consider extending Scroggs's theorem to modal logics with propositional quantifiers governed by the axioms and rules analogous to the usual ones for ordinary quantifiers. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
1 — 50 / 957