Results for 'logical values'

969 found
Order:
  1. (1 other version)Beyond the Fregean myth: the value of logical values.Fabien Schang - 2010 - In Piotr Stalmaszczyk (ed.), Objects of Inquiry in Philosophy of Language and Linguistics. Ontos Verlag. pp. 245--260.
    One of the most prominent myths in analytic philosophy is the so- called “Fregean Axiom”, according to which the reference of a sentence is a truth value. In contrast to this referential semantics, a use-based formal semantics will be constructed in which the logical value of a sentence is not its putative referent but the information it conveys. Let us call by “Question Answer Semantics” (thereafter: QAS) the corresponding formal semantics: a non-Fregean many-valued logic, where the meaning of any (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  2. Many-valued logics. A mathematical and computational introduction.Luis M. Augusto - 2020 - London: College Publications.
    2nd edition. Many-valued logics are those logics that have more than the two classical truth values, to wit, true and false; in fact, they can have from three to infinitely many truth values. This property, together with truth-functionality, provides a powerful formalism to reason in settings where classical logic—as well as other non-classical logics—is of no avail. Indeed, originally motivated by philosophical concerns, these logics soon proved relevant for a plethora of applications ranging from switching theory to cognitive (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  3. Logics Based on Linear Orders of Contaminating Values.Roberto Ciuni, Thomas Macaulay Ferguson & Damian Szmuc - 2019 - Journal of Logic and Computation 29 (5):631–663.
    A wide family of many-valued logics—for instance, those based on the weak Kleene algebra—includes a non-classical truth-value that is ‘contaminating’ in the sense that whenever the value is assigned to a formula φ⁠, any complex formula in which φ appears is assigned that value as well. In such systems, the contaminating value enjoys a wide range of interpretations, suggesting scenarios in which more than one of these interpretations are called for. This calls for an evaluation of systems with multiple contaminating (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  4. The Value of the One Value: Exactly True Logic revisited.Andreas Kapsner & Umberto Rivieccio - 2023 - Journal of Philosophical Logic 52 (5):1417-1444.
    In this paper we re-assess the philosophical foundation of Exactly True Logic ($$\mathcal {ET\!L}$$ ET L ), a competing variant of First Degree Entailment ($$\mathcal {FDE}$$ FDE ). In order to do this, we first rebut an argument against it. As the argument appears in an interview with Nuel Belnap himself, one of the fathers of $$\mathcal {FDE}$$ FDE, we believe its provenance to be such that it needs to be taken seriously. We submit, however, that the argument ultimately fails, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  5. The value of thinking and the normativity of logic.Manish Oza - 2020 - Philosophers' Imprint 20 (25):1-23.
    (1) This paper is about how to build an account of the normativity of logic around the claim that logic is constitutive of thinking. I take the claim that logic is constitutive of thinking to mean that representational activity must tend to conform to logic to count as thinking. (2) I develop a natural line of thought about how to develop the constitutive position into an account of logical normativity by drawing on constitutivism in metaethics. (3) I argue that, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  6. Many-Valued And Fuzzy Logic Systems From The Viewpoint Of Classical Logic.Ekrem Sefa Gül - 2018 - Tasavvur - Tekirdag Theology Journal 4 (2):624 - 657.
    The thesis that the two-valued system of classical logic is insufficient to explanation the various intermediate situations in the entity, has led to the development of many-valued and fuzzy logic systems. These systems suggest that this limitation is incorrect. They oppose the law of excluded middle (tertium non datur) which is one of the basic principles of classical logic, and even principle of non-contradiction and argue that is not an obstacle for things both to exist and to not exist at (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7. On Three-Valued Presentations of Classical Logic.Bruno da Ré, Damian Szmuc, Emmanuel Chemla & Paul Égré - 2024 - Review of Symbolic Logic 17 (3):682-704.
    Given a three-valued definition of validity, which choice of three-valued truth tables for the connectives can ensure that the resulting logic coincides exactly with classical logic? We give an answer to this question for the five monotonic consequence relations $st$, $ss$, $tt$, $ss\cap tt$, and $ts$, when the connectives are negation, conjunction, and disjunction. For $ts$ and $ss\cap tt$ the answer is trivial (no scheme works), and for $ss$ and $tt$ it is straightforward (they are the collapsible schemes, in which (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  8. The Conditional in Three-Valued Logic.Jan Sprenger - forthcoming - In Paul Egre & Lorenzo Rossi (eds.), Handbook of Three-Valued Logic. Cambridge, Massachusetts: The MIT Press.
    By and large, the conditional connective in three-valued logic has two different functions. First, by means of a deduction theorem, it can express a specific relation of logical consequence in the logical language itself. Second, it can represent natural language structures such as "if/then'' or "implies''. This chapter surveys both approaches, shows why none of them will typically end up with a three-valued material conditional, and elaborates on connections to probabilistic reasoning.
    Download  
     
    Export citation  
     
    Bookmark  
  9.  53
    Truth‐value relations and logical relations.Lloyd Humberstone - 2023 - Theoria 89 (1):124-147.
    After some generalities about connections between functions and relations in Sections 1 and 2 recalls the possibility of taking the semantic values of ‐ary Boolean connectives as ‐ary relations among truth‐values rather than as ‐ary truth functions. Section 3, the bulk of the paper, looks at correlates of these truth‐value relations as applied to formulas, and explores in a preliminary way how their properties are related to the properties of “logical relations” among formulas such as equivalence, implication (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Proof Theory of Finite-valued Logics.Richard Zach - 1993 - Dissertation, Technische Universität Wien
    The proof theory of many-valued systems has not been investigated to an extent comparable to the work done on axiomatizatbility of many-valued logics. Proof theory requires appropriate formalisms, such as sequent calculus, natural deduction, and tableaux for classical (and intuitionistic) logic. One particular method for systematically obtaining calculi for all finite-valued logics was invented independently by several researchers, with slight variations in design and presentation. The main aim of this report is to develop the proof theory of finite-valued first order (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  11. A one-valued logic for non-one-sidedness.Fabien Schang - 2013 - International Journal of Jaina Studies 9 (1):1-25.
    Does it make sense to employ modern logical tools for ancient philosophy? This well-known debate2 has been re-launched by the indologist Piotr Balcerowicz, questioning those who want to look at the Eastern school of Jainism with Western glasses. While plainly acknowledging the legitimacy of Balcerowicz's mistrust, the present paper wants to propose a formal reconstruction of one of the well-known parts of the Jaina philosophy, namely: the saptabhangi, i.e. the theory of sevenfold predication. Before arguing for this formalist approach (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  12. Labeled calculi and finite-valued logics.Matthias Baaz, Christian G. Fermüller, Gernot Salzer & Richard Zach - 1998 - Studia Logica 61 (1):7-33.
    A general class of labeled sequent calculi is investigated, and necessary and sufficient conditions are given for when such a calculus is sound and complete for a finite -valued logic if the labels are interpreted as sets of truth values. Furthermore, it is shown that any finite -valued logic can be given an axiomatization by such a labeled calculus using arbitrary "systems of signs," i.e., of sets of truth values, as labels. The number of labels needed is logarithmic (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  13. Effective finite-valued approximations of general propositional logics.Matthias Baaz & Richard Zach - 2008 - In Arnon Avron & Nachum Dershowitz (eds.), Pillars of Computer Science: Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His 85th Birthday. Springer Verlag. pp. 107–129.
    Propositional logics in general, considered as a set of sentences, can be undecidable even if they have “nice” representations, e.g., are given by a calculus. Even decidable propositional logics can be computationally complex (e.g., already intuitionistic logic is PSPACE-complete). On the other hand, finite-valued logics are computationally relatively simple—at worst NP. Moreover, finite-valued semantics are simple, and general methods for theorem proving exist. This raises the question to what extent and under what circumstances propositional logics represented in various ways can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Maximality in finite-valued Lukasiewicz logics defined by order filters.Marcelo E. Coniglio, Francesc Esteva, Joan Gispert & Lluis Godo - 2019 - Journal of Logic and Computation 29 (1):125-156.
    In this paper we consider the logics L(i,n) obtained from the (n+1)-valued Lukasiewicz logics L(n+1) by taking the order filter generated by i/n as the set of designated elements. In particular, the conditions of maximality and strong maximality among them are analyzed. We present a very general theorem that provides sufficient conditions for maximality between logics. As a consequence of this theorem, it is shown that L(i,n) is maximal w.r.t. CPL whenever n is prime. Concerning strong maximality (i.e. maximality w.r.t. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  15. Was Łukasiewicz Wrong? : Three-valued Logic and Determinism.Daisuke Kachi - 1996 - In Łukasiewicz in Dublin -- An International Conference on the Work of Jan Łukasiewicz.
    Łukasiewicz has often been criticized for his motive for inventing his three-valued logic, namely the avoidance of determinism. First of all, I want to show that almost all of the critcism along this line was wrong. Second I will indicate that he made mistakes, however, in constructing his system, because he had other motives at the same time. Finally I will propose some modification of his system and its interpretation which can attain his original purpose in some sense.
    Download  
     
    Export citation  
     
    Bookmark  
  16. A 4-valued logic of strong conditional.Fabien Schang - 2018 - South American Journal of Logic 3 (1):59-86.
    How to say no less, no more about conditional than what is needed? From a logical analysis of necessary and sufficient conditions (Section 1), we argue that a stronger account of conditional can be obtained in two steps: firstly, by reminding its historical roots inside modal logic and set-theory (Section 2); secondly, by revising the meaning of logical values, thereby getting rid of the paradoxes of material implication whilst showing the bivalent roots of conditional as a speech-act (...)
    Download  
     
    Export citation  
     
    Bookmark  
  17. Natural Deduction for Three-Valued Regular Logics.Yaroslav Petrukhin - 2017 - Logic and Logical Philosophy 26 (2):197–206.
    In this paper, I consider a family of three-valued regular logics: the well-known strong and weak S.C. Kleene’s logics and two intermedi- ate logics, where one was discovered by M. Fitting and the other one by E. Komendantskaya. All these systems were originally presented in the semantical way and based on the theory of recursion. However, the proof theory of them still is not fully developed. Thus, natural deduction sys- tems are built only for strong Kleene’s logic both with one (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  18. Three Value Logics: An Introduction, A Comparison of Various Logical Lexica and Some Philosophical Remarks.Harold Hodes - 1989 - Annals of Pure and Applied Logic 43 (2):99-145.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  19. On Certain Values of the Lvov-Warsaw School and Logical Culture: Towards Challenges of Contemporaneousness.Urszula Wybraniec-Skardowska - 2022 - Filozofia Nauki 30 (1):53-66.
    This article explores the question of how the members of the Lvov-Warsaw School promoted values that can be regarded as components of so-called logical culture. The author argues that these values are strictly connected with science. With references to Łukasiewicz, Czeżowski, and Kotarbiński,the article explores how values shape the logical culture and determines society as directed towards values. The article connects the meta-philosophical perspective with the philosophical one.
    Download  
     
    Export citation  
     
    Bookmark  
  20. Modeling the interaction of computer errors by four-valued contaminating logics.Roberto Ciuni, Thomas Macaulay Ferguson & Damian Szmuc - 2019 - In Rosalie Iemhoff, Michael Moortgat & Ruy de Queiroz (eds.), Logic, Language, Information, and Computation. Folli Publications on Logic, Language and Information. pp. 119-139.
    Logics based on weak Kleene algebra (WKA) and related structures have been recently proposed as a tool for reasoning about flaws in computer programs. The key element of this proposal is the presence, in WKA and related structures, of a non-classical truth-value that is “contaminating” in the sense that whenever the value is assigned to a formula ϕ, any complex formula in which ϕ appears is assigned that value as well. Under such interpretations, the contaminating states represent occurrences of a (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  21. Correspondence analysis for strong three-valued logic.Allard Tamminga - 2014 - Logical Investigations 20:255-268.
    I apply Kooi and Tamminga's (2012) idea of correspondence analysis for many-valued logics to strong three-valued logic (K3). First, I characterize each possible single entry in the truth-table of a unary or a binary truth-functional operator that could be added to K3 by a basic inference scheme. Second, I define a class of natural deduction systems on the basis of these characterizing basic inference schemes and a natural deduction system for K3. Third, I show that each of the resulting natural (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  22. On the Logic of Values.Manuel Dries - 2010 - Journal of Nietzsche Studies 39 (1):30-50.
    This article argues that Nietzsche’s transvaluation project refers not to a mere inversion or negation of a set of nihilism-prone, Judeo-Christian values but, instead, to a different conception of what a value is and how it functions. Traditional values function within a standard logical framework and claim legitimacy and “bindingness” based on exogenous authority with absolute extension. Nietzsche regards this framework as unnecessarily reductive in its attempted exclusion of contradiction and real opposition among competing values. I (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  23. Elimination of Cuts in First-order Finite-valued Logics.Matthias Baaz, Christian G. Fermüller & Richard Zach - 1993 - Journal of Information Processing and Cybernetics EIK 29 (6):333-355.
    A uniform construction for sequent calculi for finite-valued first-order logics with distribution quantifiers is exhibited. Completeness, cut-elimination and midsequent theorems are established. As an application, an analog of Herbrand’s theorem for the four-valued knowledge-representation logic of Belnap and Ginsberg is presented. It is indicated how this theorem can be used for reasoning about knowledge bases with incomplete and inconsistent information.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  24. When it is Not Logically Necessary for a Necessary Condition of Value to be Valuable.Michael Kowalik - manuscript
    The premise that it is logically necessary for a necessary condition of value to be valuable is sometimes used in metaethics in support of the claim that agency, or some constitutive condition of agency or action, has value for all agents. I focus on the most recent application of this premise by Caroline T. Arruda and argue that the premise is false. Despite this defect the relevant evaluative step could still work just in case of agency if an additional condition (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. The Rules of Logic Composition for the Bayesian Epistemic e-Values.Wagner Borges & Julio Michael Stern - 2007 - Logic Journal of the IGPL 15 (5-6):401-420.
    In this paper, the relationship between the e-value of a complex hypothesis, H, and those of its constituent elementary hypotheses, Hj, j = 1… k, is analyzed, in the independent setup. The e-value of a hypothesis H, ev, is a Bayesian epistemic, credibility or truth value defined under the Full Bayesian Significance Testing mathematical apparatus. The questions addressed concern the important issue of how the truth value of H, and the truth function of the corresponding FBST structure M, relate to (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  26. G'3 as the logic of modal 3-valued Heyting algebras.Marcelo E. Coniglio, Aldo Figallo-Orellano, Alejandro Hernández-Tello & Miguel Perez-Gaspar - 2022 - IfCoLog Journal of Logics and Their Applications 9 (1):175-197.
    In 2001, W. Carnielli and Marcos considered a 3-valued logic in order to prove that the schema ϕ ∨ (ϕ → ψ) is not a theorem of da Costa’s logic Cω. In 2006, this logic was studied (and baptized) as G'3 by Osorio et al. as a tool to define semantics of logic programming. It is known that the truth-tables of G'3 have the same expressive power than the one of Łukasiewicz 3-valued logic as well as the one of Gödel (...)
    Download  
     
    Export citation  
     
    Bookmark  
  27. Dual Systems of Sequents and Tableaux for Many-Valued Logics.Matthias Baaz, Christian G. Fermüller & Richard Zach - 1993 - Bulletin of the EATCS 51:192-197.
    The aim of this paper is to emphasize the fact that for all finitely-many-valued logics there is a completely systematic relation between sequent calculi and tableau systems. More importantly, we show that for both of these systems there are al- ways two dual proof sytems (not just only two ways to interpret the calculi). This phenomenon may easily escape one’s attention since in the classical (two-valued) case the two systems coincide. (In two-valued logic the assignment of a truth value and (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  28. Theories of truth based on four-valued infectious logics.Damian Szmuc, Bruno Da Re & Federico Pailos - 2020 - Logic Journal of the IGPL 28 (5):712-746.
    Infectious logics are systems that have a truth-value that is assigned to a compound formula whenever it is assigned to one of its components. This paper studies four-valued infectious logics as the basis of transparent theories of truth. This take is motivated as a way to treat different pathological sentences differently, namely, by allowing some of them to be truth-value gluts and some others to be truth-value gaps and as a way to treat the semantic pathology suffered by at least (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  29. Interpolation in 16-Valued Trilattice Logics.Reinhard Muskens & Stefan Wintein - 2018 - Studia Logica 106 (2):345-370.
    In a recent paper we have defined an analytic tableau calculus PL_16 for a functionally complete extension of Shramko and Wansing's logic based on the trilattice SIXTEEN_3. This calculus makes it possible to define syntactic entailment relations that capture central semantic relations of the logic---such as the relations |=_t, |=_f, and |=_i that each correspond to a lattice order in SIXTEEN_3; and |=, the intersection of |=_t and |=_f,. -/- It turns out that our method of characterising these semantic relations---as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  30.  74
    Inferential interpretations of many-valued logics.Sanderson Molick - 2024 - Logics 1 (2):112-128.
    Non-Tarskian interpretations of many-valued logics have been widely explored in the logic literature. The development of non-tarskian conceptions of logical consequence set the theoretical foundations for rediscovering well-known (Tarskian) many-valued logics. One may find in distinct authors many novel interpretations of many-valued systems. They are produced through a type of procedure which consists in altering the semantic structure of Tarskian many-valued logics in order to output a non-Tarskian interpretation of these logics. Through this type of transformation the paper explores (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Bourne on future contingents and three-valued logic.Daisuke Kachi - 2009 - Logic and Logical Philosophy 18 (1):33-43.
    Recently, Bourne constructed a system of three-valued logic that he supposed to replace Łukasiewicz’s three-valued logic in view of the problems of future contingents. In this paper, I will show first that Bourne’s system makes no improvement to Łukasiewicz’s system. However, finding some good motivations and lessons in his attempt, next I will suggest a better way of achieving his original goal in some sense. The crucial part of my way lies in reconsidering the significance of the intermediate truth-value so (...)
    Download  
     
    Export citation  
     
    Bookmark  
  32. Approximating Propositional Calculi by Finite-valued Logics.Matthias Baaz & Richard Zach - 1994 - In Baaz Matthias & Zach Richard (eds.), 24th International Symposium on Multiple-valued Logic, 1994. Proceedings. IEEE Press. pp. 257–263.
    The problem of approximating a propositional calculus is to find many-valued logics which are sound for the calculus (i.e., all theorems of the calculus are tautologies) with as few tautologies as possible. This has potential applications for representing (computationally complex) logics used in AI by (computationally easy) many-valued logics. It is investigated how far this method can be carried using (1) one or (2) an infinite sequence of many-valued logics. It is shown that the optimal candidate matrices for (1) can (...)
    Download  
     
    Export citation  
     
    Bookmark  
  33. Trees for a 3-valued logic.Fred Johnson - 1984 - Analysis 44 (1):43-6.
    Fred shows how problems with Slater's restriction of the classical propositional logic can be solved.
    Download  
     
    Export citation  
     
    Bookmark  
  34. Dynamic Many Valued Logic Systems in Theoretical Economics.D. Lu - manuscript
    This paper is an original attempt to understand the foundations of economic reasoning. It endeavors to rigorously define the relationship between subjective interpretations and objective valuations of such interpretations in the context of theoretical economics. This analysis is substantially expanded through a dynamic approach, where the truth of a valuation results in an updated interpretation or changes in the agent's subjective belief regarding the effectiveness of the selected action as well as the objective reality of the effectiveness of all other (...)
    Download  
     
    Export citation  
     
    Bookmark  
  35. Logically-consistent hypothesis testing and the hexagon of oppositions.Julio Michael Stern, Rafael Izbicki, Luis Gustavo Esteves & Rafael Bassi Stern - 2017 - Logic Journal of the IGPL 25 (5):741-757.
    Although logical consistency is desirable in scientific research, standard statistical hypothesis tests are typically logically inconsistent. To address this issue, previous work introduced agnostic hypothesis tests and proved that they can be logically consistent while retaining statistical optimality properties. This article characterizes the credal modalities in agnostic hypothesis tests and uses the hexagon of oppositions to explain the logical relations between these modalities. Geometric solids that are composed of hexagons of oppositions illustrate the conditions for these modalities to (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  36. (1 other version)Twist-Valued Models for Three-valued Paraconsistent Set Theory.Walter Carnielli & Marcelo E. Coniglio - 2021 - Logic and Logical Philosophy 30 (2):187-226.
    Boolean-valued models of set theory were independently introduced by Scott, Solovay and Vopěnka in 1965, offering a natural and rich alternative for describing forcing. The original method was adapted by Takeuti, Titani, Kozawa and Ozawa to lattice-valued models of set theory. After this, Löwe and Tarafder proposed a class of algebras based on a certain kind of implication which satisfy several axioms of ZF. From this class, they found a specific 3-valued model called PS3 which satisfies all the axioms of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  37. A three-valued interpretation for a relevance logic.Fred Johnson - 1976 - The Relevance Logic Newsletter 1 (3):123-128.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  38. Many-Valued Logic between the Degrees of Truth and the Limits of Knowledge.Salah Osman - 2002 - Alexandria, Egypt: Al Maaref Establishment Press.
    هو أول كتاب باللغة العربية يعرض لمراحل وآليات تطور المنطق الرمزي المعاصر متعدد القيم بأنساقه المختلفة، مركزًا على مشكلة الغموض المعرفي للإنسان بأبعادها اللغوية والإبستمولوجية والأنطولوجية، والتي تتجلى – على سبيل المثال – فيما تحفل به الدراسات الفلسفية والمنطقية والعلمية من مفارقات تمثل تحديًا قويًا لثنائية الصدق والكذب الكلاسيكية، وكذلك في اكتشاف «هيزنبرج» لمبدأ اللايقين، وتأكيده وعلماء الكمّ على ضرورة التفسيرات الإحصائية في المجال دون الذري، الأمر الذي يؤكد عدم فعالية قانون الثالث المرفوع في التعامل مع معطيات الواقع الفعلي، واستحالة (...)
    Download  
     
    Export citation  
     
    Bookmark  
  39. Knot and Tonk: Nasty Connectives on Many-Valued Truth-Tables for Classical Sentential Logic.Tim Button - 2016 - Analysis 76 (1):7-19.
    Prior’s Tonk is a famously horrible connective. It is defined by its inference rules. My aim in this article is to compare Tonk with some hitherto unnoticed nasty connectives, which are defined in semantic terms. I first use many-valued truth-tables for classical sentential logic to define a nasty connective, Knot. I then argue that we should refuse to add Knot to our language. And I show that this reverses the standard dialectic surrounding Tonk, and yields a novel solution to the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  40. Logical ignorance and logical learning.Richard Pettigrew - 2020 - Synthese 198 (10):9991-10020.
    According to certain normative theories in epistemology, rationality requires us to be logically omniscient. Yet this prescription clashes with our ordinary judgments of rationality. How should we resolve this tension? In this paper, I focus particularly on the logical omniscience requirement in Bayesian epistemology. Building on a key insight by Hacking :311–325, 1967), I develop a version of Bayesianism that permits logical ignorance. This includes: an account of the synchronic norms that govern a logically ignorant individual at any (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  41. Systematic construction of natural deduction systems for many-valued logics.Matthias Baaz, Christian G. Fermüller & Richard Zach - 1993 - In Unknown (ed.), Proceedings of The Twenty-Third International Symposium on Multiple-Valued Logic, 1993. IEEE Press. pp. 208-213.
    A construction principle for natural deduction systems for arbitrary, finitely-many-valued first order logics is exhibited. These systems are systematically obtained from sequent calculi, which in turn can be automatically extracted from the truth tables of the logics under consideration. Soundness and cut-free completeness of these sequent calculi translate into soundness, completeness, and normal-form theorems for natural deduction systems.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  42. Towards Tractable Approximations to Many-Valued Logics: the Case of First Degree Entailment.Alejandro Solares-Rojas & Marcello D’Agostino - 2022 - In Igor Sedlár (ed.), The Logica Yearbook 2021. College Publications. pp. 57-76.
    FDE is a logic that captures relevant entailment between implication-free formulae and admits of an intuitive informational interpretation as a 4-valued logic in which “a computer should think”. However, the logic is co-NP complete, and so an idealized model of how an agent can think. We address this issue by shifting to signed formulae where the signs express imprecise values associated with two distinct bipartitions of the set of standard 4 values. Thus, we present a proof system which (...)
    Download  
     
    Export citation  
     
    Bookmark  
  43. Individual-actualism and three-valued modal logics, part 1: Model-theoretic semantics.Harold T. Hodes - 1986 - Journal of Philosophical Logic 15 (4):369 - 401.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  44. On Locating Value in Making Moral Progress.Toni Rønnow-Rasmussen - 2015 - Ethical Theory and Moral Practice 20 (1):137-152.
    The endeavour to locate value in moral progress faces various substantive as well as more formal challenges. This paper focuses on challenges of the latter kind. After some preliminaries, Section 3 introduces two general kinds of “evaluative moral progress-claims”, and outlines a possible novel analysis of a descriptive notion of moral progress. While Section 4 discusses certain logical features of betterness in light of recent work in value theory which are pertinent to the notion of moral progress, Sections 5 (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  45. Classical Logic and Neutrosophic Logic. Answers to K. Georgiev.Florentin Smarandache - 2016 - Neutrosophic Sets and Systems 13:79-83.
    In this paper, we make distinctions between Classical Logic (where the propositions are 100% true, or 100 false) and the Neutrosophic Logic (where one deals with partially true, partially indeterminate and partially false propositions) in order to respond to K. Georgiev’s criticism [1]. We recall that if an axiom is true in a classical logic system, it is not necessarily that the axiom be valid in a modern (fuzzy, intuitionistic fuzzy, neutrosophic etc.) logic system.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  46. Genuine paracomplete logics.Verónica Borja Macías, Marcelo E. Coniglio & Alejandro Hernández-Tello - 2023 - Logic Journal of the IGPL 31 (5):961-987.
    In 2016, Béziau introduces a restricted notion of paraconsistency, the so-called genuine paraconsistency. A logic is genuine paraconsistent if it rejects the laws $\varphi,\neg \varphi \vdash \psi$ and $\vdash \neg (\varphi \wedge \neg \varphi)$. In that paper, the author analyzes, among the three-valued logics, which of them satisfy this property. If we consider multiple-conclusion consequence relations, the dual properties of those above-mentioned are $\vdash \varphi, \neg \varphi$ and $\neg (\varphi \vee \neg \varphi) \vdash$. We call genuine paracomplete logics those rejecting (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  47. Individual-actualism and three-valued modal logics, part 2: Natural-deduction formalizations.Harold T. Hodes - 1987 - Journal of Philosophical Logic 16 (1):17 - 63.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  48. What is a Paraconsistent Logic?Damian Szmuc, Federico Pailos & Eduardo Barrio - 2018 - In Walter Carnielli & Jacek Malinowski (eds.), Contradictions, from Consistency to Inconsistency. Cham, Switzerland: Springer.
    Paraconsistent logics are logical systems that reject the classical principle, usually dubbed Explosion, that a contradiction implies everything. However, the received view about paraconsistency focuses only the inferential version of Explosion, which is concerned with formulae, thereby overlooking other possible accounts. In this paper, we propose to focus, additionally, on a meta-inferential version of Explosion, i.e. which is concerned with inferences or sequents. In doing so, we will offer a new characterization of paraconsistency by means of which a logic (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  49. Ancient logic and its modern interpretations.John Corcoran (ed.) - 1974 - Boston,: Reidel.
    This book treats ancient logic: the logic that originated in Greece by Aristotle and the Stoics, mainly in the hundred year period beginning about 350 BCE. Ancient logic was never completely ignored by modern logic from its Boolean origin in the middle 1800s: it was prominent in Boole’s writings and it was mentioned by Frege and by Hilbert. Nevertheless, the first century of mathematical logic did not take it seriously enough to study the ancient logic texts. A renaissance in ancient (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  50. A General Semantics for Logics of Affirmation and Negation.Fabien Schang - 2021 - Journal of Applied Logics - IfCoLoG Journal of Logics and Their Applications 8 (2):593-609.
    A general framework for translating various logical systems is presented, including a set of partial unary operators of affirmation and negation. Despite its usual reading, affirmation is not redundant in any domain of values and whenever it does not behave like a full mapping. After depicting the process of partial functions, a number of logics are translated through a variety of affirmations and a unique pair of negations. This relies upon two preconditions: a deconstruction of truth-values as (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
1 — 50 / 969